Introduction

Neural quantum states for hypernuclear systems with contact theories.

A. Di Donna¹ A. Lovato² F. Pederiva³ L. Contessi⁴

¹Faculty of Physics, Unitn TIFPA

²Argonne National Laboratory TIFPA

> ³University of Trento TIFPA

> > ⁴IJCLab Orsay

April 11, 2024

Trento Institute for Fundamental Physics and Applications

◆□▶ ◆□▶ ◆ E ▶ ◆ E ▶ E の Q @ 1/47

Table of Contents

Introduction

- EoS of barion stars and the Hyperon puzzle
- Microscopic Interaction: #EFT contact potentials

2 The NNQS approach

- Hidden Nucleon Wavefunction
 Deep Sets
- Application of NNQS to hypernuclei
- Importance Sampling and Metropolis
- The Stochastic Reconfiguration Algorithm

3 Results

Introduction • O	Theoretical Background	The NNQS approach	Results 00000000000	Conclusions 0000000000000
EoS of Barion S	Stars and the Hyperon r	ouzzle		

 Equation of State (EoS) → barion stars' internal structure (BS) → prediction of the maximum stellar mass.

◆□ ▶ < @ ▶ < E ▶ < E ▶ ○ 2 ○ 3/47</p>

Introduction •O	Theoretical Background	The NNQS approach	Results 00000000000	Conclusions 0000000000000
EoS of Barion S	tars and the Hyperon p	ouzzle		

- Equation of State (EoS) → barion stars' internal structure (BS) → prediction of the maximum stellar mass.
- Hyperons in the core of the most massive BSs lead to the hyperon puzzle → softer EoS (reduce Pauli blocking), reducing the maximum stellar mass.

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● ● ● ○ Q ○ 3/47

- Equation of State (EoS) → barion stars' internal structure (BS) → prediction of the maximum stellar mass.
- Hyperons in the core of the most massive BSs lead to the hyperon puzzle → softer EoS (reduce Pauli blocking), reducing the maximum stellar mass.
- Observational data of the most recent compact object's masses have provided stringent constraints on the EoS that are in contrast with its softening.

(ロト (@) (E) (E) (E) の(3/47)

EoS of Barion Stars and the Hyperon puzzle

- Equation of State (EoS) → barion stars' internal structure (BS) → prediction of the maximum stellar mass.
- Hyperons in the core of the most massive BSs lead to the hyperon puzzle → softer EoS (reduce Pauli blocking), reducing the maximum stellar mass.
- Observational data of the most recent compact object's masses have provided stringent constraints on the EoS that are in contrast with its softening.
- The main ingredient that determines the stiffness/softness of the EOS after the introduction of hyperons in the core is the **microscopic interaction** between these particles and the nuclear matter.

Introduction	Theoretical Background	The NNQS approach	Results 00000000000	Conclusions 00000000000000
Key question				

• Key question:

<□ ▶ < @ ▶ < E ▶ < E ▶ E の < C 4/47

Introduction	Theoretical Background	The NNQS approach	Results 00000000000	Conclusions 000000000000000
Key question				

- Key question:
 - $\bullet \ \to$ can Neural Network Quantum States (NNQS) model hypernuclear systems and allow to predict their properties?
 - \rightarrow Hypernuclei considered in this work are bound state between an ordinary nucleus with only one hyperon (Λ^0)

$$^{A-1}Z + \Lambda \rightarrow^{A}_{\Lambda} Z$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ · · · ○ へ ○ 4/47

• Key question:

- $\bullet \rightarrow$ can Neural Network Quantum States (NNQS) model hypernuclear systems and allow to predict their properties?
- \rightarrow Hypernuclei considered in this work are bound state between an ordinary nucleus with only one hyperon (Λ^0)

$$^{A-1}Z + \Lambda \rightarrow^{A}_{\Lambda} Z$$

(ロト (@) (E) (E) (E) のへで A/A7

Objectives

- → Parametrize for the wavefunction (variational state) in terms of Neural Networks.
- → Fit an Improved LO interaction potential derived from *fEFT*.
 → Compare NNQS results with exact few-body techniques over fitted observables.
- \rightarrow **Predict** Λ -separation energies for high A systems ($^{7}_{\Lambda}$ Li, $^{13}_{\Lambda}$ C, $^{16}_{\Lambda}$ O and $^{40}_{\Lambda}$ Ca).

Key question

- Key question:
 - $\bullet \rightarrow$ can Neural Network Quantum States (NNQS) model hypernuclear systems and allow to predict their properties?
 - \rightarrow Hypernuclei considered in this work are bound state between an ordinary nucleus with only one hyperon (Λ^0)

$$^{A-1}Z + \Lambda \rightarrow^{A}_{\Lambda} Z$$

(ロト (@) (E) (E) (E) のへで A/A7

- Objectives
 - $\bullet \rightarrow$ Parametrize for the wavefunction (variational state) in terms of Neural Networks,

 - → Fit an Improved LO interaction potential derived from *fEFT*.
 → Compare NNQS results with exact few-body techniques over fitted observables.
 - \rightarrow **Predict** Λ -separation energies for high A systems ($^{7}_{\Lambda}$ Li, $^{13}_{\Lambda}$ C, $^{16}_{\Lambda}$ O and $^{40}_{\Lambda}$ Ca).
- Through NNQS, we have obtained promising results with hypernuclear states.

Introduction	Theoretical Background ●O	The NNQS approach	Results 00000000000	Conclusions 0000000000000
Microscopic Inte	eraction: #EET Contac	t potentials		

• The interaction potential is derived from the Pionless EFT (#EFT $Q < M_{hi} = m_{\pi} = 140 MeV$)

Introduction	Theoretical Background	The NNQS approach	Results	Conclusions
OO	● O		00000000000	0000000000000
Microscopic Inte	raction: #EFT Contact	potentials		

- The interaction potential is derived from the Pionless EFT (#EFT $Q < M_{hi} = m_{\pi} = 140 MeV$)
- Unresolved pions leads to a spin-dependent contact potential, which is described by a set of Low Energy Constants (LECs):

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ の へ ○ 5/47

Introduction	Theoretical Background ●O	The NNQS approach	Results 00000000000	Conclusions

Microscopic Interaction: π EFT Contact potentials

- The interaction potential is derived from the Pionless EFT (#EFT $Q < M_{hi} = m_{\pi} = 140 MeV$)
- Unresolved pions leads to a spin-dependent contact potential, which is described by a set of Low Energy Constants (LECs):

Regulator's cutoffs and LECs are both fitted \rightarrow SVM (Suzuki - Varga) and Gaussian Processes.

• NN potential: Fitted to np/nn scattering lengths and effective ranges.

• 3NF are adjusted to reproduce the ³*H* and ⁴*He* BEs.

$$V_{NN}(\mathbf{x}_{ij}) = \left(C_0(\lambda)^s P_{S_{tot}=0}^{2b} + C_0(\lambda)^t P_{S_{tot}=1}^{2b}\right) \delta_\lambda(\mathbf{x}_{ij})$$

$$V_{NNN}(\mathbf{x}_{ij}) = \mathcal{D}_0(\lambda) \sum_{i < j < k} \sum_{cyc} \delta_\lambda(\mathbf{x}_{ik}) \delta_\lambda(\mathbf{x}_{ij})$$

Introduction OO	Theoretical Background O●	The NNQS approach	Results 00000000000	Conclusions
Extending #EFT	to Hyperons			

 Extending #EFT to Hyperons require the introduction of Λ-hyperons (m_Λ = 1116MeV) DoF in the Lagrangian density, L

$$\mathcal{L} = N^{\dagger} \Big(i \partial_0 + \frac{
abla^2}{2M_N} \Big) N + \Lambda^{\dagger} \Big(i \partial_0 + \frac{
abla^2}{2M_\Lambda} \Big) \Lambda + \mathcal{L}_{2b} + \mathcal{L}_{3b} + \dots$$

◆□ ▶ < @ ▶ < E ▶ < E ▶ ○ Q ○ 6/47</p>

- Extending #EFT to Hyperons
 - Extending #EFT to Hyperons require the introduction of Λ -hyperons ($m_{\Lambda} = 1116 MeV$) DoF in the Lagrangian density, \mathcal{L}

$$\mathcal{L} = N^{\dagger} \Big(i \partial_0 + rac{
abla^2}{2M_N} \Big) N + \Lambda^{\dagger} \Big(i \partial_0 + rac{
abla^2}{2M_\Lambda} \Big) \Lambda + \mathcal{L}_{2b} + \mathcal{L}_{3b} + \dots$$

• The interaction potential becomes at LO:

$$egin{aligned} V_{\Lambda N} &= \sum_{IS} \mathcal{C}^{IS}_{\lambda} \sum_{i < j} \mathcal{P}_{IS}(ij) \delta_{\lambda}(ec{r}_{ij}) \ V_{\Lambda NN} &= \sum_{IS} \mathcal{D}^{IS}_{\lambda} \sum_{i < j} \mathcal{Q}_{IS}(ij\Lambda) \delta_{\lambda}(ec{r}_{i\Lambda}) \delta_{\lambda}(ec{r}_{j\Lambda}) \end{aligned}$$

- \mathcal{P}_{IS} (Q_{IS}) are projectors on baryon doublets (triplets) with isospin *I* and spin *S*
 - ΛN interaction is fitted to $p\Lambda$ scattering length and effective range.
 - **3** ANN interaction is fitted to ${}^{3}_{\Lambda}H$, ${}^{4}_{\Lambda}H_{S_{tot}=0}$, ${}^{4}_{\Lambda}H_{S_{tot}=1}$, and ${}^{5}_{\Lambda}He$ binding energies.

$$\begin{array}{c} N & \Lambda \\ C_3 \rightarrow \begin{cases} S = 0 \\ l = 1/2 \\ C_4 \rightarrow \begin{cases} S = 1 \\ l = 1/2 \end{cases} \\ S = 1 \\ l = 1/2 \end{cases} \qquad \begin{array}{c} N & \Lambda & N \\ D_2 \rightarrow \begin{cases} S = 1/2 \\ l = 0 \\ D_3 \rightarrow \begin{cases} S = 3/2 \\ l = 0 \\ D_4 \rightarrow \begin{cases} S = 1/2 \\ l = 1 \end{cases} \\ D_4 \rightarrow \begin{cases} S = 1/2 \\ l = 1 \end{cases}$$

Introduction OO	Theoretical Background	The NNQS approach	Results 00000000000	Conclusions 000000000000000
The NNQS appr	oach			

- The Neural Network Quantum States (Carleo et al. 2017) approach is a form of unsupervised learning.
 - Any type of Variational State can be represented via the NNQS.

Universal Approximation Theorem
$$\rightarrow \Psi_{\mathcal{W}}(\mathbf{R}, \mathbf{S}) = \langle \mathbf{R}, \mathbf{S} | \mathbf{M} \rangle$$

- Scalable size neural network are used for this representation.
- The Ground state \rightarrow unprecedented precision with a variational approach
- Hidden-Nuclons Wavefunction introduce dynamical correlations between particles and preserve statistical correlations.

Introduction OO	Theoretical Background	The NNQS approach	Results 00000000000	Conclusions 000000000000000
The NNQS appr	oach			

- The Neural Network Quantum States (Carleo et al. 2017) approach is a form of unsupervised learning.
 - Any type of Variational State can be represented via the NNQS.

Universal Approximation Theorem
$$\rightarrow \Psi_{\mathcal{W}}(\mathbf{R}, \mathbf{S}) = \langle \mathbf{R}, \mathbf{S} | \mathbf{M} \rangle$$

- Scalable size neural network are used for this representation.
- The Ground state \rightarrow unprecedented precision with a variational approach
- Hidden-Nuclons Wavefunction introduce dynamical correlations between particles and preserve statistical correlations.

Introduction OO	Theoretical Background	The NNQS approach	Results 00000000000	Conclusions 00000000000000
The NNQS appr	roach			

- The Neural Network Quantum States (Carleo et al. 2017) approach is a form of unsupervised learning.
 - Any type of Variational State can be represented via the NNQS.

Universal Approximation Theorem
$$\rightarrow \Psi_{\mathcal{W}}(\mathbf{R}, \mathbf{S}) = \langle \mathbf{R}, \mathbf{S} \rangle$$

- Scalable size neural network are used for this representation.
- $\bullet~$ The Ground state \rightarrow unprecedented precision with a variational approach
- Hidden-Nuclons Wavefunction introduce dynamical correlations between particles and preserve statistical correlations.
- Advantages:
 - Easily applicable to different systems
 - Approximation error is no longer Ψ-dependent for a given interaction.

Introduction OO	Theoretical Background	The NNQS approach	Results 00000000000	Conclusions 00000000000000
The NNQS appr	roach			

- The Neural Network Quantum States (Carleo et al. 2017) approach is a form of unsupervised learning.
 - Any type of Variational State can be represented via the NNQS.

Universal Approximation Theorem
$$\rightarrow \Psi_{\mathcal{W}}(\mathbf{R}, \mathbf{S}) = \langle \mathbf{R}, \mathbf{S} | \mathbf{M} \rangle$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のQC 7/47

- Scalable size neural network are used for this representation.
- $\bullet~$ The Ground state \rightarrow unprecedented precision with a variational approach
- Hidden-Nuclons Wavefunction introduce dynamical correlations between particles and preserve statistical correlations.
- Advantages:
 - Easily applicable to different systems
 - Approximation error is no longer Ψ-dependent for a given interaction.
 - 2 Less time- and computational-consuming than other methods for $A \ge 5$.
 - $\overline{\bullet}$ Computational cost scales polinomially with $\sim \alpha A^{5+6}$

Introduction OO	Theoretical Background	The NNQS approach	Results 00000000000	Conclusions 000000000000000
The NNQS app	roach			

- The Neural Network Quantum States (Carleo et al. 2017) approach is a form of unsupervised learning.
 - Any type of Variational State can be represented via the NNQS.

Universal Approximation Theorem
$$\rightarrow \Psi_{W}(\mathbf{R}, \mathbf{S}) = \langle \mathbf{R}, \mathbf{S} \rangle$$

- Scalable size neural network are used for this representation.
- $\bullet~$ The Ground state \rightarrow unprecedented precision with a variational approach
- Hidden-Nuclons Wavefunction introduce dynamical correlations between particles and preserve statistical correlations.
- Advantages:
 - Easily applicable to different systems
 - Approximation error is no longer Ψ-dependent for a given interaction.
 - 2 Less time- and computational-consuming than other methods for $A \ge 5$.
 - Somputational cost scales polinomially with $\sim \alpha A^{5+6}$
- Disadvantages:
 - EFT contact potentials $\propto \delta_{\lambda}(\mathbf{x}_{ij})$ introduces **irreducible error at large cut-offs** in Monte Carlo integration due to small statistics in the interaction range \rightarrow Is better to keep the cutoff small!!.

р. т.н. (
Introduction OO	Theoretical Background	The NNQS approach O●○○○○○○○○○○○○○○	Results 00000000000	Conclusions

Description of the NNQS

NNQS is a Variational Approach:

Apply the V.P.

$$E_{V} = \frac{\langle \Psi_{\mathcal{W}} | H | \Psi_{\mathcal{W}} \rangle}{\langle \Psi_{\mathcal{W}} | \Psi_{\mathcal{W}} \rangle} \ge E_{0}$$

Iterative optimization till

$$\frac{\delta E_V(\{\mathcal{W}\})}{\delta\{\mathcal{W}\}} = 0$$

- The determination of $E_V \sim E_0$ and Ψ_0 :
 - Sampling the Wavefunction using N Markov Chains in parallel.
 - Evaluating observables and gradients' expectation values with Importance Sampling.
 - Updating parameters using Stochastic Reconfiguration.

Step 0: modellization of the wavefunction with Hidden Nucleon approach:

Fermionic wave functions from neural-network constrained hidden states - Carleo, Moreno, Georges, Stokes PNAS Vol. 119 | No. 32 (2022)

● Fermionic systems → an anti-symmetric wavefunction (Pauli exclusion) with a single extended Slater Determinant.

(ロ)、(同)、(目)、(目)、(目)、(O)、(O)(0)(0)

Step 0: modellization of the wavefunction with Hidden Nucleon approach:

Fermionic wave functions from neural-network constrained hidden states - Carleo, Moreno, Georges, Stokes PNAS Vol. 119 | No. 32 (2022)

● Fermionic systems → an anti-symmetric wavefunction (Pauli exclusion) with a single extended Slater Determinant.

(ロ)、(同)、(目)、(目)、(目)、(O)、(O)(0)(0)

It gives a systematic and extendible approach.

(ロ)、(同)、(目)、(目)、(目)、(O)、(O)(0)(0)

NNQS - Hidden Nucleon Wavefunction

Step 0: modellization of the wavefunction with Hidden Nucleon approach:

Fermionic wave functions from neural-network constrained hidden states - Carleo, Moreno, Georges, Stokes PNAS Vol. 119 | No. 32 (2022)

- Fermionic systems → an anti-symmetric wavefunction (Pauli exclusion) with a single extended Slater Determinant.
- It gives a systematic and extendible approach.
- \rightarrow We introduce A_h "Hidden" DoFs \rightarrow not real partices:
 - Represented by the hidden orbitals χ_i
 - Each virtual particle coordinate $\tilde{x}_j = f(\{X\})$ is a bosonic function of all the real particles coordinates

NNQS - Hidden Nucleon Wavefunction

Step 0: modellization of the wavefunction with Hidden Nucleon approach:

Fermionic wave functions from neural-network constrained hidden states - Carleo, Moreno, Georges, Stokes PNAS Vol. 119 | No. 32 (2022)

- Fermionic systems → an anti-symmetric wavefunction (Pauli exclusion) with a single extended Slater Determinant.
- It gives a systematic and extendible approach.
- \rightarrow We introduce A_h "Hidden" DoFs \rightarrow not real partices:
 - Represented by the hidden orbitals χ_i
 - Each virtual particle coordinate $\tilde{x}_j = f({X})$ is a bosonic function of all the real particles coordinates

$$det \begin{vmatrix} \phi_{v}(\mathbf{X}) & \phi_{v}(f(\{\mathbf{X}\})) \\ \chi_{h}(\mathbf{X}) & \chi_{h}(f(\{\mathbf{X}\})) \end{vmatrix} = det \begin{bmatrix} \phi_{1}(x_{1}) & \phi_{1}(x_{2}) & \phi_{1}(f(\{\mathbf{X}\})) \\ \phi_{2}(x_{1}) & \phi_{2}(x_{2}) & \phi_{2}(f(\{\mathbf{X}\})) \\ \chi_{3}(x_{1}) & \chi_{3}(x_{2}) & \chi_{3}(f(\{\mathbf{X}\})) \end{bmatrix}$$
Visible orbitals on visible coordinates
Hidden orbitals on visible coordinates
Hidden orbitals on hidden coordinates

What about statistical correlations?

Introduction OO	Theoretical Background	The NNQS approach	Results 00000000000	Conclusions 000000000000

NNQS - Hidden Nucleon Wavefunction

 $\phi_{1}(f(x)) \cdot \left(\phi_{2}(x_{1})\chi_{3}(x_{2}) - \chi_{3}(x_{1})\phi_{2}(x_{2})\right) \\ - \phi_{2}(f(x)) \cdot \left(\phi_{1}(x_{1})\chi_{3}(x_{2}) - \chi_{3}(x_{1})\phi_{1}(x_{2})\right) \\ + \chi_{3}(f(x)) \cdot \left(\phi_{1}(x_{1})\phi_{2}(x_{2}) - \phi_{2}(x_{1})\phi_{1}(x_{2})\right)$

			Results 000000000000	000000000000000000000000000000000000000
NNOS - Hiddo	n Nucleon Wavefur	action		

NNQS - Hidden Nucleon Wavefunction

$$\phi_{1}(f(x)) \cdot \left(\phi_{2}(x_{1})\chi_{3}(x_{2}) - \chi_{3}(x_{1})\phi_{2}(x_{2})\right) \\ - \phi_{2}(f(x)) \cdot \left(\phi_{1}(x_{1})\chi_{3}(x_{2}) - \chi_{3}(x_{1})\phi_{1}(x_{2})\right) \\ + \chi_{3}(f(x)) \cdot \left(\phi_{1}(x_{1})\phi_{2}(x_{2}) - \phi_{2}(x_{1})\phi_{1}(x_{2})\right)$$

it is an equivalent form of the C.I. expansion with only one excited states. (but it's more than this!)

$$|\Phi\rangle = C_0 |\Psi_0\rangle + \sum_{ra} C_a^r |\Psi_a^r\rangle + \sum_{\substack{a < b \\ r < s}} C_{ab}^{rs} |\Psi_{ab}^{rs}\rangle + \sum_{\substack{a < b < c \\ r < s < t}} C_{abc}^{rst} |\Psi_{abc}^{rsf}\rangle + \dots$$
(1)

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Introduce dynamical correlations between particles by means of functions of bosonic nature f({x}) which accounts for Jastrow correlators for all the particles in the system:

00	00	00 000 00000000000000	00000000000	00000000000		
HN wavefunction in the Visible coordinate sector						

• The hidden coordinate sector is represented through a phase - amplitude modulation of the wave function

$$\det \begin{bmatrix} \phi_1(x_1) & \phi_1(x_2) & \phi_1(f(|X|)) \\ \phi_2(x_1) & \phi_2(x_2) & \phi_2(f(|X|)) \\ \hline x_3(x_1) & x_3(x_2) & x_3(f(|X|)) \end{bmatrix}$$

$$\begin{split} \phi_{\alpha}(x_i) &= e^{u_{\phi}^{\alpha}(x_i)} \tanh[v_{\phi}^{\alpha}(x_i)] \sim e^{u_{\phi}^{\alpha}(x_i)+j\cdot v_{\phi}^{\alpha}(x_i)} \\ \chi_{\alpha}(x_i) &= e^{u_{\chi}^{\alpha}(x_i)} \tanh[v_{\chi}^{\alpha}(x_i)] \sim e^{u_{\chi}^{\alpha}(x_i)+j\cdot v_{\chi}^{\alpha}(x_i)} \end{split}$$

◆□ ▶ < @ ▶ < E ▶ < E ▶ ○ 2 ○ (2/47)</p>

• The hidden coordinate sector is represented through a phase - amplitude modulation of the wave function

 u and v are both FF Neural Networks with only one hidden layer (Let's call this a "standard network" for this work.).

A standard Single Particle FFNN has

- Input Nodes = 5 $\rightarrow [\mathbb{R}^3, s_z, t_z]$
- Output Nodes = 1 $\rightarrow \phi(x_i)$

Introduction OO	Theoretical Background	The NNQS approach	Results 00000000000	Conclusions 000000000000000
NNQS Hidden c	oordinate sector - Dee	p Sets Architecture		

• The hidden coordinate sector is represented through a phase - amplitude modulation of the wave function

$$\det\begin{bmatrix} \phi_1(x_1) & \phi_1(x_2) & \phi_1(f(|X|)) \\ \phi_2(x_1) & \phi_2(x_2) & \phi_2(f(|X|)) \\ \hline \chi_3(x_1) & \chi_3(x_2) & \chi_3(f(|X|)) \end{bmatrix}$$

$$\begin{split} \phi_i(f(\{\mathbf{X}\})) &= e^{\mathcal{U}^i_{\phi}(\{\mathbf{X}\})} \tanh[\mathcal{V}^i_{\phi}(\{\mathbf{X}\})] \sim e^{\mathcal{U}^i_{\phi}(\{\mathbf{X}\})+j\cdot\mathcal{V}^i_{\phi}(\{\mathbf{X}\})} \\ \chi_i(f(\{\mathbf{X}\})) &= e^{\mathcal{U}^i_{\chi}(\{\mathbf{X}\})} \tanh[\mathcal{V}^i_{\chi}(\{\mathbf{X}\})] \sim e^{\mathcal{U}^i_{\chi}(\{\mathbf{X}\})+j\cdot\mathcal{V}^i_{\chi}(\{\mathbf{X}\})} \end{split}$$

00	00	000000000000000000000000000000000000000	00000000000	000000000000000000000000000000000000000
NNQS Hidden co	oordinate sector - Dee	p Sets Architecture		

- The hidden coordinate sector is represented through a phase amplitude modulation of the wave function
 - $\det\begin{bmatrix}\phi_{1}(x_{1}) & \phi_{1}(x_{2}) & \phi_{1}(f(\{\mathbf{X}\}))\\ \frac{\phi_{2}(x_{1}) & \phi_{2}(x_{2}) & \phi_{2}(f([\mathbf{X}]))\\ \frac{\chi_{3}(x_{1}) & \chi_{3}(x_{2}) & \chi_{3}(f([\mathbf{X}])) \end{bmatrix}}{\chi_{3}(f([\mathbf{X}]))} = e^{\mathcal{U}_{\phi}^{i}([\mathbf{X}])} \tanh[\mathcal{V}_{\phi}^{i}(\{\mathbf{X}\})] \sim e^{\mathcal{U}_{\phi}^{i}([\mathbf{X}]) + j \cdot \mathcal{V}_{\phi}^{i}([\mathbf{X}])}\\ \chi_{i}(f(\{\mathbf{X}\})) = e^{\mathcal{U}_{\chi}^{i}([\mathbf{X}])} \tanh[\mathcal{V}_{\chi}^{i}(\{\mathbf{X}\})] \sim e^{\mathcal{U}_{\chi}^{i}([\mathbf{X}]) + j \cdot \mathcal{V}_{\chi}^{i}([\mathbf{X}])}$
- **Deep Sets architecture:** any permutation invariant neural network (\mathcal{U} and \mathcal{V}) can be sum-decomposed in the following way:

$$\mathcal{F}(\{\mathbf{X}\}) =
ho_{\mathcal{F}}\Big[\sum_{i \neq j} \phi_{\mathcal{F}}([\mathbf{x}_i, \mathbf{x}_j])\Big] \qquad \mathcal{F} = \mathcal{U}, \mathcal{V}$$

φ and ρ are both Neural Network, the sum operation destroy the order dependence of the network's inputs.

	Deere Cata Avalaiteatuva		
Introduction Theoretical Background	The NNQS approach	Results 00000000000	Conclusions

NNQS Hidden coordinate sector - Deep Sets Architecture

• The hidden coordinate sector is represented through a phase - amplitude modulation of the wave function

• **Deep Sets architecture:** any permutation invariant neural network (\mathcal{U} and \mathcal{V}) can be sum-decomposed in the following way:

$$\mathcal{F}({\mathbf{X}}) = \rho_{\mathcal{F}}\Big[\sum_{i\neq j} \phi_{\mathcal{F}}([\mathbf{x}_i, \mathbf{x}_j])\Big] \qquad \mathcal{F} = \mathcal{U}, \mathcal{V}$$

- φ and ρ are both Neural Network, the sum operation destroy the order dependence of the network's inputs.
- This decomposition is called **Sum-Pooling**, since the aggregation function is $g(\cdot) = \sum_{x \in \mathfrak{X}}$.

Introduction OO	Theoretical Background	The NNQS approach	Results 00000000000	Conclusions 0000000000000
Application of NI	NQS to hypernuclear v	variational states		

• Variational state of a hypernucleus (only one Λ):

$$\Psi_{HN} = \phi_{\Lambda}(\mathbf{x}_{\Lambda}, g(\{\mathbf{x}_{1}, \dots, \mathbf{x}_{\Lambda-1}, \mathbf{x}_{\Lambda}\})) \cdot \det_{\mathbf{A} - \mathbf{1}_{\mathcal{X}}} \begin{vmatrix} \phi_{\mathsf{v}}(\mathbf{X}) & \phi_{\mathsf{v}}(f(\{\mathbf{X}\})) \\ \chi_{\mathsf{h}}(\mathbf{X}) & \chi_{\mathsf{h}}(f(\{\mathbf{X}\})) \end{vmatrix}$$

◆□ ▶ < @ ▶ < E ▶ < E ▶ ○ 2 ○ Q ○ 14/47</p>

Introduction OO	Theoretical Background	The NNQS approach	Results	Conclusions 0000000000000
Application of NI	NQS to hypernuclear v	ariational states		

Variational state of a hypernucleus (only one Λ):

$$\Psi_{HN} = \phi_{\Lambda}(\mathbf{x}_{\Lambda}, g(\{\mathbf{x}_{1}, \dots, \mathbf{x}_{A-1}, \mathbf{x}_{\Lambda}\})) \cdot \det_{\substack{A-1 \ Z \\ \mathcal{X}_{h}}} \left| \begin{array}{c} \phi_{v}(\mathbf{X}) & \phi_{v}(f(\{\mathbf{X}\})) \\ & \chi_{h}(f(\{\mathbf{X}\})) \end{array} \right|$$

In order to represent ΛN correlations related with the ³_ΛH mixed asymmetry spin state, the aggregator function for non-identical particles has to be modified

$$g(\mathcal{S}[\mathbf{x}_1,\ldots,\mathbf{x}_{A-1}],\mathbf{x}_{\Lambda}) = \left[\mathbf{x}_{\Lambda},\sum_{i=1}^{A-1}\phi(\mathbf{r}_i,\mathbf{s}_i)\right]$$

(日) (個) (目) (日) (日) (14/47)

The coordinate of the Lambda are concatenated with the sum pooling \rightarrow the ΛN permutation invariance is not introduced

Introduction OO	Theoretical Background	The NNQS approach	Results	Conclusions 0000000000000
Application of NI	NQS to hypernuclear v	ariational states		

• Variational state of a hypernucleus (only one Λ):

$$\Psi_{HN} = \phi_{\Lambda}(\mathbf{x}_{\Lambda}, g(\{\mathbf{x}_{1}, \dots, \mathbf{x}_{A-1}, \mathbf{x}_{\Lambda}\})) \cdot \det_{\mathbf{x} \in I} \begin{vmatrix} \phi_{v}(\mathbf{X}) & \phi_{v}(f(\{\mathbf{X}\})) \\ \phi_{v}(\mathbf{X}) & \chi_{h}(f(\{\mathbf{X}\})) \end{vmatrix}$$

 In order to represent ΛN correlations related with the ³_ΛH mixed asymmetry spin state, the aggregator function for non-identical particles has to be modified

$$g(\mathcal{S}[\mathbf{x}_1,\ldots,\mathbf{x}_{A-1}],\mathbf{x}_{\Lambda}) = \left[\mathbf{x}_{\Lambda},\sum_{i=1}^{A-1}\phi(\mathbf{r}_i,\mathbf{s}_i)\right]$$

The coordinate of the Lambda are concatenated with the sum pooling \rightarrow the ΛN permutation invariance is not introduced

• ϕ_{Λ} has already mentioned phase-amplitude modulation

$$\phi_{\Lambda}\big(g(\mathcal{S}(\{\mathbf{x}_{i}\}),\mathbf{x}_{\Lambda})\big) = \tanh\left[\rho_{p}\bigg(g(\mathcal{S}(\{\mathbf{x}_{i}\}),\mathbf{x}_{\Lambda})\bigg)\right] \cdot \exp\left[\rho_{a}\bigg(g(\mathcal{S}(\{\mathbf{x}_{i}\}),\mathbf{x}_{\Lambda})\bigg)\right]$$
Introduction OO	Theoretical Background	The NNQS approach	Results 00000000000	Conclusions 0000000000000	
Pre-processing (backflow) of coordinates via MPNN					

What if we want to use one only one hidden state state?

• We can introduce the following backflow transformation for the single particle's coordinates:

Introduction	Theoretical Background	The NNQS approach	Results	Conclusions	
OO		○○○○○○○●●○○○○○○○	00000000000	000000000000000000000000000000000000	
Pre-processing (backflow) of coordinates via MPNN					

What if we want to use one only one hidden state state?

• We can introduce the following backflow transformation for the single particle's coordinates:

The backflow transformation modifies the coordinates of the particles so that the "effective" position of a particle is a function not only of its "bare" position but also of the positions of the other particles.

Introduction OO	Theoretical Background	The NNQS approach ○○○○○○○●●○○○○○○○	Results	Conclusions 0000000000000
Pre-processing	(backflow) of coordinat	es via MPNN		

What if we want to use one only one hidden state state?

• We can introduce the following backflow transformation for the single particle's coordinates:

The backflow transformation modifies the coordinates of the particles so that the "effective" position of a particle is a function not only of its "bare" position but also of the positions of the other particles.

In the NN language it consist in the application of a minimal MPNN:

an all-toall connected graph, encoding effective particle positions (x_i -nodes) and their interactions (m_{ij} -edges)

→ MPNN NQS for the Homogeneous Electron Gas - Lovato, Carleo, Kim, Pescia, Nys (2023) arXiv:2305.07240v3

Introduction OO	Theoretical Background	The NNQS approach		Conclusions		
Hidden Nucleon generalization for $n - \Lambda$ -hypernuclear states						

Is possible to include more than one \land s?

Introduction	Itroduction Theoretical Background		۲T	The NNQS approach		Results	Conclusions				
00			O	○○○○○○○○○○○○○○○○○		00000000000	0000000000000				

Hidden Nucleon generalization for $n - \Lambda$ -hypernuclear states

Is possible to include more than one Λ s?

Putting all the previous ideas together...

$$\Psi_{HN} = \det_{\Lambda} \begin{vmatrix} \phi_{\mathsf{v}}(\boldsymbol{x}_{lam}) & \phi_{\mathsf{v}}(f(\{\mathbf{X}_{L}\})) \\ \chi_{\mathsf{h}}(\boldsymbol{x}_{lam}) & \chi_{\mathsf{h}}(f(\{\mathbf{X}_{L}\})) \end{vmatrix} \cdot \det_{A^{-1}Z} \begin{vmatrix} \phi_{\mathsf{v}}(\mathbf{X}_{i}) & \phi_{\mathsf{v}}(f(\{\mathbf{X}_{i}\})) \\ \chi_{\mathsf{h}}(\mathbf{X}_{i}) & \chi_{\mathsf{h}}(f(\{\mathbf{X}_{i}\})) \end{vmatrix}$$

Introduction OO	Theoretical Background	The NNQS approach	Results	Conclusions 000000000000
Observables eva	aluation			

Step 1: Importance Sampling and Metropolis

• Expectation values are computed through **importance sampling**. By rewriting the multidimensional integral for a generic observable *O*:

$$O_{V} = \frac{\langle \Psi | O | \Psi \rangle}{\langle \Psi | \Psi \rangle} = \frac{\int d\mathbf{R} \langle \Psi | \mathbf{R}, \mathbf{S} \rangle \langle \mathbf{R}, \mathbf{S} | O | \Psi \rangle \frac{\langle \mathbf{R}, \mathbf{S} | \Psi \rangle}{\langle \mathbf{R}, \mathbf{S} | \Psi \rangle}}{\int d\mathbf{R} \langle \Psi | \mathbf{R}, \mathbf{S} \rangle \langle \mathbf{R}, \mathbf{S} | \Psi \rangle} = \frac{\mathbf{x}_{=[\mathbf{R}, \mathbf{S}]}}{\sum} \frac{\int d\mathbf{R} |\Psi(\mathbf{X})|^{2} O_{L}(\mathbf{X})}{\int d\mathbf{R} |\Psi(\mathbf{X})|^{2}} = \int d\mathbf{R} P(\mathbf{X}) O_{L}(\mathbf{X})$$

with
$$O_L(O) = \frac{O\Psi(\mathbf{X})}{\Psi(\mathbf{X})}$$
 and $P(\mathbf{X}) = \frac{|\Psi(\mathbf{X})|^2}{\int d\mathbf{R} |\Psi(\mathbf{X})|^2} \rightarrow {\{\mathbf{X}_1, \dots, \mathbf{X}_{N_{walker}}\}}$

$$O_V = rac{1}{\mathcal{N}_{ ext{walker}}} \sum_{s=1}^{\mathcal{N}_{ ext{walker}}} O_L(\mathbf{X}_s) \qquad \sigma_{O_V} = \sqrt{rac{1}{\mathcal{N}_{ ext{walker}} - 1}} \sum_{s=1}^{\mathcal{N}_{ ext{walker}}} \left(O_L(\mathbf{X}_s) - O_V
ight)^2$$

Introduction The NNQS approach Results

Metropolis Hastings Algorithm

Step 2: MH Our goal is to sample the probability distribution described by $P(\mathbf{X}) = \frac{|\Psi_T(\mathbf{X})|^2}{\int d\mathbf{R} |\Psi(\mathbf{X})|^2}$. The $M(RT)^2$ algorithm is based on the idea of random walk: a Markov Chain with transition matrix Π .

$$\mathcal{P}(X_{i+1} = x_{i+1}|X_0 = x_0, \cdots, X_i = x_i) = \Pi(x_i, x_{i+1}) = q(x_{i+1}|x_i)r(x_{i+1}|x_i)$$

• $x_{i+1} = x_i + \zeta_{N(\mu=0,\sigma=1)}$ • $r(x_{i+1}|x_i) = \min\left(1, \frac{P(x_{i+1})q(x_i|x_{i+1})}{P(x_i)q(x_{i+1}+x_i)}\right)$

Introduction The orbital Background The NNOS approach Conclusions Conclusions

Step 2: MH Our goal is to sample the probability distribution described by $P(\mathbf{X}) = \frac{|\Psi_T(\mathbf{X})|^2}{\int d\mathbf{R}|\Psi(\mathbf{X})|^2}$. The $M(RT)^2$ algorithm is based on the idea of random walk: **a Markov Chain with transition matrix** Π .

$$\mathcal{P}(X_{i+1} = x_{i+1}|X_0 = x_0, \cdots, X_i = x_i) = \Pi(x_i, x_{i+1}) = q(x_{i+1}|x_i)r(x_{i+1}|x_i)$$

Introduction	Theoretical Background	The NNQS approach	Results	Conclusions	
OO		○○○○○○○○○○●○○○○	00000000000	0000000000000	
The Stochastic Reconfiguration algorithm					

Step 3: Optimization of the Parameters:

• Stochastic-Reconfiguration (S. Sorella 2005), in the context of VMC, is equivalent to performing **imaginary-time evolution in the parameters space**, and it is related to the Natural Gradient descent method (Amari et al.).

Step 3: Optimization of the Parameters:

- Stochastic-Reconfiguration (S. Sorella 2005), in the context of VMC, is equivalent to performing **imaginary-time evolution in the parameters space**, and it is related to the Natural Gradient descent method (Amari et al.).
- Imaginary-time evolution $e^{iH(i\tau)} \approx (1 H\tau)$ in the parameter space reads

$$(1-H au) ig| \Psi_{ au}(\mathcal{W})
angle = ig| \Psi_{ au}(\mathcal{W}+\Delta\mathcal{W})
angle = \Delta\mathcal{W}_0 ig| \Psi_{ au}(\mathcal{W})
angle + \sum_j \Delta\mathcal{W}_j O^j ig| \Psi_{ au}(\mathcal{W})
angle$$

where $O^i | \Psi_T(\mathcal{W}) \rangle = | \frac{\partial}{\partial \mathcal{W}_i} \Psi(\mathcal{W}) \rangle$. Multiplying from left by

$$\frac{\langle \Psi(\mathcal{W}) |}{\langle \Psi_{\mathcal{T}}(\mathcal{W}) | \Psi_{\mathcal{T}}(\mathcal{W}) \rangle} \quad \text{and} \quad \frac{\langle \Psi(\mathcal{W}) | O^{i}}{\langle \Psi_{\mathcal{T}}(\mathcal{W}) | \Psi_{\mathcal{T}}(\mathcal{W}) \rangle}$$

gives the two following equations

$$\begin{cases} \langle (1 - H\tau) \rangle = \Delta \mathcal{W}_0 + \sum_i \Delta \mathcal{W}_i \langle O^i \rangle \\ \langle O^i (1 - H\tau) \rangle = \Delta \mathcal{W}_0 \langle O^i \rangle + \sum_j \Delta \mathcal{W}_j \langle O^i O^j \rangle \end{cases}$$

< □ ▶ < @ ▶ < E ▶ < E ▶ E のへで 19/47

Introduction OO	Theoretical Background	The NNQS approach	Results 00000000000	Conclusions 0000000000000
The Stochastic F	Reconfiguration Algorit	hm		

• solving the first for ΔW_0 and exploiting it in the second gives

$$\underbrace{\left(\langle H \rangle \langle O^{i} \rangle - \langle HO^{i} \rangle\right)}_{-\frac{1}{2}G_{i}} \tau = \sum_{j} \Delta W_{j} \underbrace{\left(\langle O^{i}O^{j} \rangle - \langle O^{i} \rangle \langle O^{j} \rangle\right)}_{S_{ij}}$$

It naturally leads to the updating rule

$$\mathcal{W}_{i}^{n+1} = \mathcal{W}_{i}^{n} + \Delta \mathcal{W}_{i}^{n} = \mathcal{W}_{i}^{n} - \frac{1}{2}\tau \sum_{j} \left(\underbrace{\mathcal{S}_{ij}^{n} + \epsilon \mathbb{1}_{ij}}_{\text{avoid saddle points}}\right)^{-1} G_{j}^{r}$$

where the quantities of interests are all evaluated through importance sampling

$$G_{i} = \frac{\partial E(\mathcal{W})}{\partial \mathcal{W}_{i}} = 2 \Big(\langle O_{i} H \rangle - E_{V} \langle O_{i} \rangle \Big) \qquad S_{ij} = \langle O_{i} O_{j} \rangle - \langle O_{i} \rangle \langle O_{j} \rangle$$

The QGT looks like a variance..

In classical Information Theory the Riemannian structure of the parameter space \mathcal{P} of a statistical model $P(\mathbf{x}|\mathbf{w})$, which depends on some parameters \mathbf{w} , is defined by the **Fisher information**:

$$g_{ij}(\mathbf{w}) = \mathbb{E}_{\rho(\mathbf{x}|\mathbf{w})} \left[\frac{\partial \log(\rho(\mathbf{x}|\mathbf{w}))}{\partial w_i} \frac{\partial \log(\rho(\mathbf{x}|\mathbf{w}))}{\partial w_j} \middle| \mathbf{w} \right] = -\mathbb{E}_{\rho(\mathbf{x}|\mathbf{w})} \left[\frac{\partial^2}{\partial w_i \partial w_j} \log\left(\rho(\mathbf{x}|\mathbf{w})\right) \middle| \mathbf{w} \right]$$

Fisher Information is:

The Variance of the derivative of the log-likelihood (Score Function)

Interpretation of the log-likelihood

Peaked Loglikelihood = $\partial_{\mathbf{w}_i}^2$ high curvature = sample brings high information about \mathbf{w}_i we suppress the variation of such a parameter $G_i^n \to \sum_j (S_{ij}^n)^{-1} G_j^n$ In Quantum Information Theory:

$$d_{FS}(\Psi, \Phi) = \arccos\left(|\langle \Psi_{\mathsf{norm}}, \Phi_{\mathsf{norm}} \rangle|^{\frac{1}{2}}\right) \rightarrow d_{FS}[\Psi_V(\mathbf{X}|\mathbf{w}), \Psi_V(\mathbf{X}|\mathbf{w} + d\mathbf{w})]^2 = \sum_{ij} \frac{\mathcal{S}_{ij}(\mathbf{w}) dw_i dw_j}{dw_i dw_j}$$

If Ψ is defined over a basis $|\psi(\mathbf{X}|\mathbf{w})\rangle \approx \sum_{\mathbf{X}\in\{\mathbf{X}\}} \sqrt{\rho(\mathbf{X}|\mathbf{w})} |\mathbf{X}\rangle$ can be shown that $S_{ij}(\mathbf{w}) = \frac{1}{4}g_{ij}(\mathbf{w})$.

Quantum Natural Gradient - Carleo et al. (Quantum May 2020), page 10.

Introduction	Theoretical Background	The NNQS approach	Results	Conclusions
OO		○○○○○○○○○○○○○○○○○○	00000000000	000000000000000
The Natural G	Gradient Descent			

Amari (S. I. Amari, Neural Computation 10, 251 (1998).) \rightarrow steepest descent direction of a cost function L(w) in a Riemannian space is given by the **Natural Gradient**.

 $- ilde{
abla} L(\mathbf{w}) = -g^{-1}(\mathbf{w})
abla L(\mathbf{w})$

- The NG flatten the metric of the parameter space!
- Using the Natural Gradient the plateau phenomenon might disappear.

Introduction OO	Theoretical Background	The NNQS approach	Results 00000000000	Conclusions 00000000000000
SR with RMSPro	ор			

• In the RMSProp the gradient express the **acceleration** in the parameter space. The *S* matrix is regularized with the running averages of the squared gradients.

 $\mathbf{m}^{n+1} = \beta \mathbf{m}^n + (1 - \beta) \mathbf{G}^n \odot \mathbf{G}^n$ $S_{ij}^n + \epsilon \cdot \operatorname{diag}(1) \rightarrow S_{ij}^n + \epsilon \cdot \operatorname{diag}(\sqrt{\mathbf{m}^n} + 10^{-8})$

The ε hyperparameter add an L² penality term to the solution of the system from which ΔW are determined → ||ΔWS - G|| = ||εΔW||

Now let's see some results..

Idea of the improved LO interaction \rightarrow Two- and three-nucleon contact interactions and ground-state energies of light- and medium-mass nuclei, Phys. Rev. C 103, 054003 2021, Schiavilla et al. - model "o"

▲□▶ ▲ □▶ ▲ □ ▶ ▲ □ ▶ ■ ● ○ Q ○ 24/47

• Coulomb interaction derived from the same paper.

Gaussian regulators:
$$\delta_{\lambda}(x) = \frac{\Lambda^3}{8\pi^{\frac{3}{2}}}e^{-\frac{\Lambda^2/2}{4}}$$

- NN and NNN interaction:
 - NN fitted to pn/nn: $a_0^{s,t}$, and $r_0^{s,t}$ with variable phase method.
 - 2 NNN fitted to ³H and ⁴He BE with Gaussian Processes
- ΛN and ΛNN interaction:
 - $\begin{array}{l} \bullet \quad \Lambda N \text{ fitted to } p\Lambda \ a_0^{s,t}, \text{ and } r_0^{s,t}. \\ \bullet \quad \Lambda NN \text{ fitted to the } {}_{\Lambda}^{3} \text{H}, {}_{\Lambda}^{4} \text{H}_{S_{tot}=0}, {}_{\Lambda}^{4} \text{H}_{S_{tot}=1}, \text{ and } {}_{\Lambda}^{5} \text{He BE.} \\ \end{array}$

Theoretical Background

The NNQS approach

Results

${}^{4}_{\Lambda}H_{S_{tot}=0}$ with Fitted Potential

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ Ξ の Q @ 26/47

${}^{4}_{\Lambda}H_{S_{tot}=0}$ Projectors

$^{4}_{\Lambda}H_{S_{tot}=0}$ Density

<□ ▶ < @ ▶ < E ▶ < E ▶ E り < C 27/47

Work in progress:

- In several systems the total spin is not a good quantum number.
- The main effect is a fluctuation of the energy around the convergence region for the target energies of the fit with an average accuracy of 5 ÷ 60*KeV*.

Theoretical	Backg
00	

Results 0000000000000

$^{7}_{\Lambda}Li$ with Fitted Potential

$^{13}_{\Lambda}C$ with Fitted Potential

< □ ▶ < @ ▶ < E ▶ < E ▶ E りへで 31/47

▲□▶ ▲□▶ ▲ ■ ▶ ▲ ■ ▶ ■ ⑦ Q ℃ 32/47

$^{16}_{\Lambda}O$ with Fitted Potential

< □ ▶ < 酉 ▶ < ≧ ▶ < ≧ ▶ Ξ りへで 33/47

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の Q @ 34/47

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ り ♥ ♥ 35/47

Introduction OO	Theoretical Background	The NNQS approach	Results 00000000000	Conclusions •0000000000
Conclusions				

- NNQS shows great flexibility in modeling hypernuclear bound states.
 - NQS Variational State \rightarrow match with accuracy the binding energy of hypernuclear systems.
 - Fitted interaction: Improved LO guarantes the desired accuracy.
 - Still improvements needs to be done: Obtain a wavefunction with good quantum numbers for the total Spin.

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Outlook:

- Moving to NLO and restore cutoff dependence.
- Extension of calculations to larger mass hypernuclei.

- NNQS shows great flexibility in modeling hypernuclear bound states.
 - NQS Variational State \rightarrow match with accuracy the binding energy of hypernuclear systems.
 - Fitted interaction: Improved LO guarantes the desired accuracy.
 - Still improvements needs to be done: Obtain a wavefunction with good quantum numbers for the total Spin.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ · · · ○ ○ ○ 36/47

Outlook:

- Moving to NLO and restore cutoff dependence.
- Extension of calculations to larger mass hypernuclei.
- Question: Which hypernuclear systems might be more interesting to analise?

- NNQS shows great flexibility in modeling hypernuclear bound states.
 - NQS Variational State \rightarrow match with accuracy the binding energy of hypernuclear systems.
 - Fitted interaction: Improved LO guarantes the desired accuracy.
 - Still improvements needs to be done: Obtain a wavefunction with good quantum numbers for the total Spin.

Outlook:

- Moving to NLO and restore cutoff dependence.
- Extension of calculations to larger mass hypernuclei.
- Output State in the state of the state o
- Question: Which hypernuclear systems might be more interesting to analise?

Thank you!

Introduction OO	Theoretical Background	The NNQS approach	Results 00000000000	Conclusions

Neural-Network Quantum States

The Neural Network Quantum States (NNQS) approach can be classified as a form of **unsupervised machine learning** but actually occupy a middle ground between supervised and unsupervised learning, as it incorporates elements from both approaches:

Approach	Input	Learning Procedure	Output
Supervised	Labeled input-output	Minimize the cost function through	Model that map inputs
Learning	pairs	gradient-descent → Backpropagation	to corresponding output labels
NNOS	Quantum system coordinates	Variational optimization (Energy-gradient	Amplitude of the ground
NINGO	Unlabeled $(\mathbf{x}, \mathbf{s}, \mathbf{t})$	informed cost function \rightarrow Backprop.)	state wavefunction
Unsupervised	Lipipholod data	Training with unlabeled	Model that represent patterns
Learning	Uniabeled data	data (Clustering- Dimensionality red)	or structure in the data

Similarly to Supervised Learning (GD, SGD, RMSProp, Momentum, AdaGrad...) in NNQS we use firstand second-order derivatives information (gradient, hessian) to improve convergence and performance.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ① Q @ 37/47

The Quantum Geometric Tensor

The Riemannian structure of the parameter space \mathcal{P} of a statistical model $p(\mathbf{x}|\mathbf{w})$, which depends on some parameters \mathbf{w} is defined by the Fisher information:

$$g_{ij}(\mathbf{w}) = \mathbb{E}_{\rho(\mathbf{x}|\mathbf{w})} \left[\frac{\partial \log(\rho(\mathbf{x}|\mathbf{w}))}{\partial w_i} \frac{\partial \log(\rho(\mathbf{x}|\mathbf{w}))}{\partial w_j} \middle| \mathbf{w} \right] = -\mathbb{E}_{\rho(\mathbf{x}|\mathbf{w})} \left[\frac{\partial^2}{\partial w_i \partial w_j} \log\left(\rho(\mathbf{x}|\mathbf{w})\right) \middle| \mathbf{w} \right]$$

An intuition about this property of the Fisher information in clarified by noting that the Kullback-Liebler divergence

$$\mathcal{D}_{\mathit{KL}}(p(\mathbf{x},\mathbf{w}),p(\mathbf{x},\mathbf{w}')) = \int d\mathbf{x} p(\mathbf{x},\mathbf{w}) \logigg(rac{p(\mathbf{x},\mathbf{w})}{p(\mathbf{x},\mathbf{w}')}igg)$$

evaluated between $p(\mathbf{w})$ and $p(\mathbf{w}')$, with $\mathbf{w}' \to \mathbf{w}$, is Taylor expanded to

$$D_{KL}(p(\mathbf{x}|\mathbf{w}), p(\mathbf{x}|\mathbf{w}')) \approx \frac{1}{2} \sum_{i,j} \left(\frac{\partial^2}{\partial w'_i \partial w'_j} D_{KL}(p(\mathbf{x}|\mathbf{w}), p(\mathbf{x}|\mathbf{w}')) \right) dw_i dw_j$$

= $-\frac{1}{2} \sum_{i,j} \int d\mathbf{x} p(\mathbf{x}|\mathbf{w}) \left[\frac{\partial^2}{\partial w'_i \partial w'_j} \log \left(p(\mathbf{x}|\mathbf{w}') \right) \right]_{\mathbf{w}'=\mathbf{w}}^{dw_i} dw_j$
= $\frac{1}{2} \sum_{i,j} g_{ij}(\mathbf{w}) dw_i dw_j$

Introduction Theoretical Background The NNOS approach Results Conclusions

The Quantum Geometric Tensor

We can observe the relation between the Quantum Geometric Tensor S_{ij} and the fisher information by means of the Fubini-Study metric, which is the natural metric for the two-level pure quantum-machanical system defined by the Block Sphere

$$d_{FS}(\Psi, \Phi) = \arccos\left(\left| \langle \Psi_{\mathsf{norm}}, \Phi_{\mathsf{norm}}
ight|^{rac{1}{2}}
ight)$$

and considering its infinitesimal form, which correspond to the Quantum Geometric Tensor

$$d_{FS}[\Psi_V(\mathbf{X}|\mathbf{w}),\Psi_V(\mathbf{X}|\mathbf{w}+d\mathbf{w})]^2 = \sum_{ij} \mathcal{S}_{ij}(\mathbf{w}) dw_i dw_j$$

defined over a basis $|\psi(\mathbf{X}|\mathbf{w})\rangle \approx \sum_{\mathbf{X}\in[\mathbf{X}]} \sqrt{p(\mathbf{X}|\mathbf{w})} |\mathbf{X}\rangle$ can be easily shown that S_{ij} is proportional to the Fisher Information $S_{ij}(\mathbf{w}) = \frac{1}{4}g_{ij}(\mathbf{w})$.

When the Fisher information (The variance of the gradient of the log-likelyhood) is high, it implies that the variance of the score function is also high, meaning small changes in the parameter W lead to large changes in the log-likelihood.

Quantum Natural Gradient - Carleo et al. (Quantum May 2020), page 10.

00	00	000000000000000000000000000000000000000	00000000000	000000000000000000000000000000000000000
Metropolis Algor	ithm			

Our goal is to sample the probability distribution described by $P(\mathbf{X}) = \frac{|\Psi(\mathbf{X})|^2}{\int d\mathbf{R}|\Psi(\mathbf{X})|^2}$. The $M(RT)^2$ algorithm is based on the idea of random walk, namely a Markov Chain with transition matrix Π .

$$\mathcal{P}(X_{i+1} = x_{i+1} | X_0 = x_0, \cdots, X_i = x_i) = \Pi(x_i, x_{i+1})$$

We can split $\Pi(x_i, x_{i+1})$ in two terms:

$$\Pi(x_{i+1}|x_i) = q(x_{i+1}|x_i)r(x_{i+1}|x_i)$$

This means that if you move to x_{i+1} from x_i

- x_{i+1} is proposed it with probability $q(x_{i+1}|x_i)$
- Solution x_{i+1} is accepted with probability $r(x_{i+1}|x_i)$ otherwise x_i is kept. The acceptance probability is given by

$$r(x_{i+1}|x_i) = \min\left(1, \frac{P(x_{i+1})g(x_i|x_{i+1})}{P(x_i)g(x_{i+1}|x_i)}\right) \to \text{Works for non-normalized P}(x)$$

This ensures that the fraction of time spent in each state is proportional to $P(x_i)$.

- If $r(x_{i+1}|x_i) = 0.9$ we draw a point *z* from U(0, 1)
- if $z_U < 0.9$ we accept the new point, otherwise we reject x_{i+1} and keep x_i .

Introduction	Theoretical Background	The NNQS approach	Results 00000000000	Conclusions 00000●000000
Metropolis Algo	rithm			

If the proposal is a Normal distribution at each step of the propagation the walkers are moved as follows:

$$q(x_{i+1}|x_i) = N(x_{i+1}|x_i, \mu = 0, \sigma = 1)$$

$$x_{i+1} = x_i + \zeta_{N(\mu=0,\sigma=1)}$$

 \mathcal{N} MC in parallel

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ · · · ○ ○ △1/47

The transfer matrix Π of the MH algorithm ensure that the detailed balance principle is valid and consequently that the Markov chain will converge to the desired target density *P* after thermalization

 $P(x_i)\Pi(x_{i+1}|x_i) = P(x_{i+1})\Pi(x_i|x_{i+1})$

This says that the flow from *i* to i + 1 must equal the flow from i + 1 to *i*.

Intro	du	
00		

Theoretical Background

The NNQS approach

Results 000000000000

Metropolis Algorithm

- EoS of Nucleon Stars and the Hyperon puzzle
 - One of the most relevant solutions to the Hyperon puzzle relies on the determination of the EoS through microscopic approaches which applies a three-body YNN interaction potential to compensate the attractive YN interaction.

Figure: D. Lonardoni et al., PRL 114 (2015)

<□ ▶ < @ ▶ < E ▶ < E ▶ E の Q @ 44/47

▲□▶ ▲圖▶ ▲ 볼 ▶ ▲ 볼 ▶ 월 - 釣�� 45/47

< □ ▶ < **□** ▶ < Ξ ▶ < Ξ ▶ Ξ の Q @ 46/47

< □ ▶ < 酉 ▶ < ≧ ▶ < ≧ ▶ ≧ り ♀ ↔ 47/47