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EoS of Barion Stars and the Hyperon puzzle

Equation of State (EoS)→ barion stars’ internal structure (BS)→ prediction of the maximum stellar
mass.

Hyperons in the core of the most massive BSs lead to the hyperon puzzle→ softer EoS (reduce
Pauli blocking), reducing the maximum stellar mass.

Observational data of the most recent compact object’s masses have provided stringent constraints
on the EoS that are in contrast with its softening.

The main ingredient that determines the stiffness/softness of the EOS after the introduction of
hyperons in the core is the microscopic interaction between these particles and the nuclear matter.
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Key question

Key question:

→ can Neural Network Quantum States (NNQS) model hypernuclear systems and allow to predict
their properties?
→ Hypernuclei considered in this work are bound state between an ordinary nucleus with only one hyperon
(Λ0)

A−1Z + Λ→A
Λ Z

Objectives
→ Parametrize for the wavefunction (variational state) in terms of Neural Networks,
→ Fit an Improved LO interaction potential derived from �πEFT .
→ Compare NNQS results with exact few-body techniques over fitted observables.
→ Predict Λ-separation energies for high A systems (7

Λ
Li, 13

Λ
C, 16

Λ
O and

�
�40

Λ
Ca).

Through NNQS, we have obtained promising results with hypernuclear states.
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Microscopic Interaction: �πEFT Contact potentials

The interaction potential is derived from the Pionless EFT (�πEFT Q < Mhi = mπ = 140MeV )

Unresolved pions leads to a spin-dependent contact potential, which is described by a set of Low
Energy Constants (LECs):

Regulator’s cutoffs and LECs are both fitted→ SVM (Suzuki - Varga) and Gaussian Processes.

NN potential: Fitted to np/nn scattering lengths
and effective ranges.

VNN(xij) =
(
C0(λ)

sP2b
Stot=0+C0(λ)

t P2b
Stot=1

)
δλ(xij)

3NF are adjusted to reproduce the 3H and 4He
BEs.

VNNN(xij) = D0(λ)
∑
i<j<k

∑
cyc

δλ(xik )δλ(xij)
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Extending �πEFT to Hyperons

Extending �πEFT to Hyperons require the introduction of Λ-hyperons (mΛ = 1116MeV ) DoF in the
Lagrangian density, L

L = N†
(
i∂0 +

∇2

2MN

)
N + Λ†

(
i∂0 +

∇2

2MΛ

)
Λ +L2b +L3b + . . .

The interaction potential becomes at LO:

VΛN =
∑
IS

C IS
λ

∑
i<j

PIS(ij)δλ(⃗rij)

VΛNN =
∑
IS

D IS
λ

∑
i<j

QIS(ijΛ)δλ(⃗riΛ)δλ(⃗rjΛ)

PIS (QIS ) are projectors on baryon doublets
(triplets) with isospin I and spin S
1 ΛN interaction is fitted to pΛ scattering length and effective range.
2 ΛNN interaction is fitted to 3

ΛH, 4
ΛHStot=0, 4

ΛHStot=1, and 5
ΛHe binding energies.
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The NNQS approach

The Neural Network Quantum States (Carleo et al. 2017) approach is a form of unsupervised
learning.

Any type of Variational State can be represented via the NNQS.

Universal Approximation Theorem→ ΨW(R,S) =

Scalable size neural network are used for this representation.
The Ground state→ unprecedented precision with a variational approach
Hidden-Nuclons Wavefunction introduce dynamical correlations between particles and preserve
statistical correlations.

Advantages:
1 Easily applicable to different systems

Approximation error is no longer Ψ-dependent for a given interaction.
2 Less time- and computational-consuming than other methods for A ≥ 5.
3 Computational cost scales polinomially with ∼ αA5÷6

Disadvantages:
1 EFT contact potentials ∝ δλ(xij) introduces irreducible error at large cut-offs in Monte Carlo integration

due to small statistics in the interaction range→Is better to keep the cutoff small!!.
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Description of the NNQS

NNQS is a Variational Approach:
1 Apply the V.P.

EV =
⟨ΨW |H |ΨW⟩
⟨ΨW |ΨW⟩

≥ E0

2 Iterative optimization till

δEV({W})

δ{W}
= 0

The determination of EV ∼ E0 and Ψ0:
1 Sampling the Wavefunction using N Markov

Chains in parallel.
2 Evaluating observables and gradients’

expectation values with Importance Sampling.
3 Updating parameters using Stochastic

Reconfiguration.

⟨ΨW |H |ΨW⟩
⟨ΨW |ΨW⟩

G =
∂E
∂w

, Sij

∆wn
i = −

1
2
τ
∑

j

(
Sn

ij + ϵ1
)−1

Gn
i

Update
of Ψ

W

→
Ψ
W
′

P(X) =
|ΨW(X)|2∫
Ψ2
W

dX

{X
1
,
. .
. ,

X N
wa

lke
r
}

Im
po

rta
nc

e
Sa

m
pl

in
g

Sthocastic Reconfiguration

ΨW(R,S) =

Evolution of the MC
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NNQS - Hidden Nucleon Wavefunction

Step 0: modellization of the wavefunction with Hidden Nucleon approach:
Fermionic wave functions from neural-network constrained hidden states - Carleo, Moreno, Georges, Stokes PNAS Vol. 119 | No. 32 (2022)

1 Fermionic systems→ an anti-symmertic wavefunction (Pauli exclusion) with a single extended
Slater Determinant.

2 It gives a systematic and extendible approach.

→We introduce Ah ”Hidden” DoFs→ not real partices:

Represented by the hidden orbitals χi

Each virtual particle coordinate x̃j = f({X}) is a bosonic function of all the real particles coordinates

det

∣∣∣∣∣∣ϕv(X) ϕv(f({X}))
χh(X) χh(f({X}))

∣∣∣∣∣∣ = det


ϕ1(x1) ϕ1(x2) ϕ1(f({X}))
ϕ2(x1) ϕ2(x2) ϕ2(f({X}))
χ3(x1) χ3(x2) χ3(f({X}))



What about statistical correlations?
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NNQS - Hidden Nucleon Wavefunction

ϕ1(f(x)) ·
(
ϕ2(x1)χ3(x2) − χ3(x1)ϕ2(x2)

)
− ϕ2(f(x)) ·

(
ϕ1(x1)χ3(x2) − χ3(x1)ϕ1(x2)

)
+ χ3(f(x)) ·

(
ϕ1(x1)ϕ2(x2) − ϕ2(x1)ϕ1(x2)

)

it is an equivalent form of the C.I. expansion with only one excited states. (but it’s more than this!)

|Φ⟩ = C0|Ψ0⟩+
∑

ra

Cr
a

∣∣∣Ψr
a
〉
+

���
���

∑
a<b
r<s

Crs
ab

∣∣∣Ψrs
ab

〉
+

�
���

���∑
a<b<c
r<s<t

Crst
abc

∣∣∣Ψrst
abc

〉
+ . . . (1)
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NNQS - Hidden Nucleon Wavefunction

Introduce dynamical correlations between particles by means of functions of bosonic nature f({x})
which accounts for Jastrow correlators for all the particles in the system:
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HN wavefunction in the Visible coordinate sector

The hidden coordinate sector is represented through a phase - amplitude modulation of the wave
function

det

 ϕ1(x1) ϕ1(x2) ϕ1(f({X}))
ϕ2(x1) ϕ2(x2) ϕ2(f({X}))
χ3(x1) χ3(x2) χ3(f({X}))

 ϕα(xi) = euαϕ (xi ) tanh[vαϕ (xi)] ∼ euαϕ (xi )+j·vαϕ (xi )

χα(xi) = euαχ (xi ) tanh[vαχ (xi)] ∼ euαχ (xi )+j·vαχ (xi )

u and v are both FF Neural Networks with only one hidden layer (Let’s call this a ”standard network”
for this work.).

Input
layer

Hidden
layers

Output
layer

A standard Single Particle
FFNN has

Input Nodes = 5
→ [R3, sz , tz ]

Output Nodes = 1
→ ϕ(xi)
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NNQS Hidden coordinate sector - Deep Sets Architecture

The hidden coordinate sector is represented through a phase - amplitude modulation of the wave
function

det

 ϕ1(x1) ϕ1(x2) ϕ1(f({X}))
ϕ2(x1) ϕ2(x2) ϕ2(f({X}))
χ3(x1) χ3(x2) χ3(f({X}))

 ϕi(f({X})) = eU
i
ϕ({X}) tanh[Vi

ϕ({X})] ∼ eU
i
ϕ({X})+j·Vi

ϕ({X})

χi(f({X})) = eU
i
χ({X}) tanh[Vi

χ({X})] ∼ eU
i
χ({X})+j·Vi

χ({X})

Deep Sets architecture: any permutation invariant neural network (U andV) can be
sum-decomposed in the following way:

F ({X}) = ρF

[∑
i,j

ϕF ([xi , xj])
]

F = U,V

ϕ and ρ are both Neural Network, the sum operation destroy the order dependence of the network’s
inputs.

This decomposition is called Sum-Pooling, since the aggregation function is g(·) =
∑

x∈X.
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function

det

 ϕ1(x1) ϕ1(x2) ϕ1(f({X}))
ϕ2(x1) ϕ2(x2) ϕ2(f({X}))
χ3(x1) χ3(x2) χ3(f({X}))

 ϕi(f({X})) = eU
i
ϕ({X}) tanh[Vi

ϕ({X})] ∼ eU
i
ϕ({X})+j·Vi

ϕ({X})

χi(f({X})) = eU
i
χ({X}) tanh[Vi

χ({X})] ∼ eU
i
χ({X})+j·Vi

χ({X})

Deep Sets architecture: any permutation invariant neural network (U andV) can be
sum-decomposed in the following way:

F ({X}) = ρF

[∑
i,j

ϕF ([xi , xj])
]

F = U,V

ϕ and ρ are both Neural Network, the sum operation destroy the order dependence of the network’s
inputs.

This decomposition is called Sum-Pooling, since the aggregation function is g(·) =
∑

x∈X.
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Application of NNQS to hypernuclear variational states

Variational state of a hypernucleus (only one Λ):

ΨHN = ϕΛ(xΛ, g({x1, . . . , xA−1, xΛ})) ·det
A−1Z

∣∣∣∣∣∣ϕv(X) ϕv(f({X}))
χh(X) χh(f({X}))

∣∣∣∣∣∣

In order to represent ΛN correlations related with the 3
ΛH mixed asymmetry spin state, the aggregator

function for non-identical particles has to be modified

g(S[x1, . . . , xA−1], xΛ) =
[
xΛ,

A−1∑
i=1

ϕ(ri , si)
]

The coordinate of the Lambda are concatenated with the sum pooling→ the ΛN permutation
invariance is not introduced

ϕΛ has already mentioned phase-amplitude modulation

ϕΛ
(
g(S({xi}), xΛ)

)
= tanh

ρp

g(S({xi}), xΛ)

 · exp ρa

g(S({xi}), xΛ)





14/47

Introduction Theoretical Background The NNQS approach Results Conclusions

Application of NNQS to hypernuclear variational states

Variational state of a hypernucleus (only one Λ):

ΨHN = ϕΛ(xΛ, g({x1, . . . , xA−1, xΛ})) ·det
A−1Z

∣∣∣∣∣∣ϕv(X) ϕv(f({X}))
χh(X) χh(f({X}))

∣∣∣∣∣∣
In order to represent ΛN correlations related with the 3

ΛH mixed asymmetry spin state, the aggregator
function for non-identical particles has to be modified

g(S[x1, . . . , xA−1], xΛ) =
[
xΛ,

A−1∑
i=1

ϕ(ri , si)
]

The coordinate of the Lambda are concatenated with the sum pooling→ the ΛN permutation
invariance is not introduced

ϕΛ has already mentioned phase-amplitude modulation

ϕΛ
(
g(S({xi}), xΛ)

)
= tanh

ρp

g(S({xi}), xΛ)

 · exp ρa

g(S({xi}), xΛ)





14/47

Introduction Theoretical Background The NNQS approach Results Conclusions

Application of NNQS to hypernuclear variational states

Variational state of a hypernucleus (only one Λ):

ΨHN = ϕΛ(xΛ, g({x1, . . . , xA−1, xΛ})) ·det
A−1Z

∣∣∣∣∣∣ϕv(X) ϕv(f({X}))
χh(X) χh(f({X}))

∣∣∣∣∣∣
In order to represent ΛN correlations related with the 3

ΛH mixed asymmetry spin state, the aggregator
function for non-identical particles has to be modified

g(S[x1, . . . , xA−1], xΛ) =
[
xΛ,

A−1∑
i=1

ϕ(ri , si)
]

The coordinate of the Lambda are concatenated with the sum pooling→ the ΛN permutation
invariance is not introduced

ϕΛ has already mentioned phase-amplitude modulation

ϕΛ
(
g(S({xi}), xΛ)

)
= tanh

ρp

g(S({xi}), xΛ)

 · exp ρa

g(S({xi}), xΛ)





15/47

Introduction Theoretical Background The NNQS approach Results Conclusions

Pre-processing (backflow) of coordinates via MPNN

What if we want to use one only one hidden state state?

We can introduce the following backflow transformation for the single particle’s coordinates:

The backflow transformation modifies the coordinates of the particles so that the ”effective”
position of a particle is a function not only of its ”bare” position but also of the positions of the
other particles.

In the NN language it consist
in the application of a
minimal MPNN:
an all-toall connected graph,
encoding effective particle
positions (xi-nodes) and their
interactions (mij-edges)

Backflow Λ-coordinate

mLj = ϕ([xlam, xj])

mL = 1
Npart

∑Npart
j=1 mLj

XL = [xlam,mL ]

Backflow Ns coordinates

mij = χ([xi, xj])

mi =
1

Npart

∑Npart
j=1 mij

Xi = [xi ,mi]

→ MPNN NQS for the Homogeneous Electron Gas - Lovato, Carleo, Kim, Pescia, Nys (2023) arXiv:2305.07240v3
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Hidden Nucleon generalization for n − Λ-hypernuclear states

Is possible to include more than one Λs?

Putting all the previous ideas together...

ΨHN = det
Λ

∣∣∣∣∣∣ϕv(xlam) ϕv(f({XL }))
χh(xlam) χh(f({XL }))

∣∣∣∣∣∣ ·detA−1Z

∣∣∣∣∣∣ϕv(Xi) ϕv(f({Xi}))
χh(Xi) χh(f({Xi}))

∣∣∣∣∣∣
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Observables evaluation

Step 1: Importance Sampling and Metropolis
Expectation values are computed through importance sampling. By rewriting the multidimensional
integral for a generic observable O:

OV =
⟨Ψ| O |Ψ⟩

⟨Ψ|Ψ⟩
=

∫
dR ⟨Ψ|R,S⟩ ⟨R,S| O |Ψ⟩ ⟨R,S|Ψ⟩

⟨R,S|Ψ⟩∫
dR ⟨Ψ|R,S⟩ ⟨R,S|Ψ⟩

=

X={R,S}
=

∫
dR|Ψ(X)|2OL(X)∫

dR|Ψ(X)|2
=

∫
dRP(X)OL(X)

with OL(O) =
OΨ(X)
Ψ(X) and P(X) = |Ψ(X)|2∫

dR|Ψ(X)|2
→ {X1, . . . ,XNwalker }

OV =
1

Nwalker

Nwalker∑
s=1

OL(Xs) σOV =

√√√
1

Nwalker − 1

Nwalker∑
s=1

(
OL(Xs) − OV

)2
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Metropolis Hastings Algorithm

Step 2: MH Our goal is to sample the probability distribution described by P(X) = |ΨT (X)|2∫
dR|Ψ(X)|2

.

The M(RT)2 algorithm is based on the idea of random walk: a Markov Chain with transition matrix Π.

P(Xi+1 = xi+1|X0 = x0, · · · ,Xi = xi) = Π(xi , xi+1) = q(xi+1|xi)r(xi+1|xi)

xi+1 = xi + ζN(µ=0,σ=1)

r(xi+1|xi) = min
(
1, P(xi+1)���q(xi |xi+1)

P(xi )���q(xi+1 |xi )

)

1 Wait for thermalization
2 Evaluate Navg spaced by
Nvoid step.
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The Stochastic Reconfiguration algorithm

Step 3: Optimization of the Parameters:
Stochastic-Reconfiguration (S. Sorella 2005), in the context of VMC, is equivalent to performing
imaginary-time evolution in the parameters space, and it is related to the Natural Gradient
descent method (Amari et al.).

Imaginary-time evolution e iH(iτ) ≈ (1 − Hτ) in the parameter space reads

(1 − Hτ)
∣∣∣ΨT (W)

〉
=

∣∣∣ΨT (W +∆W)
〉
= ∆W0

∣∣∣ΨT (W)
〉
+

∑
j

∆WjO
j
∣∣∣ΨT (W)

〉
where Oi

∣∣∣ΨT (W)
〉
=

∣∣∣∣ ∂
∂Wi

Ψ(W)
〉
. Multiplying from left by〈

Ψ(W)
∣∣∣〈

ΨT (W)
∣∣∣ΨT (W)

〉 and

〈
Ψ(W)

∣∣∣Oi〈
ΨT (W)

∣∣∣ΨT (W)
〉

gives the two following equations⟨(1 − Hτ)⟩ = ∆W0 +
∑

i ∆Wi⟨O
i⟩

⟨Oi(1 − Hτ)⟩ = ∆W0⟨O
i⟩+

∑
j ∆Wj⟨O

iOj⟩
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The Stochastic Reconfiguration Algorithm

solving the first for ∆W0 and exploiting it in the second gives(
⟨H⟩⟨Oi⟩ − ⟨HOi⟩

)︸                 ︷︷                 ︸
− 1

2 Gi

τ =
∑

j

∆Wj

(
⟨OiOj⟩ − ⟨Oi⟩⟨Oj⟩

)︸                  ︷︷                  ︸
Sij

It naturally leads to the updating rule

W
n+1
i =Wn

i +∆Wn
i =Wn

i −
1
2
τ
∑

j

( Sn
ij + ϵ1ij︸     ︷︷     ︸

avoid saddle points

)−1Gn
j

where the quantities of interests are all evaluated through importance sampling

Gi =
∂E(W)

∂Wi
= 2

(
⟨OiH⟩ − EV ⟨Oi⟩

)
Sij = ⟨OiOj⟩ − ⟨Oi⟩⟨Oj⟩

The QGT looks like a variance..
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In classical Information Theory the Riemannian structure of the parameter space P of a statistical model
P(x|w), which depends on some parameters w, is defined by the Fisher information:

gij(w) = Ep(x|w)

∂ log(p(x|w))

∂wi

∂ log(p(x|w))

∂wj

∣∣∣∣∣∣∣w
 = −Ep(x|w)

 ∂2

∂wi∂wj
log (p(x|w))

∣∣∣∣∣∣∣w


Fisher Information is:
1 The Variance of the derivative of the log-likelihood (Score Function)
2 The curvature of the log-likelihood

Peaked Loglikelihood = ∂2
wi

high curvature = sample brings high information about wi

we suppress the variation of such a parameter Gn
i →

∑
j(S

n
ij )
−1Gn

j

In Quantum Information Theory:

dFS(Ψ,Φ) = arccos (|⟨Ψnorm,Φnorm⟩|
1
2 )→ dFS [ΨV(X|w),ΨV(X|w + dw)]2 =

∑
ij

Sij(w)dwidwj

If Ψ is defined over a basis
∣∣∣ψ(X|w)

〉
≈

∑
X∈{X}

√
p(X|w) |X⟩ can be shown that Sij(w) = 1

4 gij(w).

Quantum Natural Gradient - Carleo et al. (Quantum May 2020), page 10.

https://arxiv.org/pdf/1909.02108.pdf
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The Natural Gradient Descent

Amari (S. I. Amari, Neural Computation 10, 251 (1998).) → steepest descent direction of a cost function
L(w) in a Riemannian space is given by the Natural Gradient.

−∇̃L(w) = −g−1(w)∇L(w)

The NG flatten the metric of the parameter space!

Using the Natural Gradient the plateau phenomenon might disappear.
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SR with RMSProp

In the RMSProp the gradient express the acceleration in the parameter space. The S matrix is
regularized with the running averages of the squared gradients.

mn+1 = βmn + (1 − β)Gn ⊙ Gn

Sn
ij + ϵ · diag(1)→ Sn

ij + ϵ · diag(
√

mn + 10−8)

The ϵ hyperparameter add an L2 penality term to the solution of the system from which ∆W are
determined→ ||∆WS− G|| = ||ϵ∆W||

Now let’s see some results..
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Interaction Potential:

Idea of the improved LO interaction→ Two- and three-nucleon contact interactions and ground-state
energies of light- and medium-mass nuclei, Phys. Rev. C 103, 054003 2021, Schiavilla et al. - model ”o”

Coulomb interaction derived from the same paper.

Gaussian regulators: δλ(x) = Λ3

8π
3
2

e−
Λ2 r2

4

NN and NNN interaction:
1 NN fitted to pn/nn: as,t

0 , and rs,t
0 with variable phase method.

2 NNN fitted to 3H and 4He BE with Gaussian Processes

ΛN and ΛNN interaction:
1 ΛN fitted to pΛ as,t

0 , and rs,t
0 .

2 ΛNN fitted to the 3
Λ

H, 4
Λ

HStot=0, 4
Λ

HStot=1, and 5
Λ

He BE.
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4
ΛHStot=0 with Fitted Potential
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4
ΛHStot=0 Projectors
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4
ΛHStot=0 Density
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Work in progress:

In several systems the total spin is not a good quantum number.

The main effect is a fluctuation of the energy around the
convergence region for the target energies of the fit with an average
accuracy of 5 ÷ 60KeV .
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Conclusions

NNQS shows great flexibility in modeling hypernuclear bound states.
NQS Variational State→ match with accuracy the binding energy of hypernuclear systems.
Fitted interaction: Improved LO guarantes the desired accuracy.
Still improvements needs to be done: Obtain a wavefunction with good quantum numbers for the total Spin.

Outlook:
1 Moving to NLO and restore cutoff dependence.
2 Extension of calculations to larger mass hypernuclei.
3 Hypernuclear matter→ EoS

Question: Which hypernuclear systems might be more interesting to analise?

Thank you!
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Neural-Network Quantum States

The Neural Network Quantum States (NNQS) approach can be classified as a form of unsupervised
machine learning but actually occupy a middle ground between supervised and unsupervised learning,
as it incorporates elements from both approaches:

Approach Input Learning Procedure Output
Supervised Labeled input-output Minimize the cost function through Model that map inputs

Learning pairs gradient-descent→ Backpropagation to corresponding output labels

NNQS
Quantum system coordinates Variational optimization (Energy-gradient Amplitude of the ground

Unlabeled (x, s, t) informed cost function→ Backprop.) state wavefunction
Unsupervised

Unlabeled data
Training with unlabeled Model that represent patterns

Learning data (Clustering- Dimensionality red. ...) or structure in the data

Similarly to Supervised Learning (GD, SGD, RMSProp, Momentum, AdaGrad...) in NNQS we use first-
and second-order derivatives information (gradient, hessian) to improve convergence and performance.
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The Quantum Geometric Tensor

The Riemannian structure of the parameter space P of a statistical model p(x|w), which depends on
some parameters w is defined by the Fisher information:

gij(w) = Ep(x|w)

∂ log(p(x|w))

∂wi

∂ log(p(x|w))

∂wj

∣∣∣∣∣∣∣w
 = −Ep(x|w)

 ∂2

∂wi∂wj
log (p(x|w))

∣∣∣∣∣∣∣w


An intuition about this property of the Fisher information in clarified by noting that the Kullback-Liebler
divergence

DKL(p(x,w), p(x,w′)) =
∫

dxp(x,w) log

(
p(x,w)

p(x,w′)

)
evaluated between p(w) and p(w′), with w′ → w, is Taylor expanded to

DKL

(
p(x|w), p(x|w′)

)
≈

1
2

∑
i,j

(
∂2

∂w ′ i∂w ′ j
DKL

(
p(x|w), p(x|w′)

))
dwidwj

= −
1
2

∑
i,j

∫
dxp(x|w)

[
∂2

∂w ′ i∂w ′ j
log (p(x|w′))

]
w′=w

dwidwj

=
1
2

∑
i,j

gij(w)dwidwj
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The Quantum Geometric Tensor

We can observe the relation between the Quantum Geometric Tensor Sij and the fisher information by
means of the Fubini-Study metric, which is the natural metric for the two-level pure quantum-machanical
system defined by the Block Sphere

dFS(Ψ,Φ) = arccos (|⟨Ψnorm,Φnorm⟩|
1
2 )

and considering its infinitesimal form, which correspond to the Quantum Geometric Tensor

dFS [ΨV(X|w),ΨV(X|w + dw)]2 =
∑

ij

Sij(w)dwidwj

defined over a basis
∣∣∣ψ(X|w)

〉
≈

∑
X∈{X}

√
p(X|w) |X⟩ can be easily shown that Sij is proportional to the

Fisher Information Sij(w) = 1
4 gij(w).

When the Fisher information (The variance of the gradient of the log-likelyhood) is high, it implies
that the variance of the score function is also high, meaning small changes in the parameterW
lead to large changes in the log-likelihood.

Quantum Natural Gradient - Carleo et al. (Quantum May 2020), page 10.

https://arxiv.org/pdf/1909.02108.pdf
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Metropolis Algorithm

Our goal is to sample the probability distribution described by P(X) = |Ψ(X)|2∫
dR|Ψ(X)|2

. The M(RT)2 algorithm is

based on the idea of random walk, namely a Markov Chain with transition matrix Π.

P(Xi+1 = xi+1|X0 = x0, · · · ,Xi = xi) = Π(xi , xi+1)

We can split Π(xi , xi+1) in two terms:

Π(xi+1|xi) = q(xi+1|xi)r(xi+1|xi)

This means that if you move to xi+1 from xi

1 xi+1 is proposed it with probability q(xi+1|xi)

2 xi+1 is accepted with probability r(xi+1|xi) otherwise xi is kept.
The acceptance probability is given by

r(xi+1|xi) = min
(
1,

P(xi+1)����q(xi |xi+1)

P(xi)����q(xi+1|xi)

)
→ Works for non-normalized P(x)

This ensures that the fraction of time spent in each state is proportional to P(xi).
If r(xi+1 |xi) = 0.9 we draw a point z from U(0, 1)
if zU < 0.9 we accept the new point, otherwise we reject xi+1 and keep xi .
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Metropolis Algorithm

If the proposal is a Normal distribution at each step of the
propagation the walkers are moved as follows:

q(xi+1|xi) = N(xi+1|xi , µ = 0, σ = 1)

xi+1 = xi + ζN(µ=0,σ=1)
N MC in parallel

The transfer matrix Π of the MH algorithm ensure that the detailed balance principle is valid and
consequently that the Markov chain will converge to the desired target density P after thermalization

P(xi)Π(xi+1|xi) = P(xi+1)Π(xi |xi+1)

This says that the flow from i to i + 1 must equal the flow from i + 1 to i.
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Metropolis Algorithm
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EoS of Nucleon Stars and the Hyperon puzzle

One of the most relevant solutions to the Hyperon puzzle relies on the determination of the EoS
through microscopic approaches which applies a three-body YNN interaction potential to
compensate the attractive YN interaction.

Figure: D. Lonardoni et al., PRL 114 (2015)
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