Alpha correlations and clustering in the shell model

P. Van Isacker, GANIL, France

Two-nucleon correlation functions
Alpha correlation functions
Alpha clustering

Neutron-proton pairing, ESN7. September 2023

Two-nucleon correlators

Two-nucleon correlation operators are defined as

$$
\sum_{i<j} \delta\left(r-\hat{r}_{i j}\right)
$$

$$
\sum_{i<j} \delta\left(R-\hat{R}_{i j}\right) \delta\left(r-\hat{r}_{i j}\right)
$$

with

$$
\hat{R}_{i j}=\frac{1}{2}\left|\hat{\bar{r}}_{i}+\hat{\bar{r}}_{j}\right|, \quad \hat{r}_{i j}=\left|\hat{\bar{r}}_{i}-\hat{\bar{r}}_{j}\right|
$$

Expectation value defines a probability density: times $d r \rightarrow$ probability of two nucleons separated by r; times drd \rightarrow probability of two nucleons separated by r and at a distance R from the centre of mass.

Two-nucleon correlation functions

Expectation values for a two-nucleon state
and
$\langle a b L S T| \delta\left(R-\hat{R}_{12}\right) \delta\left(r-\hat{r}_{12}\right)|c d L S T\rangle$

$$
=R^{2} r^{2} \sum_{\mathcal{N} \mathcal{N}^{\prime} \mathcal{L}} \sum_{n n^{\prime} l} \tilde{a}_{\mathcal{N} \mathcal{L} n, L S T}^{n_{a} l_{a} n_{b} b_{b} b_{0} \tilde{a}_{\mathcal{N}^{\prime} \in n^{\prime} l, L S T}^{n} l_{c} n_{d} l_{d}} R_{\mathcal{N L}}(\sqrt{2} R) R_{\mathcal{N}^{\prime} \mathcal{L}}(\sqrt{2} R) R_{n l}\left(\frac{r}{\sqrt{2}}\right) R_{n^{\prime} l}\left(\frac{r}{\sqrt{2}}\right)
$$

in terms of modified Talmi-Moshinsky brackets

$$
\tilde{a}_{\mathcal{N L n},}^{n_{a} l_{a} n_{l} l_{b} l_{b T}} \equiv \frac{1-(-)^{l+S+T}}{\sqrt{2\left(1+\delta_{n_{a} n_{b}} \delta_{\left.l_{a} l_{b}\right)}\right.}} a_{\mathcal{N L N l , L}}^{n_{a} l_{a} n_{n} l_{b}}
$$

Two identical nucleons in s orbitals

Two identical nucleons in p orbitals

Two identical nucleons in Od orbital

Four identical nucleons in $O p$ orbital

A $J=0$ state has $(L S)=(00)$ or $(L S)=(11)$ with probability densities given by

$$
\mathcal{P}_{p^{4} ; 00}=\frac{9}{1024 \pi^{4}} \sum_{(i j) \neq(k l)} \sin ^{2} \theta_{i j} \sin ^{2} \theta_{k l} \cos ^{2} \theta_{i j, k l:}
$$

and

$$
\mathcal{P}_{p^{4} ; 11}=\frac{9}{2048 \pi^{4}} \sum_{(i j) \neq(k l)} \sin ^{2} \theta_{i j} \sin ^{2} \theta_{k l} \sin ^{2} \theta_{i j, k l} .
$$

where $\theta_{i j}$ is the angle between \bar{r}_{i} and \bar{r}_{j}, and $\theta_{i j, k l}$ is the angle between $\bar{r}_{i j}$ and $\bar{r}_{k l}$.

Four identical nucleons in $O p$ orbital

P. Mei \& P. Van Isacker, Ann. Phys. (NY) 327 (2012) 1182

Example: ${ }^{8} \mathrm{He}$

Four-nucleon $(2 v, 2 \pi)$ correlators

Four-nucleon correlation operators are defined as

$$
\hat{\Delta}_{i j k l}\left(R_{\nu \pi}, r_{\nu \nu}, r_{\pi \pi}\right) \equiv \delta\left(R_{\nu \pi}-\hat{R}_{i j \cdot k l}\right) \delta\left(r_{\nu \nu}-\hat{r}_{i j}\right) \delta\left(r_{\pi \pi}-\hat{r}_{k l}\right)
$$

with $(i j \in v, k l \in \pi)$

$$
\begin{aligned}
& \hat{R}_{i j}=\left|\frac{1}{2}\left(\hat{\bar{r}}_{i}+\hat{r}_{j}\right)\right|, \quad \hat{r}_{i j}=\left|\hat{\bar{r}}_{i}-\hat{\bar{r}}_{j}\right|, \\
& \hat{R}_{k l}=\left|\frac{1}{2}\left(\hat{\bar{r}}_{k}+\hat{r}_{l}\right)\right|, \quad \hat{r}_{k l}=\left|\hat{r}_{k}-\hat{\vec{r}}_{l}\right|, \\
& \left.\hat{R}_{i j k l}=\left|\frac{1}{2}\left(\hat{\bar{R}}_{i j}+\hat{\bar{R}}_{k l}\right)\right|, \quad \hat{R}_{i j \cdot k l}=\mid \hat{\bar{R}}_{i j}-\hat{\bar{R}}_{k l}\right) \mid, \\
& \hat{r}_{i j k l}=\left|\frac{1}{2}\left(\hat{\bar{r}}_{i j}+\hat{\bar{r}}_{k l}\right)\right|, \quad \hat{r}_{i j \cdot k l}=\left|\hat{\bar{r}}_{i j}-\hat{r}_{k l}\right| .
\end{aligned}
$$

Geometry of $2 v+2 \pi$

If
$r_{v v}$ is the distance between the neutrons,
$r_{\pi \pi}$ is the distance between the protons,
$R_{v \pi}$ is the distance between the centres of mass of the neutrons and of the protons,
$r_{v \pi}$ is the distance between a neutron and a proton, one has the relation, valid for a tetrahedron,

$$
4 R_{\nu \pi}^{2}=4 r_{\nu \pi}^{2}-r_{\nu \nu}^{2}-r_{\pi \pi}^{2}
$$

Coordinate transformation

$$
\begin{aligned}
& \left|a b\left(L_{\nu} S_{\nu}\right), c d\left(L_{\pi} S_{\pi}\right) ; L S\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \times\left|\mathcal{N}_{\nu} \mathcal{L}_{\nu}\left(\bar{R}_{12}^{\prime}\right) n_{\nu} l_{\nu}\left(\bar{r}_{12}^{\prime}\right)\left(L_{\nu} S_{\nu}\right), \mathcal{N}_{\pi} \mathcal{L}_{\pi}\left(\bar{R}_{34}^{\prime}\right) n_{\pi} l_{\pi}\left(\bar{r}_{34}^{\prime}\right)\left(L_{\pi} S_{\pi}\right) ; L S\right\rangle \\
& =-\sum_{\mathcal{N}_{\nu} \mathcal{L}_{\nu} \mathcal{N}_{\pi} \mathcal{L}_{\pi} n_{\nu} l_{\nu} n_{\pi} l_{\pi}} \tilde{a}_{\mathcal{N}_{\nu} \mathcal{L}_{\nu} n_{\nu} \nu_{\nu}, L_{\nu} S_{\nu}}^{n_{a} l_{\mathcal{N}^{2}} \tilde{a}_{\pi} l_{b} \mathcal{L}_{\pi} n_{\pi} l_{\pi}, L_{\pi} S_{\pi}} \sum_{\mathcal{L}_{\rho} l_{\rho} \mathcal{S}_{\rho} s_{\rho}}^{n_{c} l_{c} n_{d} l_{d}}\left[\begin{array}{ccc}
\mathcal{L}_{\nu} & l_{\nu} & L_{\nu} \\
\mathcal{L}_{\pi} & l_{\pi} & L_{\pi} \\
\mathcal{L}_{\rho} & l_{\rho} & L
\end{array}\right]\left[\begin{array}{ccc}
1 / 2 & 1 / 2 & S_{\nu} \\
1 / 2 & 1 / 2 & S_{\pi} \\
\mathcal{S}_{\rho} & s_{\rho} & S
\end{array}\right] \\
& \times\left|\mathcal{N}_{\nu} \mathcal{L}_{\nu}\left(\bar{R}_{12}^{\prime}\right) \mathcal{N}_{\pi} \mathcal{L}_{\pi}\left(\bar{R}_{34}^{\prime}\right)\left(\mathcal{L}_{\rho} \mathcal{S}_{\rho}\right), n_{\nu} l_{\nu}\left(\bar{r}_{12}^{\prime}\right) n_{\pi} l_{\pi}\left(\bar{r}_{34}^{\prime}\right)\left(l_{\rho} s_{\rho}\right) ; L S\right\rangle \\
& =-\sum_{\mathcal{N}_{\nu} \mathcal{L}_{\nu} \mathcal{N}_{\pi} \mathcal{L}_{\pi} n_{\nu} l_{\nu} n_{\pi} l_{\pi}} \tilde{a}_{\mathcal{N}_{\nu} \mathcal{L}_{\nu} n_{\nu} \nu_{\nu}, L_{\nu} S_{\nu}}^{n_{a} l_{\mathcal{N}^{2}} \tilde{a}_{\pi} l_{b} \mathcal{L}_{\pi} n_{\pi} l_{\pi}, L_{\pi} S_{\pi}} \sum_{\mathcal{L}_{\rho} l_{\rho} \mathcal{S}_{\rho} s_{\rho}}^{n_{c} l_{c} n_{d} l_{d}}\left[\begin{array}{lll}
\mathcal{L}_{\nu} & l_{\nu} & L_{\nu} \\
\mathcal{L}_{\pi} & l_{\pi} & L_{\pi} \\
\mathcal{L}_{\rho} & l_{\rho} & L
\end{array}\right]\left[\begin{array}{ccc}
1 / 2 & 1 / 2 & S_{\nu} \\
1 / 2 & 1 / 2 & S_{\pi} \\
\mathcal{S}_{\rho} & s_{\rho} & S
\end{array}\right] \\
& \times \sum_{\mathcal{N} \mathcal{L} n l} a_{\mathcal{N} \mathcal{L} n l, \mathcal{L}_{\rho}}^{\mathcal{N}_{\nu} \mathcal{L}_{\nu} \mathcal{L}_{\pi}}\left|\mathcal{N} \mathcal{L}\left(\bar{R}_{1234}^{\prime}\right) n l\left(\bar{R}_{12 \cdot 34}^{\prime}\right)\left(\mathcal{L}_{\rho} \mathcal{S}_{\rho}\right), n_{\nu} l_{\nu}\left(\bar{r}_{12}^{\prime}\right) n_{\pi} l_{\pi}\left(\bar{r}_{34}^{\prime}\right)\left(l_{\rho} s_{\rho}\right) ; L S\right\rangle,
\end{aligned}
$$

Four-nucleon correlation function

$$
\begin{aligned}
& \left\langle a b\left(L_{\nu} S_{\nu}\right), c d\left(L_{\pi} S_{\pi}\right) ; L S\right| \hat{\Delta}_{1234}\left(R_{\nu \pi}, r_{\nu \nu}, r_{\pi \pi}\right)\left|a^{\prime} b^{\prime}\left(L_{\nu}^{\prime} S_{\nu}^{\prime}\right), c^{\prime} d^{\prime}\left(L_{\pi}^{\prime} S_{\pi}^{\prime}\right) ; L S\right\rangle \\
& =\frac{1}{8} R_{\nu \pi}^{2} r_{\nu \nu}^{2} r_{\pi \pi}^{2} \delta_{S_{\nu} S_{\nu}^{\prime}} \delta_{S_{\pi} S_{\pi}^{\prime}} \sum_{\mathcal{L}_{\nu} \mathcal{L}_{\pi}} \sum_{\mathcal{L}_{\nu}^{\prime} \mathcal{L}_{\pi}} \sum_{l_{\nu} l_{\pi}} \sum_{\mathcal{L}_{\rho} l_{\rho}}\left[\begin{array}{ccc}
\mathcal{L}_{\nu} & l_{\nu} & L_{\nu} \\
\mathcal{L}_{\pi} & l_{\pi} & L_{\pi} \\
\mathcal{L}_{\rho} & l_{\rho} & L
\end{array}\right]\left[\begin{array}{ccc}
\mathcal{L}_{\nu}^{\prime} & l_{\nu} & L_{\nu}^{\prime} \\
\mathcal{L}_{\pi}^{\prime} & l_{\pi} & L_{\pi}^{\prime} \\
\mathcal{L}_{\rho} & l_{\rho} & L
\end{array}\right]
\end{aligned}
$$

The α particle: $0 \hbar \omega$

If all nucleons are in the Os orbital, $(L S T)=$ (000), the probability density is

$$
P_{000}^{(0)}\left(R_{\nu \pi}, r_{\nu \nu}, r_{\pi \pi}\right)=\frac{8}{\pi^{3 / 2}} R_{\nu \pi}^{2} r_{\nu \nu}^{2} r_{\pi \pi}^{2} e^{-R_{\nu \pi}^{2}-\frac{1}{2} r_{\nu \nu}^{2}-\frac{1}{2} r_{\pi \pi}^{2}}
$$

The probability peaks at $r_{v \nu}=r_{\pi \pi}=\sqrt{2}$ and $R_{v \pi}=$ 1 or $r_{v \pi}=r_{v \nu}=r_{\pi \pi}=\sqrt{2}$.
\rightarrow The most probable geometry of an a particle is a Platonic tetrahedron.

The α particle: $1 \hbar \omega$

The isoscalar 1^{-}state $(L S T)=(100)$ is spurious and has the probability density

$$
P_{100}^{(1)}\left(R_{\nu \pi}, r_{\nu \nu}, r_{\pi \pi}\right)=\frac{8}{\pi^{3 / 2}} R_{\nu \pi}^{2} r_{\nu \nu}^{2} r_{\pi \pi}^{2} e^{-R_{\nu \pi}^{2}-\frac{1}{2} r_{\nu \nu}^{2}-\frac{1}{2} r_{\pi \pi}^{2}}
$$

The probability peaks at $r_{v \nu}=r_{\pi \pi}=\sqrt{2}$ and $R_{v \pi}=$ 1 or $r_{v \pi}=r_{v \nu}=r_{\pi \pi}=\sqrt{2}$.
\rightarrow The spurious state has the same density distribution as the $0 \hbar \omega$ ground state since it has the same intrinsic structure.

The α particle: $1 \hbar \omega$

The isovector 1^{-}state $(L S T)=(101)$ has the probability density

$$
P_{101}^{(1)}\left(R_{\nu \pi}, r_{\nu \nu}, r_{\pi \pi}\right)=\frac{16}{3 \pi^{3 / 2}} R_{\nu \pi}^{4} r_{\nu \nu}^{2} r_{\pi \pi}^{2} e^{-R_{\nu \pi}^{2}-\frac{1}{2} r_{\nu \nu}^{2}-\frac{1}{2} r_{\pi \pi}^{2}}
$$

The probability peaks at $r_{v \nu}=r_{\pi \pi}=\sqrt{2}$ and $R_{v \pi}=$

$$
\sqrt{2} \text { or } r_{v \pi}=\sqrt{3}
$$

The α particle: $1 \hbar \omega$

The isoscalar and isovector states with $(L S)=$ (11) have the probability density

$$
\begin{aligned}
& P_{110}^{(1)}\left(R_{\nu \pi}, r_{\nu \nu}, r_{\pi \pi}\right)=\frac{4}{3 \pi^{3 / 2}} R_{\nu \pi}^{2} r_{\nu \nu}^{2} r_{\pi \pi}^{2}\left(r_{\nu \nu}^{2}+r_{\pi \pi}^{2}\right) e^{-R_{\nu \pi}^{2}-\frac{1}{2} r_{\nu \nu}^{2}-\frac{1}{2} r_{\pi \pi}^{2}} \\
& P_{111}^{(1)}\left(R_{\nu \pi}, r_{\nu \nu}, r_{\pi \pi}\right)=\frac{4}{3 \pi^{3 / 2}} R_{\nu \pi}^{2} r_{\nu \nu}^{2} r_{\pi \pi}^{2}\left(r_{\nu \nu}^{2}+r_{\pi \pi}^{2}\right) e^{-R_{\nu \pi}^{2}-\frac{1}{2} r_{\nu \nu}^{2}-\frac{1}{2} r_{\pi \pi}^{2}}
\end{aligned}
$$

The probability peaks at $r_{v \nu}=r_{\pi \pi}=\sqrt{3}$ and $R_{v \pi}=$ 1 or $r_{v \pi}=\sqrt{2.5}$.

The α particle: $0 \hbar \omega+1 \hbar \omega$

The α particle: $0 \hbar \omega+2 \hbar \omega$

The tensor force mixes the $(L S)=(00)$ ground state with $(L S)=(22)$, with probability density

$$
P_{220}^{(2)}\left(R_{\nu \pi}, r_{\nu \nu}, r_{\pi \pi}\right)=\frac{8}{9 \pi^{3 / 2}} R_{\nu \pi}^{2} r_{\nu \nu}^{4} r_{\pi \pi}^{4} e^{-R_{\nu \pi}^{2}-\frac{1}{2} r_{\nu \nu}^{2}-\frac{1}{2} r_{\pi \pi}^{2}}
$$

The probability peaks at $r_{\nu v}=r_{\pi \pi}=2$ and $R_{v \pi}=1$ or $r_{\nu \pi}=\sqrt{3}$.

The α particle: $0 \hbar \omega+2 \hbar \omega$

A schematic Hamiltonian

$$
\hat{H}=\hbar \omega \hat{n}-4 \pi \sum_{T=0,1} a_{T}^{\prime} \sum_{i<j} \delta\left(\bar{r}_{i}-\bar{r}_{j}\right) \delta\left(\bar{r}_{i}-R_{0}\right)
$$

Orbitals split by $\hbar \omega$ and SDI with isoscalar and isovector strengths a_{0} and a_{1}.

The α particle: $0 \hbar \omega+2 \hbar \omega$

If $y=0$, orbitals are degenerate, $\hbar \omega=0$.
If $y=1, \hbar \omega \gg a_{T}$ and we recover s^{4} solution.

Alpha clustering

Consider a system of n_{v} neutrons and n_{π} protons in the shell model.
Problem: Can we quantify the probability of formation of an α particle in an arbitrary shellmodel state for that system?

Approximation: Assume throughout that the α particle coincides with two neutrons and two protons in the Os orbital.

α-particle probability for $(2 v, 2 \pi)$

Consider two neutrons and two protons in orbitals
Ω_{v} and Ω_{π}, respectively.
The two neutrons (protons) have the oscillator quanta $N_{q v}\left(N_{q \pi}\right)$ associated with them, which differ from zero ($\neq \alpha$ particle).
Conjecture: The α-particle component of the $(2 v, 2 \pi)$ configuration is obtained by imposing the same intrinsic structure as the α particle. This is achieved if all quanta are put in the centre-ofmass coordinate and none in other degrees of freedom.

Coordinate transformation

$$
\begin{aligned}
& \left|a_{\nu} b_{\nu}\left(\Gamma_{2 \nu}\right), a_{\pi} b_{\pi}\left(\Gamma_{2 \pi}\right) ; \Gamma_{4}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \times\left|\mathcal{N}_{\nu} \mathcal{L}_{\nu}\left(\bar{R}_{\nu}^{\prime}\right) n_{\nu} l_{\nu}\left(\bar{r}_{\nu}^{\prime}\right)\left(\Gamma_{2 \nu}\right), \mathcal{N}_{\pi} \mathcal{L}_{\pi}\left(\bar{R}_{\pi}^{\prime}\right) n_{\pi} l_{\pi}\left(\bar{r}_{\pi}^{\prime}\right)\left(\Gamma_{2 \pi}\right) ; \Gamma_{4}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \times\left|\mathcal{N}_{\nu} \mathcal{L}_{\nu}\left(\bar{R}_{\nu}^{\prime}\right) \mathcal{N}_{\pi} \mathcal{L}_{\pi}\left(\bar{R}_{\pi}^{\prime}\right)(\mathcal{R S}), n_{\nu} l_{\nu}\left(\bar{r}_{\nu}^{\prime}\right) n_{\pi} l_{\pi}\left(\bar{r}_{\pi}^{\prime}\right)(r s) ; \Gamma_{4}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \times \sum_{\mathcal{N} \mathcal{L} n l} a_{\mathcal{N} \mathcal{L} n l, \mathcal{R}}^{\mathcal{N}_{\nu} \mathcal{L}_{\nu} \mathcal{N}_{\pi} \mathcal{L}_{\pi}}\left|\mathcal{N} \mathcal{L}\left(\bar{R}_{\nu \pi}^{\prime}\right) n l\left(\bar{r}_{\nu \pi}^{\prime}\right)(\mathcal{R} \mathcal{S}), n_{\nu} l_{\nu}\left(\bar{r}_{\nu}^{\prime}\right) n_{\pi} l_{\pi}\left(\bar{r}_{\pi}^{\prime}\right)(r s) ; \Gamma_{4}\right\rangle
\end{aligned}
$$

α-particle probability for $(2 v, 2 \pi)$

The α-particle probability of the state

$$
\begin{aligned}
& \left|a_{\nu} b_{v}\left(L_{2} S_{2}\right), a_{\pi} b_{\pi}\left(L_{2} S_{2}\right) ; L_{4}=S_{4}=0\right\rangle \text { equals }
\end{aligned}
$$

The α-particle probability of the state
$\left|a_{v} b_{v}\left(J_{2}\right), a_{\pi} b_{\pi}\left(J_{2}\right) ; J_{4}=0\right\rangle$ equals

General α-particle probability

The α-particle probability of the state

$$
\left|\Phi \Gamma_{n}\right\rangle=\sum_{\Lambda_{n \nu} \Lambda_{n \pi}} b_{\Lambda_{n \nu} \Lambda_{n \pi} \Gamma_{n}}\left|\Lambda_{n \nu}, \Lambda_{n \pi} ; \Gamma_{n}\right\rangle
$$

$$
\begin{aligned}
& p_{\alpha} \equiv\left\langle\Phi \Gamma_{n}\right| \hat{P}_{\alpha}\left|\Phi \Gamma_{n}\right\rangle^{2}=\sum_{\Lambda_{r \nu} \Lambda_{r}} \sum_{\mathcal{S}=0,1}\left(\sum_{\Lambda_{n \nu} \Lambda_{n \pi}} b_{\Lambda_{n \nu} \Lambda_{n \pi}} d_{\Lambda_{n}}^{S \Lambda_{r \nu} \Lambda_{n \pi} \Lambda_{n} \Gamma_{n}}\right)^{2} \\
& \left.\left.d_{\Lambda_{n n} \Lambda_{n \pi} \Lambda_{n}}^{S \Lambda_{n} \Lambda_{r}}=\sum_{\Gamma_{2}}\left[\Lambda_{2 \nu}, \Lambda_{r \nu} \mid\right\} \Lambda_{n \nu}\right]\left[\Lambda_{2 \pi}, \Lambda_{r \pi} \mid\right\} \Lambda_{n \pi}\right]\left[\begin{array}{ccc}
\Gamma_{2} & \Gamma_{r \nu} & \Gamma_{n \nu} \\
\Gamma_{2} & \Gamma_{r \pi} & \Gamma_{n \pi} \\
00 & \Gamma_{n} & \Gamma_{n}
\end{array}\right] c_{\Lambda_{2 \nu}}^{s 00} \Lambda_{2 \pi}
\end{aligned}
$$

Dependence on mass number A

The oscillator length b in a nucleus with mass number A differs from that in the α particle.
The overlap between $O s$ wave functions with lengths b_{A} and b_{4} is

$$
\frac{4}{\left(b_{A} b_{4}\right)^{3 / 2} \sqrt{\pi}} \int_{0}^{\infty} \exp \left[-\left(\frac{b_{A}^{2}+b_{4}^{2}}{2 b_{A}^{2} b_{4}^{2}}\right) r^{2}\right] r^{2} d r=\left(\frac{2 b_{A} b_{4}}{b_{A}^{2}+b_{4}^{2}}\right)^{3 / 2}
$$

The reduction factor is therefore

$$
r(A) \equiv\left(\frac{2 b_{A} b_{4}}{b_{A}^{2}+b_{4}^{2}}\right)^{9 / 2} \approx \frac{64}{A^{3 / 4}}\left(\frac{1}{1+(4 / A)^{1 / 3}}\right)^{9 / 2}
$$

Dependence on mass number A

Example: the sd shell

A schematic Hamiltonian

$$
\hat{H}=-g \sum_{i=1}^{A} \bar{l}_{i} \cdot \bar{s}_{i}-4 \pi \sum_{T=0,1} a_{T}^{\prime} \sum_{i<j=1}^{A} \delta\left(\bar{r}_{i}-\bar{r}_{j}\right) \delta\left(r_{i}-R_{0}\right)
$$

SDI with isoscalar and isovector strengths a_{0} and a_{1} and spin-orbit term with strength g.
Take $g=0 \rightarrow L S$-coupled eigenstates.

Example: the sd shell

p_{α} decreases with valence nucleon number.
In ${ }^{20} \mathrm{Ne} p_{\alpha}=0.034$ if $a_{0}=a_{1}[\mathrm{SU}(4)]$ and $p_{\alpha}=$ 0.023 if $a_{0}=0$ or $a_{1}=0$.

In ${ }^{40} \mathrm{Ca} p_{\alpha} \sim 10^{-5}$.
(a) sd shell (isovector)

(b) sd shell (isoscalar)

(c) sd shell [SU(4)]

Example: the sd shell

Cluster states and SU(3)

ON THE CONNEGTION BETWEEN THE CLUSTER MODEL AND THE SU_{3} COUPLING SCHEME FOR PARTICLES IN A HARMONIC OSCILLATOR POTENTIAL
B. r, BAYMAN and A. BOHR

Institute for Theoretical Physics, University of Copenhagen
Received 14 October 1958
Abstract: It is shown that the cluster model of Wildermuth and Kanellopoulos provides an alternative description of certain states in the $\mathrm{SU}_{\mathbf{3}}$ coupling scheme of Elliott.

Example: ${ }^{8}$ Be

Example: $4_{4}^{8 \mathrm{Be}_{4}} \mathrm{n}^{4}$ states with $(L S)=(00)$
SU(3) analysis

Three states have (LS) $=(\infty)$

$$
\begin{array}{ll}
\left(\lambda_{\mu}\right)=(40): & \frac{\sqrt{5}}{3}\left|\left(L_{v} S_{v}\right)=\left(L_{R} S_{n}\right)=(00)\right\rangle+\frac{2}{3}\left|\left(L_{V} S_{V}\right)=\left(L_{R} S_{n}\right)=(22)\right\rangle \\
(\lambda \mu)(02):-\frac{2}{3}\left|\left(L_{v} S_{v}\right)=\left(L_{R} L_{n}\right)=(00)\right\rangle+\frac{\sqrt{5}}{3}\left|\left(L_{v} S_{v}\right)=\left(L_{n} S_{n}\right)=(22)\right\rangle & T=0,2
\end{array}
$$

α-partide pRobability

$$
s=1
$$

$$
d_{(00)(00)(00)}^{s}=\frac{1}{8} \sqrt{\frac{5}{6}} \quad \frac{1}{8} \sqrt{\frac{5}{2}}
$$

$$
d^{\Delta}(22)(22)(\infty)=\frac{1}{4 \sqrt{6}} \quad \frac{1}{4 \sqrt{2}}
$$

$$
\Rightarrow\left\{\begin{array}{l}
p_{\alpha}[(d \mu)=(40)]=\frac{3}{32} \\
p_{\alpha}[(\lambda \mu)=(02)]=0
\end{array}\right.
$$

$$
\begin{aligned}
& U(12) \supset U(3) \otimes\left(S U(4) \supset S U_{S}(2) \otimes S U_{T}(2)\right) \\
& \text { 日 } \quad \text { IIT(40) } \quad \text { (ST) }=(00) \\
& L=0,2,4 \\
& \frac{\square 1}{I}(21) \quad \frac{\square}{G}(S T)=(01)(10)(11) \\
& L=1,2,3 \\
& \begin{array}{l}
E(02) \quad \\
L=0,2
\end{array}(S T)=(00)(11)(02)(20)
\end{aligned}
$$

