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Proton-neutron pairing in N=Z nuclei:  main issues     
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6 types of spin-isospin pairs  

Long standing questions 

       there is  a “condensate” of  pn  pairs in nuclei ? 

 the fingerprints of a pn condensate ? 
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These questions are  related to the BCS/HFB approximation of  the pairing interactions ! 
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We show that the Bogoliubov–de Gennes equations for nuclear ground-state wave functions support

solutions in which the condensate has a mixture of spin-singlet and spin-triplet pairing. We find that such

mixed-spin condensates do not occur when there are equal numbers of neutrons and protons, but only

when there is an isospin imbalance. Using a phenomenological Hamiltonian, we predict that such nuclei

may occur in the physical region within the proton dripline. We also solve the Bogoliubov–de Gennes

equations with variable constraints on the spin-singlet and spin-triplet pairing amplitudes. For nuclei that

exhibit this new pairing behavior, the resulting energy surface can be rather soft, suggesting that there may

be low-lying excitations associated with the spin mixing.
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Introduction.—The usual pairing found in nuclei is
between identical nucleons in the spin-singlet channel.
Although the spin-triplet interaction is stronger, the
spin-orbit field tends to suppress pairing in the triplet
channel [1,2]. However, spin-triplet pairing becomes fa-
vored in nuclei with equal numbers of neutrons N and
protons Z when the nucleon number is very large (proba-
bly beyond the proton dripline) [3]. In this work we
address nuclei with N ! Z and find some surprising
results: (a) the domain where spin-triplet pairing domi-
nates extends well off the N ¼ Z line; (b) the condensate
changes character smoothly between pure spin-triplet on
the N ¼ Z line to pure spin-singlet at large neutron
excess, (c) the mixed-spin nuclei that we find extend
below the proton dripline and are thus relevant to
experiment.

Context.—The expectation that isospin-zero (T ¼ 0)
neutron-proton pairing should exist comes from the fact
that the interaction in the spin-triplet (isospin-singlet)
channel, which binds the deuteron, is stronger than the
1S0 interaction that is largely responsible for ordinary
identical-particle spin-singlet pairing. It was suggested a
long time ago that neutron-proton pairing is important near
the N ¼ Z line (see Refs. [4,5] and works cited therein, as
well as Refs. [6,7] for a discussion of the experimental
situation). A number of theoretical works have examined
the possibility that nuclei may contain a T ¼ 0 spin-triplet
neutron-proton (‘‘deuteronlike’’) condensate when N ¼ Z,
suggesting that states of high angular momentum might
favor T ¼ 0 pairing [8–10]. The possibility of mixed-spin
condensation, T ¼ 0 and T ¼ 1, has also been raised in
Refs. [5,11] for N ¼ Z medium-mass nuclei, although no
mixed-spin ground states were shown. In this Letter, we
present our findings for the existence of mixed-spin solu-
tions to the Bogoliubov–de Gennes (BdG) equations for
the ground state of large but accessible nuclei off the
N ¼ Z line.

Hamiltonian.—We use the same Hamiltonian here as
was used in Ref. [3]. It contains a one-body and a two-
body part represented in Fock space as

Ĥ ¼
X

i

hijHsp jjiayi aj þ
X

i>j;k>l

hijjvjkliayi ayj alak; (1)

where i; j label orbitals in a spherical shell-model basis.
The one-body part Hsp is taken from the eigenstates of a
Wood-Saxon potential of standard form, containing a ki-
netic energy, a potential well, and a spin-orbit term. The
two-body interaction is of contact form:

hijjvjkli ¼ 1
4hijjð3vtþ vs þ ðvt! vsÞ ~! & ~!0Þ
' "ð3Þð~r! ~r0ÞPL¼0jkli: (2)

where PL¼0 projects onto the spherically symmetric part of
the pair wave function. This Hamiltonian is appropriate for
systems with no nuclear deformation, accenting the pairing
condensates. There are two interaction strengths, vt and vs,
corresponding to spin-triplet and spin-singlet, respectively.
These were determined by fitting to phenomenological
shell-model Hamiltonians. The interaction of Eq. (2) can
generate 6 independent condensates, counting only spin
and isospin quantum numbers. We label these by an index
# enumerated in Table I.
Finally, we note that the Coulomb interaction is omitted

in the above Hamiltonian. The main effect of this is that the
calculated nuclei are only physical within the proton dri-
pline. Nevertheless, the pairing phenomena that can be
elucidated beyond the proton dripline are interesting on a

TABLE I. Spin-isospin channels for pairing condensates.

# 1 2 3 4 5 6

ðS; SzÞ ð0; 0Þ ð0; 0Þ ð0; 0Þ ð1; 1Þ ð1; 0Þ ð1;!1Þ
ðT; TzÞ ð1; 1Þ ð1; 0Þ ð1;!1Þ ð0; 0Þ ð0; 0Þ ð0; 0Þ
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purely theoretical level. Also, as we shall show, the region
where novel forms of pairing may occur extends into the
physical region, below the proton dripline.

BdG theory.—The Bogoliubov–de Gennes theory is de-
fined by minimizing the Hamiltonian under Bogoliubov
transformations of the Fock-space vacuum, subject to con-
straints such as the neutron and proton number expectation
values. In the notation of [12], the Bogoliubov transforma-
tions are parametrized by the matrices U and V giving the
definition of the quasiparticle operators in terms of the
Fock-space operators. The key equations in the theory
are the formulas for ordinary and anomalous densities,
! ¼ V"Vt and " ¼ V"Ut, respectively, and the formula
for the expectation value of the Hamiltonian,

H00 ¼ Trð"! þ 1
2!!% 1

2""
"Þ: (3)

As usual, the matrices !;" are defined through the stan-
dard relations !ij ¼

P
klvikjl!lk and "ij ¼ 1

2

P
klvijkl"kl.

Here, and in Eq. (4) below, superscripts denote the number
of quasiparticle creation and annihilation operators. Since
our Hamiltonian is phenomenological, we assume that the
!! term is included in it. We therefore omit explicit
consideration of it below.

Calculational procedure.—Traditionally the minimiza-
tion is carried out using the BdG equations, which are
arrived at by setting the variational derivative of the
energy with respect to U and V to zero. (Actually the
variation must be constrained to preserve the unitarity of
the Bogoliubov transformation. This introduces Lagrange
multipliers that give the BdG equations their structure as
eigenvalue equations for the quasiparticle energies.) The
BdG equations are solved for some assumed density, and
the solution is used to update the density. This process
is iterated to self-consistency. However, to study the
energetics with different types of condensates it is neces-
sary to deal with many constraining fields and therefore
thoroughly explore the space of allowed Bogoliubov trans-
formations. Under these conditions, the BdG minimization
is easier to carry out by the gradient method [12], and we
take advantage of that method here. In taking the varia-
tional derivative of the Hamiltonian one makes use of the
generalized Thouless matrix Z, whose elements are inde-
pendent of each other. The gradients of the Hamiltonian
and the operators to be constrained can then be applied to
update a trial set of U;V matrices, using the steepest
descent or other numerical methods [13]. The change in
the expectation value of a one-body operator Q can be
expressed:

Q00
new ¼ Q00

old% TrðQ20ZÞ þ OðZ2Þ: (4)

A similar formula applies for the Hamiltonian, since its
expectation value can be expressed in terms of one-body
expectation values. To insure that the space of possible
Bogoliubov transformations has been adequately explored,
we carry out the iteration process repeatedly starting from
U;V matrices obtained by transformations from the

vacuum or other states by Z transformations. We have
used the gradient method to solve the BdG equations with
8 simultaneous constraining fields, 2 for the neutron and
proton particle numbers and 6 for the pairing amplitudes
corresponding to the 6 distinct channels of Table I. To be
more precise, the 6 constrained amplitudes are computed as
"# ¼ TrðP#"Þ where the matrices P# are defined in terms
of the quantum numbers (‘k; ‘zk; szk; tzk) of the orbitals k as

P#;ij ¼
ffiffiffi
2

p
ð12szi12szjjSð#ÞSzð#ÞÞð12tzi12tzjjTð#ÞTzð#ÞÞ

' ð%Þ‘i%‘zi$‘i;‘j$‘zi;%‘zj : (5)

In the computation, even-A and odd-A nuclei are dis-
tinguished by the number parity of the Bogoliubov trans-
formation [13]. For odd-A nuclei, there is a block structure
of the Hamiltonian and the odd number parity is imposed
on one of the blocks. Each block must be tested to find the
global energy minimum.
Results.—A quantity that allows us to accurately gauge

the relative importance of the pairing condensates is the
correlation energy, Ecorr ¼ E0 % E, where E0 is the energy
of the ground state in the absence of a pairing condensate,
i.e., the result of setting all "# to zero.
We have mapped out all nuclides with Z ( N for neu-

tron numbers from 50 to 75 and show the results in Fig. 1.
A few nuclei have very small correlation energies (white in
Fig. 1), while the majority of nuclei, above and below the
proton dripline, are spin-singlet (green squares in Fig. 1).
However, a group of nuclei with neutron numbers roughly
from 60 to 70 exhibit spin-triplet pairing (red diamonds in

 50

 55

 60

 65

 70

 75

 50  55  60  65  70  75

Z

N

Pairing below the N=Z line

FIG. 1 (color online). Chart of nuclides with Z ( N for neu-
tron numbers from 50 to 75. Blank squares denote nuclei that
exhibit practically no pairing (Ecorr < 0:5 MeV), green squares
signify the case where the pairing condensate is mostly spin-
singlet, red diamonds are used for the nuclei that exhibit spin-
triplet pairing, while blue circles denote nuclei for which the
pairing is a mixture of spin-singlet and spin-triplet. The blue
dashed line is the proton-drip line from Ref. [16].
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composition in terms of eigenstates of the symmetry operators
under consideration.

Symmetry restoration can be a nontrivial task. In the
past, various formulas based on determinants have been used,
which suffer from a sign ambiguity [33]; and various ap-
proximations to overcome it have been employed [34–37].
Ambiguity-free formulations have been recently developed
[38–40]. We make use of the expressions derived in Ref. [38],
which do not have the shortcoming mentioned.

As found in Refs. [29,30], there are nuclei where one type
of pairing dominates, like spin-triplet in 132

66 Dy, or spin-singlet
in 132

60 Nd. Also nuclei with coexistence of both types are
present in the nuclear chart, like the so-called mixed-spin
pairing in 132

64 Gd. The distributions of the states of good
quantum numbers for the ground state of each of these three
nuclei are analyzed in Secs. III A, III B, and III C.

Another area of investigation is how pair-transfer cross
sections (probabilities) compare in ground-state to ground-
state transitions [41], an observable that could be considered
as the smoking gun to disentangle the two effects. We com-
pute various transitions from the neighboring isotopes of the
three nuclei mentioned, while simultaneously carrying out a
symmetry projection.

In this paper, our goal is twofold: (i) To confirm that the
nature of the ground state condensates survives after projec-
tion and, (ii) for future studies, to find the most promising
pair-transfer reactions for each case. A detailed discussion can
be found in Sec. IV, and we draw our conclusions in the last
section.

II. THE HARTREE–FOCK–BOGOLIUBOV FORMALISM

The HFB theory is based on a variational principle for the
energy of the ground state of the system. The many-body
wave function is varied in the space of Slater determinants
of quasiparticles defined by the Bogoliubov transformation.
The “effective” Hamiltonian in this theory consists of one-
body and two-body operators, which we write in second
quantization language, in terms of spin-half particle operators,
as

Ĥ =
∑

i,j

tij c
†
i cj + 1

4

∑

i,j,k,l

vijklc
†
i c

†
j clck. (1)

The one-body potential used in this work is of Wood–Saxon
shape including contributions from spin-orbit interactions,

v(r ) = VWSf (r ) − (L · S)
VSO

r

df

dr
,

f (r ) = [1 + e(r−R)/a]−1, (2)

and the two-body interaction is a contact term for each of the
pairing channels given in Table I,

V (r1, r2) =
6∑

α

vαPL=0Pαδ3(r1 − r2)

= 1
4

[3vt + vs + (vt − vs )σ 1 · σ 2]

× δ3(r1 − r2)PL=0. (3)

TABLE I. The six spin-isospin pairing channels.

1 2 3 4 5 6

(S, Sz ) (0, 0) (0, 0) (0, 0) (1, 1) (1, 0) (1, −1)
(T , Tz ) (1, 1) (1, 0) (1,−1) (0, 0) (0, 0) (0, 0)

The numerical values for the parameters vs and vt are 300 and
450 MeV respectively, taken from Ref. [30]. The Bogoliubov
transformation from particle to quasiparticle space is defined
as follows:

(
β

β†

)
=

(
U † V †

V T UT

)(
c
c†

)
. (4)

As a result, the Hamiltonian can be expressed in the new basis,

Ĥ = H 00 + β†H 11β + 1
2β†H 20β† + · · · , (5)

where the superscripts count the number of creation and
annihilation operators of quasiparticles. A more detailed ex-
planation of the various terms appearing in Eq. (5) can be
found in Ref. [30].

A. General features of the ground state

The ground-state wave function used in this work is defined
as follows:

|!⟩ = pf(U †V ∗) exp
[ 1

2 (V U−1)∗ij c
†
i c

†
j

]
|0⟩, (6)

where pf() is the Pfaffian of the matrix, and |0⟩ is the reference
vacuum state. The three main isotopes investigated here share
the same reference vacuum state, and the same quasiparticle
basis, which technically is infinite. Different isotopes occupy
different subspaces, and when their overlap is calculated, an
augmented subspace which encompasses both nuclei is used
[42]. The minimization of the energy is performed through the
gradient method described in Ref. [32] subject to neutron- and
proton-number constraints. In addition, the various nucleon
pairing channels can be constrained [30], and the constrained
Hamiltonian is

Ĥc = Ĥ −
∑

α

λαQ̂α. (7)

The parameters λα are analogous to Lagrange multipliers and
the operators Qα are particle number, pairing amplitudes, etc.
In this sense, this formulation employs the grand canonical
ensemble.

As already mentioned in the Introduction, the three repre-
sentative isotopes analyzed here are 132

60 Nd, 132
64 Gd, and 132

66 Dy,
taken from Ref. [30]. While we find a distribution of eigen-
states with specific quantum numbers in the ground state,
we enforce this distribution to be highly peaked at the target
isotope.All the various possible pairing channels are given
in Table I. In Table II we report the correlation energy, the
energy difference between the unpaired ground state, and the
one without any suppression of pairing found for each isotope
subject to pairing constraints. Since the present calculations
are at the mean-field level, the results are to be understood
more as a qualitative rather than quantitative representation of
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•  particle number is not conserved 
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The nature of the nuclear pairing condensates in heavy nuclei, specifically neutron-proton (spin-triplet), versus
identical-particle (spin-singlet) pairing has been an active area of research for quite some time. In this work, we
probe three candidates that should display spin-triplet, spin-singlet, and mixed-spin pairing. Using theoretical
approaches such as the gradient method and symmetry-restoration techniques, we find the ground state of these
nuclei in Hartree–Fock–Bogoliubov theory and compute ground state to ground state pair-transfer amplitudes to
neighboring isotopes while simultaneously projecting to specific particle number and nuclear-spin values. We
identify specific reactions for future experimental research that could shed light on spin-triplet and mixed-spin
pairing.
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I. INTRODUCTION

The presence of pairing in atomic nuclei has been es-
tablished for more than five decades [1]. Extensive experi-
mental data on nuclear properties: even-even excitation gaps,
binding-energy differences, moments of inertia, onset of de-
formation, two-nucleon transfer reactions, etc. can be ex-
plained by the presence of neutron-neutron (nn) and proton-
proton (pp) Bardeen–Cooper–Schrieffer-like (BCS-like) pair-
ing [2–4].

For most known nuclei, with neutron excess, the ground
state consists of nn and pp (j = 0, t = 1) pairs coupled
to angular momentum J = 0. For nuclei with comparable
number of neutrons and protons, the nucleons near the Fermi
surface should occupy identical orbitals and np pairing should
be present. Due to the Pauli exclusion principle, isospin-
singlet (isoscalar) (t = 0) is associated with spin-triplet (s =
1) pairing, and vice versa.

The elusive spin-triplet pairing in nuclei has been both
an experimental and theoretical puzzle over the decades [5].
Charge independence of the nuclear force should lead to
both (j = 0, t = 1) nn and pp pairing on equal footing with
(j = 0, t = 1) np pairing for nuclei with N ≈ Z. In addition,
the existence of the deuteron as a J π = 1+ bound state and
low-energy scattering data [6] indicate that the strength of the
interaction is stronger in the isoscalar channel in comparison
with nucleons coupled to isospin 1. The natural conclusion
from this observation is the expectation to find isospin-singlet,
spin-triplet pairing in nuclei, in the form of a quasideuteron
condensate.

Neutron-proton pair correlations have been studied by
analyzing the results of large-scale shell-model calculations
[7–15]. The spin-orbit interaction tends to suppress spin-
triplet pairing [14,16], and nuclear deformation also plays a
competitive role and therefore needs to be treated in detail
[17]. In the case of N ≈ Z, and large atomic number, if one
assumes spherical symmetry, it is reasonable to expect this
type of pairing.

However, in finite systems, pairing can be difficult to
define, and many proxies have been used in the literature
[7–9,11,12]. The energy competition between the spin-singlet
and spin-triplet states has also been studied [18]. The most
direct measure would be to calculate the pair-transfer reaction
probabilities [3,4] and here we calculate the pair-transfer am-
plitude in the framework of Hartree–Fock–Bogoliubov (HFB)
theory.

The Hartree–Fock–Bogoliubov approach is a versatile tool
that can describe a large number of many-nucleon problems
where pairing is important [19]. The basics of the HFB
formalism are covered in Sec. II. Pairing studies in nuclear
physics have included an isovector pairing field, an isoscalar
pairing field, and coexisting (t = 0, 1) pairing fields for N =
Z, as well as general nucleon numbers [20–28]. More re-
cently, a mixed-spin pairing ground state was found to be
energetically favorable, in the context of HFB theory, for the
case of heavy nuclei [29,30] (see also Ref. [31]).

In this work, we focus our attention on the A ! 130 region
close to the proton dripline. In Ref. [29] many candidates
where t = 0 pairing could be present were found in this area.
While we are aware that transfer reaction studies on these
nuclei are currently not possible, this part of the nuclear chart
could be accessible to experimental research via selective
studies of fusion-evaporation reactions. Thus our findings,
based on the analysis of two-nucleon overlaps, can guide
the experimental program to those nuclei where the presence
of a spin-triplet pairing phase near the ground state is more
probable.

The first step, then, is finding the ground state for a given
nucleus. In practice, particle number and nuclear spin are not
conserved and need to be restored. Employing the gradient
method developed in Ref. [32] we find the minimal-energy
wave function. This method allows one to constrain the expec-
tation value of particle number and the amplitudes of various
pairing channels. We do so to explore how various constraints
impact not only the energy of the ground state but also its
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The annihilation of the QBCS state by the opera-
tors ηk and T±1 leads to the fact that the operators in
Eq. (8) are not actually uniquely defined. We could
add to any of the β’s an arbitrary combination of η and
PT and still obtain a valid pair-like annihilation oper-
ator. This freedom could allow for new treatments to
be consistently developed for the pairing Hamiltonian,
in analogy with Refs. [15, 19], as will be explored in
future works.

Structure of the QBCS state. Computations
with the nonlinear QBCS ansatz are made tractable
in Ref. [16] by a linearization procedure for the ex-
ponent. The quartet operator is first expressed as the
square of a rotated collective pair γ, Q = γ⃗† · γ⃗†, de-
fined by γ†

τ =
∑Nlev

j=1 xjp
†
j,τ , where

p†j,1 = i(P †
j,1 − P †

j,−1)/
√
2, p†j,2 = (P †

j,1 + P †
j,−1)/

√
2 ,

p†j,3 = −iP †
j,0 .

(10)
Note that this choice is not unique. A Hubbard-
Stratonovich transformation is then used to represent
the quartet coherent state as a combination of general
isovector pair BCS states,

exp(Q†) = exp(γ⃗† · γ⃗†) =
∫

d3z exp
(

−z⃗ 2/4 + z⃗ · γ⃗†
)

=

∫

d3z e−z⃗ 2/4
Nlev
∏

i=1

(1 + xiz⃗ · p⃗ †
i + x2

i z⃗
2q†i /2) ,

(11)

where we omitted the overall normalization factor. In
this way, we obtain a superposition of standard BCS
states, each factorized as a product over the single
particle levels.
To better understand this specific pattern of partial

symmetry breaking, it is instructive to pass to spher-
ical coordinates in Eq. (11) and write the quartet
coherent state as

exp(Q†) =

∫ ∞

0
dz z2e−z2/4

∫

S2

dn̂ exp(z n̂ · γ⃗ †) .

(12)
Naturally, the isospin projection is already imple-
mented by the angular integration. To see this, con-
sider the coherent state of the isovector pair γ⃗ inte-
grated over all directions in isospace,

j†0 ≡
∫

S2

dn̂ exp(n̂ · γ⃗ †)

=
∞
∑

k=0

(γ⃗† · γ⃗†)k

(2k + 1)!
=

∞
∑

k=0

(Q†)k

(2k + 1)!
= j0(i

√

Q†) ,

(13)
which is formally the expansion of a spherical Bessel
function of imaginary argument (hence the name).
The basic information about the quartet correlations
is thus already contained in this simpler ansatz; by

projecting onto good particle number, we always re-
cover the QCM state,

Pnq
exp(Q†) |0⟩ = Pnq

j†0 |0⟩ = (Q†)nq |0⟩ . (14)

We interpret now the role of the radial integral in
Eq. (12) as just changing the mixing between the
components having different particle numbers.
The analytic expressions of the norm function and

of the Hamiltonian average on the j†0 state may be
obtained simply by dropping the radial integrals from
the QBCS expressions (see Ref. [16], Supplemental
Material). Remarkably, identical expressions were re-
ported in Refs. [20, 21], in the context of the sym-
metry restored BCS approach. The definition itself of
the j†0 state hints at a precise relationship with the
projected BCS state, which we detail below.

BCS Symmetry restoration for T = 0. The
generalised BCS equations for isovector pairing in
even-even N = Z systems present two degenerate so-
lutions with gap parameters ∆ν = ∆π = ∆,∆πν = 0,
and ∆ν = ∆π = 0,∆πν = ∆ (for a proof, see [17]).
The corresponding BCS states are given by

|BCSI⟩ = exp[Γ†
1(x)] exp[Γ

†
−1(x)] |0⟩ ,

|BCSII⟩ = exp[Γ†
0(x)] |0⟩ .

(15)

Techniques for projecting these solutions onto good
particle number and isospin have been developed in
[20–26], with their connection to the quartet models
only being mentioned for particular cases in Refs. [8,
17, 18].
Here, we establish the correspondence in the general

case by analytically performing the projection opera-
tion on the BCS state, and recovering a version of the
j†0 ansatz of Eq. (13). For simplicity, we consider the
axially symmetric state |BCSII⟩ with Tz = 0 and we
employ the isospin projection operator [27]

PT ;Tz=0 =

∫

S2

dn̂ DT∗
00 (n̂)R(n̂) , (16)

written in terms of a Wigner D-matrix and of the ro-
tation operator in isospin space R(n̂), which may be

factorized as R(n̂) =
∏Nlev

i=1 Ri(n̂). Given the isoscalar
character of the fully occupied single particle level
q†i |0⟩, the only nontrivial term involves the rotation
of the one-pair state. The isospin rotation operator
Ri(n̂) = exp(−iϕ T̂z) exp(−i θ T̂y) acting on a Tz = 0
pair state is effectively

Ri(n̂)P
†
i,0 Ri(n̂)

−1 = i n̂ · p⃗ †
i , (17)

involving the same rotated pairs p⃗ †
i of Eq. (10) used

to bring the collective quartet operator to a diagonal
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form. The isospin rotated BCS state becomes

R(n̂)|BCSII⟩ =
Nlev
∏

k=1

(1 + i xk n̂ · p⃗ †
k − x2

k q
†
k/2)|0⟩

= exp(i n̂ · γ⃗ †) .
(18)

This implies that the isospin projected BCS may be
written as

PT ;Tz=0|BCSII⟩ =
∫

S2

dn̂ DT∗
00 (n̂) exp(i n̂·γ⃗ †) . (19)

In particular, the T = 0 component is simply

PT=0|BCSII⟩ =
∫

S2

dn̂ exp(i n̂ · γ⃗ †)

=
∞
∑

k=0

(−γ⃗† · γ⃗†)k

(2k + 1)!
=

∞
∑

k=0

(−Q†)k

(2k + 1)!
= j0(

√

Q†) ,

(20)
which is nothing else than Eq. (13) evaluated with
imaginary mixing amplitudes or, equivalently, origi-
nating from the ansatz exp(−Q†).
This proves the general equivalence of the projected

BCS and QCM approaches, for the isovector pairing
correlations in the T = 0 ground state of N = Z even-
even nuclei, i.e.

P N=4nq

T=0 |BCS⟩ = (Q†)nq |0⟩ = |QCM⟩ . (21)

Before detailing with the N > Z case below, we
remark the possibility of establishing nontrivial con-
nections between the correlation functions also for
the particle number projected QCM state, based
on the above annihilation operators. We write Eq.
(4) in schematic form α = c + c†c†c†, and project
the annihilation condition α exp[Q†]|0⟩ = 0 onto a
fixed particle number, which singles out two terms.
A proper particle-like annihilation operator for the
QCM state may then be expressed in terms of the
inverse amplitude coherent quartet, which satisfies
Q(1/x)Q†(x)|QCM⟩ = λ|QCM⟩, with λ a numeri-
cal factor (for details see Appendix A of [28]). We
obtain e.g., for the proton-like annihilation operator,

[

πi,↑ +
nq

λ
[Q†,πi,↑]Q

(

1

x

)]

|QCM⟩ = 0 (22)

where the commutator can be read off Eq. (4). In
analogy with Eq. (5) for the quartet coherent state,
we may obtain a relation between the particle and
the quartet densities on the QCM state of the form
⟨QCM |c†c|QCM⟩ = ⟨QCM |c†c†c†c†cccc|QCM⟩.
This is perfectly analogous to the simple single-

species BCS case, where the quasiparticle action on
the BCS state (ci,↑ − xic

†
i,↓) exp[Γ

†(x)]|0⟩ = 0 may be
projected to obtain the nonlinear annihilation relation

[

ci,↑ −
xi

Nlev − n+ 1
c†i,↓Γ

(

1

x

)]

[Γ†(x)]n|0⟩ = 0

(23)

We may then find the connection between the parti-
cle and the pair densities on the projected BCS state
|PBCS⟩ = [Γ†(x)]n|0⟩ as

⟨c†i,↑ci,↑⟩ =
xi

Nlev − n+ 1

Nlev
∑

j=1

1

xj
⟨P †

i Pj⟩ (24)

Similar relationships may be established also for
higher order correlation functions, which could enable
new ways of solving the pairing problem, e.g. within
the recent many body bootstrap approach [29, 30].

QCM vs projected BCS for N > Z. In the
QCM quartetting approach, the states for N > Z
systems are constructed by appending to the N =
Z ansatz additional coherent pairs [9]. A state with
np excess neutron pairs and nq quartets, having T =
Tz = np is defined as the particular combination

|QCM(T = Tz = np)⟩ = [Γ†
1(y)]

np [Q†(x)]nq |0⟩ .
(25)

Here, one allows the extra collective pairs Γ†
1(y) to

have a different structure than the pairs Γ†(x) forming
the quartets. The same idea may be applied to the
BCS ansatz: below, we consider the pair condensates
of Eq. (15) to have different mixing amplitudes. Note
that we also have to append a νν pair condensate to
the πν condensate in this N > Z case. In this section,
we define |BCSII⟩ = exp[Γ†

1(y)] exp[Γ
†
0(x)] |0⟩. We

consider as illustrative examples an N = 4, Z = 2
system and an N = 6, Z = 2 system. The particle
number and isospin projected combinations are

PN=6
T=Tz=1|BCSI⟩ = (Γ†

1,xQ
†
y − 3Γ†

1,y [Γ
†
xΓ

†
y]

T=0) |0⟩ ,
(26a)

PN=6
T=Tz=1|BCSII⟩ = (2Γ†

1,y Q
†
x − Γ†

1,x [Γ
†
xΓ

†
y]

T=0) |0⟩ ,
(26b)

PN=8
T=Tz=2|BCSI⟩ =

(5 [Γ†
1,y]

2 [Γ†
yΓ

†
x]

T=0 − 2Γ†
1,y Γ

†
1,x Q

†
y) |0⟩,

(26c)

PN=8
T=Tz=2|BCSII⟩ = (11 [Γ†

1,y]
2 Q†

x

+ 4 [Γ†
1,x]

2 Q†
y − 12Γ†

1,x Γ
†
1,y [Γ

†
xΓ

†
y]

T=0) |0⟩ ,
(26d)

with the notation Γ†
x = Γ†(x), Q†

y = Q†(y) etc. Nat-
urally, there are multiple options of coupling various
pairs to a given total isospin, and the QCM ansatz of
Eq. (25) is just a particular choice. Interestingly, the
QCM choice does not appear in all previous expres-
sions.
With the states (26), we performed variation-after-

projection calculations for a picket-fence model of
eight doubly degenerate levels, of single particle en-
ergies ϵk = k− 1, and with a state independent inter-
action of strength G. The analytical expressions for
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TABLE III. Ground-state correlation energies (19) provided by the PBCS-type states (14)–(16) in comparison with the QCM results. In
brackets we show the relative errors with respect to the exact results obtained by diagonalization. These results have been obtained with the
Hamiltonian (17) by using the interactions described in the text. All energies are in MeV.

QCM PBC1 PBCS0iv PBCS0is

20Ne 15.985 (-) 14.011 (12.35%) 13.664 (14.52%) 13.909 (12.99%)
24Mg 28.595 (0.24%) 21.993 (23.35%) 20.516 (28.50%) 23.179 (19.22%)
28Si 35.288 (0.57%) 27.206 (23.58%) 25.293 (28.95%) 27.740 (22.19%)
44Ti 7.019 (-) 5.712 (18.62%) 5.036 (28.25%) 4.196 (40.22%)
48Cr 11.614 (0.21%) 9.686 (16.85%) 8.624 (25.97%) 6.196 (46.81%)
52Fe 13.799 (0.42%) 11.774 (15.21%) 10.591 (23.73%) 6.673 (51.95%)
104Te 3.147 (-) 2.814 (10.58%) 2.544 (19.16%) 1.473 (53.19%)
108Xe 5.489 (0.20%) 4.866 (11.61%) 4.432 (19.49%) 2.432 (55.82%)
112Ba 7.017 (0.34%) 6.154 (12.82%) 5.635 (20.17%) 3.026 (57.13%)

IV. SUMMARY AND CONCLUSIONS

In this paper we generalized the quartet condensation
model for the treatment of spherically symmetric isovector
(T = 1,J = 0) and isoscalar (T = 0,J = 1) pairing forces.
The basic assumption of the QCM approximation is that
the ground-state correlations induced by these forces can be
described in terms of products of identical quartets formed
by coupling two neutrons and two protons to total isospin
T = 0 and total angular momentum J = 0. The generalized
QCM approach was first applied to pairing forces formulated
in terms of isovector (T = 1,S = 0,L = 0) and isoscalar (T =
0,S = 1,L = 0) pairs. For these forces we illustrated how the
spin-orbit interaction affects the pairing correlations and we
studied the competition between the isovector and isoscalar
pairing. Then, the QCM approach was applied to realistic
systems described by the most general pairing Hamiltonian
formulated in terms of (T = 1,J = 0) and (T = 0,J = 1)
pairs. We showed that, for both Hamiltonians, the QCM gives
an accurate description of the pairing correlations. We also
showed that, in the QCM approximation, the correlations in
the two pairing channels coexist for any admixture of isovector
and isoscalar pairing forces, which confirms the findings of
Refs. [17,19].

We wish to conclude this paper by emphasizing the striking
analogy between the like-particle and proton-neutron pairing
pictures which has emerged in this study and which is also
supported by our previous works on the same subject [13–
17,19]. Thus, if on one side a condensate of collective J = 0
pairs provides a good approximation to the ground state of
spherically symmetric like-particle pairing Hamiltonians, on

the other side, as shown here, a condensate of J = 0, T = 0
quartets provides a good approximation to the ground state of
spherically symmetric proton-neutron pairing Hamiltonians.
In the case of proton-neutron pairing, then, collective quartets
appear to play the same role as Cooper pairs in the case
of like-particle pairing. A basic difference between the like-
particle pairing and pairing in N = Z systems is that in the
latter one needs to couple the isospin and the spin of the
pairs in order to construct wave functions with well-defined
total isospin and total angular momentum. As demonstrated
in this paper, in even-even N = Z nuclei the quartets built
by coupling two pairs to T = 0 and J = 0 do represent the
simplest form of many-body structures whose condensate can
guarantee a ground state with total T = 0 and total J = 0.
The fact that, in the quartet condensate state, which describes
accurately the pairing forces in N = Z nuclei, the isovector
and isoscalar proton-neutron pairing correlations are strongly
entangled indicates that it might be difficult to disentangle
them by proton-neutron transfer reactions. If in open-shell
N = Z nuclei the quartets are indeed strongly correlated
structures acting coherently as a condensate, one would expect
collective features for alpha-particle transfer reactions (e.g.,
significant enhancement of the transfer with the number of
quartets) rather than for the transfer of proton-neutron pairs.
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energies of protons and neutrons are assumed to be equal. The
second term in Eq. (1) is the spin-orbit interaction for protons
and neutrons, which has the standard expression. The third and
the fourth terms are, respectively, the isovector (T = 1,S = 0)
and isoscalar (T = 0,S = 1) pairing interactions. They are
written in terms of the pair operators

P+
i,Tz

=
√

2li + 1
2

[a+
i a+

i ]T =1,S=0,L=0
Tz

, (2)

D+
i,Sz

=
√

2li + 1
2

[a+
i a+

i ]S=1,T =0,L=0
Sz

, (3)

where L, S, and T are the orbital momentum, the spin, and
the isospin of the pairs, respectively. When the spin orbit is
neglected and the orbits are degenerate, the Hamiltonian (1)
has SO(8) symmetry. If, in addition, g1 = g0, the Hamiltonian
(1) has SU(4) symmetry and can be solved analytically both for
degenerate and nondegenerate levels [8,9]. This is no longer
possible in the presence of the spin-orbit interaction.

The question we address in this study is whether the ground
state of the Hamiltonian (1) as well as of the most general
isovector-isoscalar pairing Hamiltonian (17) (see below), can
be well approximated by a condensate of alpha-like quartets,
as in the case of isovector pairing [13]. Thus, as in Ref. [13],
we represent the ground state as a product of identical quartets

|!g.s.⟩ = (Q+)nq |0⟩. (4)

The quartet operator Q+ is taken as a sum of two quartets

Q+ = Q+
1 + Q+

0 , (5)

where Q+
1 is the collective isovector quartet formed by

coupling two isovector pairs to total T = 0, i.e.,

Q+
1 =

∑

j1j2

xj1j2

[
P +

j1
P +

j2

]T =0
, (6)

and Q+
0 is the collective isoscalar quartet built by coupling two

isoscalar pairs to total J = 0, i.e.,

Q+
0 =

∑

j1j2j3j4

yj1j2j3j4

[
D+

j1j2
D+

j3j4

]J=0
. (7)

These quartet operators are expressed in terms of the pair
operators in the jj coupling scheme:

P +
j,Tz

= 1√
2

[a+
j a+

j ]T =1,J=0
Tz

, (8)

D+
j1j2Jz

= 1
√

1 + δj1j2

[
a+

j1
a+

j2

]J=1,T =0
Jz

. (9)

In Ref. [13], the QCM state was further simplified by
factorizing the mixing amplitudes which define the quartets.
Due to this factorization it was possible to express the quartet
condensate in terms of collective pairs and to use the recurrence
relations method for the evaluation of the expectation value of
the Hamiltonian. If one adopts the same factorization in the
present formalism, therefore assuming that xj1j2 = x̄j1 x̄j2 and
yj1j2j3j4 = ȳj1j2 ȳj3j4 , the collective quartets can be written as

Q̄+
1 = 2#+

1 #+
−1 − (#+

0 )2, (10)

Q̄+
0 = 2$+

1 $+
−1 −$+

0
2
. (11)

These quartets are expressed in terms of the collective isoscalar
and isovector pairs

#+
Tz

=
∑

j

x̄jP
+
j,Tz

, (12)

$+
Jz

=
∑

j1j2

ȳj1j2D
+
j1j2Jz

. (13)

It is soon realized that, when formulated in terms of col-
lective pairs, the wave function (4) becomes a complicated
superposition of mixed condensates, formed by all type of
pairs. If the isoscalar quartet is further reduced to include only
the $+

0 pairs, this formalism becomes formally equivalent to
that proposed in Ref. [19] for the treatment of the isovector-
isoscalar pairing forces acting on axially deformed states.

The collective isovector and isoscalar pairs defined above
can be used to construct various PBCS-type states for N = Z
systems. Thus, with the isovector pairs (12) can be formed the
following PBCS states with well-defined numbers of protons
and neutrons [13]:

|PBCS1⟩ = (#+
1 #+

−1)nq |0⟩, (14)

|PBCS0iv⟩ = (#+
0 )2nq |0⟩. (15)

Both states have, as required, J = 0 and Tz = 0, but they do not
have a well-defined total isospin. Similar PBCS states can be
constructed with the isoscalar pairs (13). Of physical interest
is the PBCS state

|PBCS0is⟩ = ($+
0 )2nq |0⟩. (16)

This state has T = 0 and Jz = 0, but it has not a well-
defined angular momentum. Since the states (15) and (16) are
condensates, respectively, of T = 1 and T = 0 proton-neutron
pairs, one might think that a comparison of their correlation
energies could give clear evidence of what type of proton-
neutron pairing is prevailing in N = Z nuclei. However, a
conclusion based only on this comparison would be misleading
because, as shown in the next section, the PBCS approximation
is not accurate enough to describe properly the isovector and
isoscalar pairing correlations.

In this work we consider the case in which the mixing
amplitudes xii ′ and yii ′jj ′ are factorized, as discussed above,
and also the case in which they keep their original form. In both
cases these amplitudes will be constructed variationally by
minimizing the expectation value of the pairing Hamiltonian
in the QCM or PBCS-type states.

The QCM formalism proposed in this paper can also be
applied to the most general spherically symmetric isovector
(T = 1,J = 0) and isoscalar (T = 0,J = 1) pairing forces
described by the Hamiltonian

H =
∑

i

ϵiNi +
∑

i,j

V T =1
J=0 (i,j )

∑

Tz

P +
i,Tz

Pj,Tz

+
∑

i!j,k!l

V T =0
J=1 (ij,kl)

∑

Jz

D+
ij,Jz

Dkl,Jz
. (17)

The pairing interactions are written in this case in terms
of the noncollective pair operators (8) and (9) expressed in
jj coupling. These interactions are not limited to the pairs
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energies of protons and neutrons are assumed to be equal. The
second term in Eq. (1) is the spin-orbit interaction for protons
and neutrons, which has the standard expression. The third and
the fourth terms are, respectively, the isovector (T = 1,S = 0)
and isoscalar (T = 0,S = 1) pairing interactions. They are
written in terms of the pair operators

P+
i,Tz

=
√

2li + 1
2

[a+
i a+

i ]T =1,S=0,L=0
Tz

, (2)

D+
i,Sz

=
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2li + 1
2

[a+
i a+

i ]S=1,T =0,L=0
Sz

, (3)

where L, S, and T are the orbital momentum, the spin, and
the isospin of the pairs, respectively. When the spin orbit is
neglected and the orbits are degenerate, the Hamiltonian (1)
has SO(8) symmetry. If, in addition, g1 = g0, the Hamiltonian
(1) has SU(4) symmetry and can be solved analytically both for
degenerate and nondegenerate levels [8,9]. This is no longer
possible in the presence of the spin-orbit interaction.

The question we address in this study is whether the ground
state of the Hamiltonian (1) as well as of the most general
isovector-isoscalar pairing Hamiltonian (17) (see below), can
be well approximated by a condensate of alpha-like quartets,
as in the case of isovector pairing [13]. Thus, as in Ref. [13],
we represent the ground state as a product of identical quartets

|!g.s.⟩ = (Q+)nq |0⟩. (4)

The quartet operator Q+ is taken as a sum of two quartets

Q+ = Q+
1 + Q+

0 , (5)

where Q+
1 is the collective isovector quartet formed by

coupling two isovector pairs to total T = 0, i.e.,

Q+
1 =

∑

j1j2

xj1j2

[
P +

j1
P +

j2

]T =0
, (6)

and Q+
0 is the collective isoscalar quartet built by coupling two

isoscalar pairs to total J = 0, i.e.,

Q+
0 =

∑

j1j2j3j4

yj1j2j3j4

[
D+

j1j2
D+

j3j4

]J=0
. (7)

These quartet operators are expressed in terms of the pair
operators in the jj coupling scheme:

P +
j,Tz

= 1√
2

[a+
j a+

j ]T =1,J=0
Tz

, (8)

D+
j1j2Jz

= 1
√

1 + δj1j2

[
a+

j1
a+

j2

]J=1,T =0
Jz

. (9)

In Ref. [13], the QCM state was further simplified by
factorizing the mixing amplitudes which define the quartets.
Due to this factorization it was possible to express the quartet
condensate in terms of collective pairs and to use the recurrence
relations method for the evaluation of the expectation value of
the Hamiltonian. If one adopts the same factorization in the
present formalism, therefore assuming that xj1j2 = x̄j1 x̄j2 and
yj1j2j3j4 = ȳj1j2 ȳj3j4 , the collective quartets can be written as

Q̄+
1 = 2#+

1 #+
−1 − (#+

0 )2, (10)

Q̄+
0 = 2$+

1 $+
−1 −$+

0
2
. (11)

These quartets are expressed in terms of the collective isoscalar
and isovector pairs

#+
Tz

=
∑

j

x̄jP
+
j,Tz

, (12)

$+
Jz

=
∑

j1j2

ȳj1j2D
+
j1j2Jz

. (13)

It is soon realized that, when formulated in terms of col-
lective pairs, the wave function (4) becomes a complicated
superposition of mixed condensates, formed by all type of
pairs. If the isoscalar quartet is further reduced to include only
the $+

0 pairs, this formalism becomes formally equivalent to
that proposed in Ref. [19] for the treatment of the isovector-
isoscalar pairing forces acting on axially deformed states.

The collective isovector and isoscalar pairs defined above
can be used to construct various PBCS-type states for N = Z
systems. Thus, with the isovector pairs (12) can be formed the
following PBCS states with well-defined numbers of protons
and neutrons [13]:

|PBCS1⟩ = (#+
1 #+

−1)nq |0⟩, (14)

|PBCS0iv⟩ = (#+
0 )2nq |0⟩. (15)

Both states have, as required, J = 0 and Tz = 0, but they do not
have a well-defined total isospin. Similar PBCS states can be
constructed with the isoscalar pairs (13). Of physical interest
is the PBCS state

|PBCS0is⟩ = ($+
0 )2nq |0⟩. (16)

This state has T = 0 and Jz = 0, but it has not a well-
defined angular momentum. Since the states (15) and (16) are
condensates, respectively, of T = 1 and T = 0 proton-neutron
pairs, one might think that a comparison of their correlation
energies could give clear evidence of what type of proton-
neutron pairing is prevailing in N = Z nuclei. However, a
conclusion based only on this comparison would be misleading
because, as shown in the next section, the PBCS approximation
is not accurate enough to describe properly the isovector and
isoscalar pairing correlations.

In this work we consider the case in which the mixing
amplitudes xii ′ and yii ′jj ′ are factorized, as discussed above,
and also the case in which they keep their original form. In both
cases these amplitudes will be constructed variationally by
minimizing the expectation value of the pairing Hamiltonian
in the QCM or PBCS-type states.

The QCM formalism proposed in this paper can also be
applied to the most general spherically symmetric isovector
(T = 1,J = 0) and isoscalar (T = 0,J = 1) pairing forces
described by the Hamiltonian

H =
∑

i

ϵiNi +
∑

i,j

V T =1
J=0 (i,j )

∑

Tz

P +
i,Tz

Pj,Tz

+
∑

i!j,k!l

V T =0
J=1 (ij,kl)

∑

Jz

D+
ij,Jz

Dkl,Jz
. (17)

The pairing interactions are written in this case in terms
of the noncollective pair operators (8) and (9) expressed in
jj coupling. These interactions are not limited to the pairs
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energies of protons and neutrons are assumed to be equal. The
second term in Eq. (1) is the spin-orbit interaction for protons
and neutrons, which has the standard expression. The third and
the fourth terms are, respectively, the isovector (T = 1,S = 0)
and isoscalar (T = 0,S = 1) pairing interactions. They are
written in terms of the pair operators
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where L, S, and T are the orbital momentum, the spin, and
the isospin of the pairs, respectively. When the spin orbit is
neglected and the orbits are degenerate, the Hamiltonian (1)
has SO(8) symmetry. If, in addition, g1 = g0, the Hamiltonian
(1) has SU(4) symmetry and can be solved analytically both for
degenerate and nondegenerate levels [8,9]. This is no longer
possible in the presence of the spin-orbit interaction.

The question we address in this study is whether the ground
state of the Hamiltonian (1) as well as of the most general
isovector-isoscalar pairing Hamiltonian (17) (see below), can
be well approximated by a condensate of alpha-like quartets,
as in the case of isovector pairing [13]. Thus, as in Ref. [13],
we represent the ground state as a product of identical quartets

|!g.s.⟩ = (Q+)nq |0⟩. (4)

The quartet operator Q+ is taken as a sum of two quartets

Q+ = Q+
1 + Q+

0 , (5)

where Q+
1 is the collective isovector quartet formed by

coupling two isovector pairs to total T = 0, i.e.,

Q+
1 =

∑

j1j2

xj1j2

[
P +

j1
P +

j2

]T =0
, (6)

and Q+
0 is the collective isoscalar quartet built by coupling two

isoscalar pairs to total J = 0, i.e.,

Q+
0 =

∑

j1j2j3j4

yj1j2j3j4

[
D+

j1j2
D+

j3j4

]J=0
. (7)

These quartet operators are expressed in terms of the pair
operators in the jj coupling scheme:

P +
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= 1
√
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]J=1,T =0
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. (9)

In Ref. [13], the QCM state was further simplified by
factorizing the mixing amplitudes which define the quartets.
Due to this factorization it was possible to express the quartet
condensate in terms of collective pairs and to use the recurrence
relations method for the evaluation of the expectation value of
the Hamiltonian. If one adopts the same factorization in the
present formalism, therefore assuming that xj1j2 = x̄j1 x̄j2 and
yj1j2j3j4 = ȳj1j2 ȳj3j4 , the collective quartets can be written as

Q̄+
1 = 2#+

1 #+
−1 − (#+

0 )2, (10)

Q̄+
0 = 2$+
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. (11)

These quartets are expressed in terms of the collective isoscalar
and isovector pairs

#+
Tz

=
∑

j

x̄jP
+
j,Tz

, (12)

$+
Jz

=
∑

j1j2

ȳj1j2D
+
j1j2Jz

. (13)

It is soon realized that, when formulated in terms of col-
lective pairs, the wave function (4) becomes a complicated
superposition of mixed condensates, formed by all type of
pairs. If the isoscalar quartet is further reduced to include only
the $+

0 pairs, this formalism becomes formally equivalent to
that proposed in Ref. [19] for the treatment of the isovector-
isoscalar pairing forces acting on axially deformed states.

The collective isovector and isoscalar pairs defined above
can be used to construct various PBCS-type states for N = Z
systems. Thus, with the isovector pairs (12) can be formed the
following PBCS states with well-defined numbers of protons
and neutrons [13]:

|PBCS1⟩ = (#+
1 #+

−1)nq |0⟩, (14)

|PBCS0iv⟩ = (#+
0 )2nq |0⟩. (15)

Both states have, as required, J = 0 and Tz = 0, but they do not
have a well-defined total isospin. Similar PBCS states can be
constructed with the isoscalar pairs (13). Of physical interest
is the PBCS state

|PBCS0is⟩ = ($+
0 )2nq |0⟩. (16)

This state has T = 0 and Jz = 0, but it has not a well-
defined angular momentum. Since the states (15) and (16) are
condensates, respectively, of T = 1 and T = 0 proton-neutron
pairs, one might think that a comparison of their correlation
energies could give clear evidence of what type of proton-
neutron pairing is prevailing in N = Z nuclei. However, a
conclusion based only on this comparison would be misleading
because, as shown in the next section, the PBCS approximation
is not accurate enough to describe properly the isovector and
isoscalar pairing correlations.

In this work we consider the case in which the mixing
amplitudes xii ′ and yii ′jj ′ are factorized, as discussed above,
and also the case in which they keep their original form. In both
cases these amplitudes will be constructed variationally by
minimizing the expectation value of the pairing Hamiltonian
in the QCM or PBCS-type states.

The QCM formalism proposed in this paper can also be
applied to the most general spherically symmetric isovector
(T = 1,J = 0) and isoscalar (T = 0,J = 1) pairing forces
described by the Hamiltonian

H =
∑

i

ϵiNi +
∑

i,j

V T =1
J=0 (i,j )

∑

Tz

P +
i,Tz

Pj,Tz

+
∑

i!j,k!l

V T =0
J=1 (ij,kl)

∑

Jz

D+
ij,Jz

Dkl,Jz
. (17)

The pairing interactions are written in this case in terms
of the noncollective pair operators (8) and (9) expressed in
jj coupling. These interactions are not limited to the pairs
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energies of protons and neutrons are assumed to be equal. The
second term in Eq. (1) is the spin-orbit interaction for protons
and neutrons, which has the standard expression. The third and
the fourth terms are, respectively, the isovector (T = 1,S = 0)
and isoscalar (T = 0,S = 1) pairing interactions. They are
written in terms of the pair operators
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√
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where L, S, and T are the orbital momentum, the spin, and
the isospin of the pairs, respectively. When the spin orbit is
neglected and the orbits are degenerate, the Hamiltonian (1)
has SO(8) symmetry. If, in addition, g1 = g0, the Hamiltonian
(1) has SU(4) symmetry and can be solved analytically both for
degenerate and nondegenerate levels [8,9]. This is no longer
possible in the presence of the spin-orbit interaction.

The question we address in this study is whether the ground
state of the Hamiltonian (1) as well as of the most general
isovector-isoscalar pairing Hamiltonian (17) (see below), can
be well approximated by a condensate of alpha-like quartets,
as in the case of isovector pairing [13]. Thus, as in Ref. [13],
we represent the ground state as a product of identical quartets

|!g.s.⟩ = (Q+)nq |0⟩. (4)

The quartet operator Q+ is taken as a sum of two quartets

Q+ = Q+
1 + Q+

0 , (5)

where Q+
1 is the collective isovector quartet formed by

coupling two isovector pairs to total T = 0, i.e.,
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These quartet operators are expressed in terms of the pair
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In Ref. [13], the QCM state was further simplified by
factorizing the mixing amplitudes which define the quartets.
Due to this factorization it was possible to express the quartet
condensate in terms of collective pairs and to use the recurrence
relations method for the evaluation of the expectation value of
the Hamiltonian. If one adopts the same factorization in the
present formalism, therefore assuming that xj1j2 = x̄j1 x̄j2 and
yj1j2j3j4 = ȳj1j2 ȳj3j4 , the collective quartets can be written as

Q̄+
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It is soon realized that, when formulated in terms of col-
lective pairs, the wave function (4) becomes a complicated
superposition of mixed condensates, formed by all type of
pairs. If the isoscalar quartet is further reduced to include only
the $+

0 pairs, this formalism becomes formally equivalent to
that proposed in Ref. [19] for the treatment of the isovector-
isoscalar pairing forces acting on axially deformed states.

The collective isovector and isoscalar pairs defined above
can be used to construct various PBCS-type states for N = Z
systems. Thus, with the isovector pairs (12) can be formed the
following PBCS states with well-defined numbers of protons
and neutrons [13]:

|PBCS1⟩ = (#+
1 #+

−1)nq |0⟩, (14)

|PBCS0iv⟩ = (#+
0 )2nq |0⟩. (15)

Both states have, as required, J = 0 and Tz = 0, but they do not
have a well-defined total isospin. Similar PBCS states can be
constructed with the isoscalar pairs (13). Of physical interest
is the PBCS state

|PBCS0is⟩ = ($+
0 )2nq |0⟩. (16)

This state has T = 0 and Jz = 0, but it has not a well-
defined angular momentum. Since the states (15) and (16) are
condensates, respectively, of T = 1 and T = 0 proton-neutron
pairs, one might think that a comparison of their correlation
energies could give clear evidence of what type of proton-
neutron pairing is prevailing in N = Z nuclei. However, a
conclusion based only on this comparison would be misleading
because, as shown in the next section, the PBCS approximation
is not accurate enough to describe properly the isovector and
isoscalar pairing correlations.

In this work we consider the case in which the mixing
amplitudes xii ′ and yii ′jj ′ are factorized, as discussed above,
and also the case in which they keep their original form. In both
cases these amplitudes will be constructed variationally by
minimizing the expectation value of the pairing Hamiltonian
in the QCM or PBCS-type states.

The QCM formalism proposed in this paper can also be
applied to the most general spherically symmetric isovector
(T = 1,J = 0) and isoscalar (T = 0,J = 1) pairing forces
described by the Hamiltonian

H =
∑

i

ϵiNi +
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i,j

V T =1
J=0 (i,j )
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+
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The pairing interactions are written in this case in terms
of the noncollective pair operators (8) and (9) expressed in
jj coupling. These interactions are not limited to the pairs
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energies of protons and neutrons are assumed to be equal. The
second term in Eq. (1) is the spin-orbit interaction for protons
and neutrons, which has the standard expression. The third and
the fourth terms are, respectively, the isovector (T = 1,S = 0)
and isoscalar (T = 0,S = 1) pairing interactions. They are
written in terms of the pair operators
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where L, S, and T are the orbital momentum, the spin, and
the isospin of the pairs, respectively. When the spin orbit is
neglected and the orbits are degenerate, the Hamiltonian (1)
has SO(8) symmetry. If, in addition, g1 = g0, the Hamiltonian
(1) has SU(4) symmetry and can be solved analytically both for
degenerate and nondegenerate levels [8,9]. This is no longer
possible in the presence of the spin-orbit interaction.

The question we address in this study is whether the ground
state of the Hamiltonian (1) as well as of the most general
isovector-isoscalar pairing Hamiltonian (17) (see below), can
be well approximated by a condensate of alpha-like quartets,
as in the case of isovector pairing [13]. Thus, as in Ref. [13],
we represent the ground state as a product of identical quartets

|!g.s.⟩ = (Q+)nq |0⟩. (4)

The quartet operator Q+ is taken as a sum of two quartets

Q+ = Q+
1 + Q+

0 , (5)

where Q+
1 is the collective isovector quartet formed by

coupling two isovector pairs to total T = 0, i.e.,
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1 =
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, (6)

and Q+
0 is the collective isoscalar quartet built by coupling two

isoscalar pairs to total J = 0, i.e.,

Q+
0 =
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j1j2j3j4

yj1j2j3j4

[
D+

j1j2
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. (7)

These quartet operators are expressed in terms of the pair
operators in the jj coupling scheme:
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= 1√
2
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j ]T =1,J=0
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, (8)

D+
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= 1
√

1 + δj1j2
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. (9)

In Ref. [13], the QCM state was further simplified by
factorizing the mixing amplitudes which define the quartets.
Due to this factorization it was possible to express the quartet
condensate in terms of collective pairs and to use the recurrence
relations method for the evaluation of the expectation value of
the Hamiltonian. If one adopts the same factorization in the
present formalism, therefore assuming that xj1j2 = x̄j1 x̄j2 and
yj1j2j3j4 = ȳj1j2 ȳj3j4 , the collective quartets can be written as

Q̄+
1 = 2#+
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−1 − (#+

0 )2, (10)

Q̄+
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These quartets are expressed in terms of the collective isoscalar
and isovector pairs
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=
∑
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x̄jP
+
j,Tz

, (12)

$+
Jz

=
∑

j1j2

ȳj1j2D
+
j1j2Jz

. (13)

It is soon realized that, when formulated in terms of col-
lective pairs, the wave function (4) becomes a complicated
superposition of mixed condensates, formed by all type of
pairs. If the isoscalar quartet is further reduced to include only
the $+

0 pairs, this formalism becomes formally equivalent to
that proposed in Ref. [19] for the treatment of the isovector-
isoscalar pairing forces acting on axially deformed states.

The collective isovector and isoscalar pairs defined above
can be used to construct various PBCS-type states for N = Z
systems. Thus, with the isovector pairs (12) can be formed the
following PBCS states with well-defined numbers of protons
and neutrons [13]:

|PBCS1⟩ = (#+
1 #+

−1)nq |0⟩, (14)

|PBCS0iv⟩ = (#+
0 )2nq |0⟩. (15)

Both states have, as required, J = 0 and Tz = 0, but they do not
have a well-defined total isospin. Similar PBCS states can be
constructed with the isoscalar pairs (13). Of physical interest
is the PBCS state

|PBCS0is⟩ = ($+
0 )2nq |0⟩. (16)

This state has T = 0 and Jz = 0, but it has not a well-
defined angular momentum. Since the states (15) and (16) are
condensates, respectively, of T = 1 and T = 0 proton-neutron
pairs, one might think that a comparison of their correlation
energies could give clear evidence of what type of proton-
neutron pairing is prevailing in N = Z nuclei. However, a
conclusion based only on this comparison would be misleading
because, as shown in the next section, the PBCS approximation
is not accurate enough to describe properly the isovector and
isoscalar pairing correlations.

In this work we consider the case in which the mixing
amplitudes xii ′ and yii ′jj ′ are factorized, as discussed above,
and also the case in which they keep their original form. In both
cases these amplitudes will be constructed variationally by
minimizing the expectation value of the pairing Hamiltonian
in the QCM or PBCS-type states.

The QCM formalism proposed in this paper can also be
applied to the most general spherically symmetric isovector
(T = 1,J = 0) and isoscalar (T = 0,J = 1) pairing forces
described by the Hamiltonian

H =
∑

i

ϵiNi +
∑

i,j

V T =1
J=0 (i,j )

∑

Tz

P +
i,Tz

Pj,Tz

+
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i!j,k!l

V T =0
J=1 (ij,kl)

∑
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D+
ij,Jz

Dkl,Jz
. (17)

The pairing interactions are written in this case in terms
of the noncollective pair operators (8) and (9) expressed in
jj coupling. These interactions are not limited to the pairs
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energies of protons and neutrons are assumed to be equal. The
second term in Eq. (1) is the spin-orbit interaction for protons
and neutrons, which has the standard expression. The third and
the fourth terms are, respectively, the isovector (T = 1,S = 0)
and isoscalar (T = 0,S = 1) pairing interactions. They are
written in terms of the pair operators
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where L, S, and T are the orbital momentum, the spin, and
the isospin of the pairs, respectively. When the spin orbit is
neglected and the orbits are degenerate, the Hamiltonian (1)
has SO(8) symmetry. If, in addition, g1 = g0, the Hamiltonian
(1) has SU(4) symmetry and can be solved analytically both for
degenerate and nondegenerate levels [8,9]. This is no longer
possible in the presence of the spin-orbit interaction.

The question we address in this study is whether the ground
state of the Hamiltonian (1) as well as of the most general
isovector-isoscalar pairing Hamiltonian (17) (see below), can
be well approximated by a condensate of alpha-like quartets,
as in the case of isovector pairing [13]. Thus, as in Ref. [13],
we represent the ground state as a product of identical quartets

|!g.s.⟩ = (Q+)nq |0⟩. (4)

The quartet operator Q+ is taken as a sum of two quartets

Q+ = Q+
1 + Q+

0 , (5)

where Q+
1 is the collective isovector quartet formed by

coupling two isovector pairs to total T = 0, i.e.,
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1 =

∑
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P +
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, (6)

and Q+
0 is the collective isoscalar quartet built by coupling two

isoscalar pairs to total J = 0, i.e.,

Q+
0 =

∑
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yj1j2j3j4

[
D+
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D+
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. (7)

These quartet operators are expressed in terms of the pair
operators in the jj coupling scheme:
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= 1√
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In Ref. [13], the QCM state was further simplified by
factorizing the mixing amplitudes which define the quartets.
Due to this factorization it was possible to express the quartet
condensate in terms of collective pairs and to use the recurrence
relations method for the evaluation of the expectation value of
the Hamiltonian. If one adopts the same factorization in the
present formalism, therefore assuming that xj1j2 = x̄j1 x̄j2 and
yj1j2j3j4 = ȳj1j2 ȳj3j4 , the collective quartets can be written as

Q̄+
1 = 2#+
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These quartets are expressed in terms of the collective isoscalar
and isovector pairs
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, (12)
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=
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It is soon realized that, when formulated in terms of col-
lective pairs, the wave function (4) becomes a complicated
superposition of mixed condensates, formed by all type of
pairs. If the isoscalar quartet is further reduced to include only
the $+

0 pairs, this formalism becomes formally equivalent to
that proposed in Ref. [19] for the treatment of the isovector-
isoscalar pairing forces acting on axially deformed states.

The collective isovector and isoscalar pairs defined above
can be used to construct various PBCS-type states for N = Z
systems. Thus, with the isovector pairs (12) can be formed the
following PBCS states with well-defined numbers of protons
and neutrons [13]:

|PBCS1⟩ = (#+
1 #+

−1)nq |0⟩, (14)

|PBCS0iv⟩ = (#+
0 )2nq |0⟩. (15)

Both states have, as required, J = 0 and Tz = 0, but they do not
have a well-defined total isospin. Similar PBCS states can be
constructed with the isoscalar pairs (13). Of physical interest
is the PBCS state

|PBCS0is⟩ = ($+
0 )2nq |0⟩. (16)

This state has T = 0 and Jz = 0, but it has not a well-
defined angular momentum. Since the states (15) and (16) are
condensates, respectively, of T = 1 and T = 0 proton-neutron
pairs, one might think that a comparison of their correlation
energies could give clear evidence of what type of proton-
neutron pairing is prevailing in N = Z nuclei. However, a
conclusion based only on this comparison would be misleading
because, as shown in the next section, the PBCS approximation
is not accurate enough to describe properly the isovector and
isoscalar pairing correlations.

In this work we consider the case in which the mixing
amplitudes xii ′ and yii ′jj ′ are factorized, as discussed above,
and also the case in which they keep their original form. In both
cases these amplitudes will be constructed variationally by
minimizing the expectation value of the pairing Hamiltonian
in the QCM or PBCS-type states.

The QCM formalism proposed in this paper can also be
applied to the most general spherically symmetric isovector
(T = 1,J = 0) and isoscalar (T = 0,J = 1) pairing forces
described by the Hamiltonian

H =
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The pairing interactions are written in this case in terms
of the noncollective pair operators (8) and (9) expressed in
jj coupling. These interactions are not limited to the pairs
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energies of protons and neutrons are assumed to be equal. The
second term in Eq. (1) is the spin-orbit interaction for protons
and neutrons, which has the standard expression. The third and
the fourth terms are, respectively, the isovector (T = 1,S = 0)
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where L, S, and T are the orbital momentum, the spin, and
the isospin of the pairs, respectively. When the spin orbit is
neglected and the orbits are degenerate, the Hamiltonian (1)
has SO(8) symmetry. If, in addition, g1 = g0, the Hamiltonian
(1) has SU(4) symmetry and can be solved analytically both for
degenerate and nondegenerate levels [8,9]. This is no longer
possible in the presence of the spin-orbit interaction.

The question we address in this study is whether the ground
state of the Hamiltonian (1) as well as of the most general
isovector-isoscalar pairing Hamiltonian (17) (see below), can
be well approximated by a condensate of alpha-like quartets,
as in the case of isovector pairing [13]. Thus, as in Ref. [13],
we represent the ground state as a product of identical quartets
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In Ref. [13], the QCM state was further simplified by
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Due to this factorization it was possible to express the quartet
condensate in terms of collective pairs and to use the recurrence
relations method for the evaluation of the expectation value of
the Hamiltonian. If one adopts the same factorization in the
present formalism, therefore assuming that xj1j2 = x̄j1 x̄j2 and
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lective pairs, the wave function (4) becomes a complicated
superposition of mixed condensates, formed by all type of
pairs. If the isoscalar quartet is further reduced to include only
the $+

0 pairs, this formalism becomes formally equivalent to
that proposed in Ref. [19] for the treatment of the isovector-
isoscalar pairing forces acting on axially deformed states.

The collective isovector and isoscalar pairs defined above
can be used to construct various PBCS-type states for N = Z
systems. Thus, with the isovector pairs (12) can be formed the
following PBCS states with well-defined numbers of protons
and neutrons [13]:
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−1)nq |0⟩, (14)

|PBCS0iv⟩ = (#+
0 )2nq |0⟩. (15)

Both states have, as required, J = 0 and Tz = 0, but they do not
have a well-defined total isospin. Similar PBCS states can be
constructed with the isoscalar pairs (13). Of physical interest
is the PBCS state

|PBCS0is⟩ = ($+
0 )2nq |0⟩. (16)

This state has T = 0 and Jz = 0, but it has not a well-
defined angular momentum. Since the states (15) and (16) are
condensates, respectively, of T = 1 and T = 0 proton-neutron
pairs, one might think that a comparison of their correlation
energies could give clear evidence of what type of proton-
neutron pairing is prevailing in N = Z nuclei. However, a
conclusion based only on this comparison would be misleading
because, as shown in the next section, the PBCS approximation
is not accurate enough to describe properly the isovector and
isoscalar pairing correlations.

In this work we consider the case in which the mixing
amplitudes xii ′ and yii ′jj ′ are factorized, as discussed above,
and also the case in which they keep their original form. In both
cases these amplitudes will be constructed variationally by
minimizing the expectation value of the pairing Hamiltonian
in the QCM or PBCS-type states.

The QCM formalism proposed in this paper can also be
applied to the most general spherically symmetric isovector
(T = 1,J = 0) and isoscalar (T = 0,J = 1) pairing forces
described by the Hamiltonian

H =
∑

i

ϵiNi +
∑

i,j

V T =1
J=0 (i,j )

∑

Tz

P +
i,Tz

Pj,Tz

+
∑

i!j,k!l

V T =0
J=1 (ij,kl)

∑

Jz

D+
ij,Jz

Dkl,Jz
. (17)

The pairing interactions are written in this case in terms
of the noncollective pair operators (8) and (9) expressed in
jj coupling. These interactions are not limited to the pairs
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energies of protons and neutrons are assumed to be equal. The
second term in Eq. (1) is the spin-orbit interaction for protons
and neutrons, which has the standard expression. The third and
the fourth terms are, respectively, the isovector (T = 1,S = 0)
and isoscalar (T = 0,S = 1) pairing interactions. They are
written in terms of the pair operators

P+
i,Tz

=
√

2li + 1
2

[a+
i a+

i ]T =1,S=0,L=0
Tz

, (2)

D+
i,Sz

=
√
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2

[a+
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i ]S=1,T =0,L=0
Sz

, (3)

where L, S, and T are the orbital momentum, the spin, and
the isospin of the pairs, respectively. When the spin orbit is
neglected and the orbits are degenerate, the Hamiltonian (1)
has SO(8) symmetry. If, in addition, g1 = g0, the Hamiltonian
(1) has SU(4) symmetry and can be solved analytically both for
degenerate and nondegenerate levels [8,9]. This is no longer
possible in the presence of the spin-orbit interaction.

The question we address in this study is whether the ground
state of the Hamiltonian (1) as well as of the most general
isovector-isoscalar pairing Hamiltonian (17) (see below), can
be well approximated by a condensate of alpha-like quartets,
as in the case of isovector pairing [13]. Thus, as in Ref. [13],
we represent the ground state as a product of identical quartets

|!g.s.⟩ = (Q+)nq |0⟩. (4)

The quartet operator Q+ is taken as a sum of two quartets

Q+ = Q+
1 + Q+

0 , (5)

where Q+
1 is the collective isovector quartet formed by

coupling two isovector pairs to total T = 0, i.e.,

Q+
1 =

∑

j1j2

xj1j2

[
P +

j1
P +

j2

]T =0
, (6)

and Q+
0 is the collective isoscalar quartet built by coupling two

isoscalar pairs to total J = 0, i.e.,

Q+
0 =

∑

j1j2j3j4

yj1j2j3j4

[
D+

j1j2
D+

j3j4

]J=0
. (7)

These quartet operators are expressed in terms of the pair
operators in the jj coupling scheme:

P +
j,Tz

= 1√
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j a+
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, (8)
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j1j2Jz

= 1
√

1 + δj1j2

[
a+
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]J=1,T =0
Jz

. (9)

In Ref. [13], the QCM state was further simplified by
factorizing the mixing amplitudes which define the quartets.
Due to this factorization it was possible to express the quartet
condensate in terms of collective pairs and to use the recurrence
relations method for the evaluation of the expectation value of
the Hamiltonian. If one adopts the same factorization in the
present formalism, therefore assuming that xj1j2 = x̄j1 x̄j2 and
yj1j2j3j4 = ȳj1j2 ȳj3j4 , the collective quartets can be written as

Q̄+
1 = 2#+

1 #+
−1 − (#+

0 )2, (10)

Q̄+
0 = 2$+

1 $+
−1 −$+

0
2
. (11)

These quartets are expressed in terms of the collective isoscalar
and isovector pairs

#+
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j

x̄jP
+
j,Tz

, (12)

$+
Jz

=
∑

j1j2

ȳj1j2D
+
j1j2Jz

. (13)

It is soon realized that, when formulated in terms of col-
lective pairs, the wave function (4) becomes a complicated
superposition of mixed condensates, formed by all type of
pairs. If the isoscalar quartet is further reduced to include only
the $+

0 pairs, this formalism becomes formally equivalent to
that proposed in Ref. [19] for the treatment of the isovector-
isoscalar pairing forces acting on axially deformed states.

The collective isovector and isoscalar pairs defined above
can be used to construct various PBCS-type states for N = Z
systems. Thus, with the isovector pairs (12) can be formed the
following PBCS states with well-defined numbers of protons
and neutrons [13]:

|PBCS1⟩ = (#+
1 #+

−1)nq |0⟩, (14)

|PBCS0iv⟩ = (#+
0 )2nq |0⟩. (15)

Both states have, as required, J = 0 and Tz = 0, but they do not
have a well-defined total isospin. Similar PBCS states can be
constructed with the isoscalar pairs (13). Of physical interest
is the PBCS state

|PBCS0is⟩ = ($+
0 )2nq |0⟩. (16)

This state has T = 0 and Jz = 0, but it has not a well-
defined angular momentum. Since the states (15) and (16) are
condensates, respectively, of T = 1 and T = 0 proton-neutron
pairs, one might think that a comparison of their correlation
energies could give clear evidence of what type of proton-
neutron pairing is prevailing in N = Z nuclei. However, a
conclusion based only on this comparison would be misleading
because, as shown in the next section, the PBCS approximation
is not accurate enough to describe properly the isovector and
isoscalar pairing correlations.

In this work we consider the case in which the mixing
amplitudes xii ′ and yii ′jj ′ are factorized, as discussed above,
and also the case in which they keep their original form. In both
cases these amplitudes will be constructed variationally by
minimizing the expectation value of the pairing Hamiltonian
in the QCM or PBCS-type states.

The QCM formalism proposed in this paper can also be
applied to the most general spherically symmetric isovector
(T = 1,J = 0) and isoscalar (T = 0,J = 1) pairing forces
described by the Hamiltonian

H =
∑

i

ϵiNi +
∑

i,j

V T =1
J=0 (i,j )

∑

Tz

P +
i,Tz

Pj,Tz

+
∑

i!j,k!l

V T =0
J=1 (ij,kl)

∑

Jz

D+
ij,Jz

Dkl,Jz
. (17)

The pairing interactions are written in this case in terms
of the noncollective pair operators (8) and (9) expressed in
jj coupling. These interactions are not limited to the pairs
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energies of protons and neutrons are assumed to be equal. The
second term in Eq. (1) is the spin-orbit interaction for protons
and neutrons, which has the standard expression. The third and
the fourth terms are, respectively, the isovector (T = 1,S = 0)
and isoscalar (T = 0,S = 1) pairing interactions. They are
written in terms of the pair operators

P+
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=
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, (2)
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where L, S, and T are the orbital momentum, the spin, and
the isospin of the pairs, respectively. When the spin orbit is
neglected and the orbits are degenerate, the Hamiltonian (1)
has SO(8) symmetry. If, in addition, g1 = g0, the Hamiltonian
(1) has SU(4) symmetry and can be solved analytically both for
degenerate and nondegenerate levels [8,9]. This is no longer
possible in the presence of the spin-orbit interaction.

The question we address in this study is whether the ground
state of the Hamiltonian (1) as well as of the most general
isovector-isoscalar pairing Hamiltonian (17) (see below), can
be well approximated by a condensate of alpha-like quartets,
as in the case of isovector pairing [13]. Thus, as in Ref. [13],
we represent the ground state as a product of identical quartets

|!g.s.⟩ = (Q+)nq |0⟩. (4)

The quartet operator Q+ is taken as a sum of two quartets

Q+ = Q+
1 + Q+

0 , (5)

where Q+
1 is the collective isovector quartet formed by

coupling two isovector pairs to total T = 0, i.e.,

Q+
1 =

∑

j1j2

xj1j2

[
P +

j1
P +

j2

]T =0
, (6)

and Q+
0 is the collective isoscalar quartet built by coupling two

isoscalar pairs to total J = 0, i.e.,

Q+
0 =

∑

j1j2j3j4

yj1j2j3j4

[
D+

j1j2
D+

j3j4

]J=0
. (7)

These quartet operators are expressed in terms of the pair
operators in the jj coupling scheme:

P +
j,Tz

= 1√
2

[a+
j a+

j ]T =1,J=0
Tz

, (8)

D+
j1j2Jz

= 1
√

1 + δj1j2

[
a+

j1
a+

j2

]J=1,T =0
Jz

. (9)

In Ref. [13], the QCM state was further simplified by
factorizing the mixing amplitudes which define the quartets.
Due to this factorization it was possible to express the quartet
condensate in terms of collective pairs and to use the recurrence
relations method for the evaluation of the expectation value of
the Hamiltonian. If one adopts the same factorization in the
present formalism, therefore assuming that xj1j2 = x̄j1 x̄j2 and
yj1j2j3j4 = ȳj1j2 ȳj3j4 , the collective quartets can be written as

Q̄+
1 = 2#+

1 #+
−1 − (#+

0 )2, (10)

Q̄+
0 = 2$+

1 $+
−1 −$+

0
2
. (11)

These quartets are expressed in terms of the collective isoscalar
and isovector pairs

#+
Tz

=
∑

j

x̄jP
+
j,Tz

, (12)

$+
Jz

=
∑

j1j2

ȳj1j2D
+
j1j2Jz

. (13)

It is soon realized that, when formulated in terms of col-
lective pairs, the wave function (4) becomes a complicated
superposition of mixed condensates, formed by all type of
pairs. If the isoscalar quartet is further reduced to include only
the $+

0 pairs, this formalism becomes formally equivalent to
that proposed in Ref. [19] for the treatment of the isovector-
isoscalar pairing forces acting on axially deformed states.

The collective isovector and isoscalar pairs defined above
can be used to construct various PBCS-type states for N = Z
systems. Thus, with the isovector pairs (12) can be formed the
following PBCS states with well-defined numbers of protons
and neutrons [13]:

|PBCS1⟩ = (#+
1 #+

−1)nq |0⟩, (14)

|PBCS0iv⟩ = (#+
0 )2nq |0⟩. (15)

Both states have, as required, J = 0 and Tz = 0, but they do not
have a well-defined total isospin. Similar PBCS states can be
constructed with the isoscalar pairs (13). Of physical interest
is the PBCS state

|PBCS0is⟩ = ($+
0 )2nq |0⟩. (16)

This state has T = 0 and Jz = 0, but it has not a well-
defined angular momentum. Since the states (15) and (16) are
condensates, respectively, of T = 1 and T = 0 proton-neutron
pairs, one might think that a comparison of their correlation
energies could give clear evidence of what type of proton-
neutron pairing is prevailing in N = Z nuclei. However, a
conclusion based only on this comparison would be misleading
because, as shown in the next section, the PBCS approximation
is not accurate enough to describe properly the isovector and
isoscalar pairing correlations.

In this work we consider the case in which the mixing
amplitudes xii ′ and yii ′jj ′ are factorized, as discussed above,
and also the case in which they keep their original form. In both
cases these amplitudes will be constructed variationally by
minimizing the expectation value of the pairing Hamiltonian
in the QCM or PBCS-type states.

The QCM formalism proposed in this paper can also be
applied to the most general spherically symmetric isovector
(T = 1,J = 0) and isoscalar (T = 0,J = 1) pairing forces
described by the Hamiltonian

H =
∑

i

ϵiNi +
∑

i,j

V T =1
J=0 (i,j )

∑

Tz

P +
i,Tz

Pj,Tz

+
∑

i!j,k!l

V T =0
J=1 (ij,kl)

∑

Jz

D+
ij,Jz

Dkl,Jz
. (17)

The pairing interactions are written in this case in terms
of the noncollective pair operators (8) and (9) expressed in
jj coupling. These interactions are not limited to the pairs
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energies of protons and neutrons are assumed to be equal. The
second term in Eq. (1) is the spin-orbit interaction for protons
and neutrons, which has the standard expression. The third and
the fourth terms are, respectively, the isovector (T = 1,S = 0)
and isoscalar (T = 0,S = 1) pairing interactions. They are
written in terms of the pair operators

P+
i,Tz

=
√

2li + 1
2

[a+
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i ]T =1,S=0,L=0
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, (2)
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, (3)

where L, S, and T are the orbital momentum, the spin, and
the isospin of the pairs, respectively. When the spin orbit is
neglected and the orbits are degenerate, the Hamiltonian (1)
has SO(8) symmetry. If, in addition, g1 = g0, the Hamiltonian
(1) has SU(4) symmetry and can be solved analytically both for
degenerate and nondegenerate levels [8,9]. This is no longer
possible in the presence of the spin-orbit interaction.

The question we address in this study is whether the ground
state of the Hamiltonian (1) as well as of the most general
isovector-isoscalar pairing Hamiltonian (17) (see below), can
be well approximated by a condensate of alpha-like quartets,
as in the case of isovector pairing [13]. Thus, as in Ref. [13],
we represent the ground state as a product of identical quartets

|!g.s.⟩ = (Q+)nq |0⟩. (4)

The quartet operator Q+ is taken as a sum of two quartets

Q+ = Q+
1 + Q+

0 , (5)

where Q+
1 is the collective isovector quartet formed by

coupling two isovector pairs to total T = 0, i.e.,

Q+
1 =

∑

j1j2

xj1j2

[
P +

j1
P +

j2

]T =0
, (6)

and Q+
0 is the collective isoscalar quartet built by coupling two

isoscalar pairs to total J = 0, i.e.,

Q+
0 =

∑

j1j2j3j4

yj1j2j3j4

[
D+

j1j2
D+

j3j4

]J=0
. (7)

These quartet operators are expressed in terms of the pair
operators in the jj coupling scheme:

P +
j,Tz

= 1√
2

[a+
j a+

j ]T =1,J=0
Tz

, (8)

D+
j1j2Jz

= 1
√

1 + δj1j2

[
a+

j1
a+

j2

]J=1,T =0
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. (9)

In Ref. [13], the QCM state was further simplified by
factorizing the mixing amplitudes which define the quartets.
Due to this factorization it was possible to express the quartet
condensate in terms of collective pairs and to use the recurrence
relations method for the evaluation of the expectation value of
the Hamiltonian. If one adopts the same factorization in the
present formalism, therefore assuming that xj1j2 = x̄j1 x̄j2 and
yj1j2j3j4 = ȳj1j2 ȳj3j4 , the collective quartets can be written as

Q̄+
1 = 2#+

1 #+
−1 − (#+

0 )2, (10)

Q̄+
0 = 2$+

1 $+
−1 −$+

0
2
. (11)

These quartets are expressed in terms of the collective isoscalar
and isovector pairs
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=
∑
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x̄jP
+
j,Tz

, (12)

$+
Jz

=
∑

j1j2

ȳj1j2D
+
j1j2Jz

. (13)

It is soon realized that, when formulated in terms of col-
lective pairs, the wave function (4) becomes a complicated
superposition of mixed condensates, formed by all type of
pairs. If the isoscalar quartet is further reduced to include only
the $+

0 pairs, this formalism becomes formally equivalent to
that proposed in Ref. [19] for the treatment of the isovector-
isoscalar pairing forces acting on axially deformed states.

The collective isovector and isoscalar pairs defined above
can be used to construct various PBCS-type states for N = Z
systems. Thus, with the isovector pairs (12) can be formed the
following PBCS states with well-defined numbers of protons
and neutrons [13]:

|PBCS1⟩ = (#+
1 #+

−1)nq |0⟩, (14)

|PBCS0iv⟩ = (#+
0 )2nq |0⟩. (15)

Both states have, as required, J = 0 and Tz = 0, but they do not
have a well-defined total isospin. Similar PBCS states can be
constructed with the isoscalar pairs (13). Of physical interest
is the PBCS state

|PBCS0is⟩ = ($+
0 )2nq |0⟩. (16)

This state has T = 0 and Jz = 0, but it has not a well-
defined angular momentum. Since the states (15) and (16) are
condensates, respectively, of T = 1 and T = 0 proton-neutron
pairs, one might think that a comparison of their correlation
energies could give clear evidence of what type of proton-
neutron pairing is prevailing in N = Z nuclei. However, a
conclusion based only on this comparison would be misleading
because, as shown in the next section, the PBCS approximation
is not accurate enough to describe properly the isovector and
isoscalar pairing correlations.

In this work we consider the case in which the mixing
amplitudes xii ′ and yii ′jj ′ are factorized, as discussed above,
and also the case in which they keep their original form. In both
cases these amplitudes will be constructed variationally by
minimizing the expectation value of the pairing Hamiltonian
in the QCM or PBCS-type states.

The QCM formalism proposed in this paper can also be
applied to the most general spherically symmetric isovector
(T = 1,J = 0) and isoscalar (T = 0,J = 1) pairing forces
described by the Hamiltonian

H =
∑

i

ϵiNi +
∑

i,j

V T =1
J=0 (i,j )

∑

Tz

P +
i,Tz

Pj,Tz

+
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i!j,k!l

V T =0
J=1 (ij,kl)

∑
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D+
ij,Jz

Dkl,Jz
. (17)

The pairing interactions are written in this case in terms
of the noncollective pair operators (8) and (9) expressed in
jj coupling. These interactions are not limited to the pairs
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energies of protons and neutrons are assumed to be equal. The
second term in Eq. (1) is the spin-orbit interaction for protons
and neutrons, which has the standard expression. The third and
the fourth terms are, respectively, the isovector (T = 1,S = 0)
and isoscalar (T = 0,S = 1) pairing interactions. They are
written in terms of the pair operators
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where L, S, and T are the orbital momentum, the spin, and
the isospin of the pairs, respectively. When the spin orbit is
neglected and the orbits are degenerate, the Hamiltonian (1)
has SO(8) symmetry. If, in addition, g1 = g0, the Hamiltonian
(1) has SU(4) symmetry and can be solved analytically both for
degenerate and nondegenerate levels [8,9]. This is no longer
possible in the presence of the spin-orbit interaction.

The question we address in this study is whether the ground
state of the Hamiltonian (1) as well as of the most general
isovector-isoscalar pairing Hamiltonian (17) (see below), can
be well approximated by a condensate of alpha-like quartets,
as in the case of isovector pairing [13]. Thus, as in Ref. [13],
we represent the ground state as a product of identical quartets

|!g.s.⟩ = (Q+)nq |0⟩. (4)

The quartet operator Q+ is taken as a sum of two quartets

Q+ = Q+
1 + Q+

0 , (5)

where Q+
1 is the collective isovector quartet formed by

coupling two isovector pairs to total T = 0, i.e.,

Q+
1 =

∑
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[
P +

j1
P +
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]T =0
, (6)

and Q+
0 is the collective isoscalar quartet built by coupling two

isoscalar pairs to total J = 0, i.e.,

Q+
0 =

∑

j1j2j3j4

yj1j2j3j4

[
D+
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D+
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]J=0
. (7)

These quartet operators are expressed in terms of the pair
operators in the jj coupling scheme:

P +
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= 1√
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, (8)
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= 1
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. (9)

In Ref. [13], the QCM state was further simplified by
factorizing the mixing amplitudes which define the quartets.
Due to this factorization it was possible to express the quartet
condensate in terms of collective pairs and to use the recurrence
relations method for the evaluation of the expectation value of
the Hamiltonian. If one adopts the same factorization in the
present formalism, therefore assuming that xj1j2 = x̄j1 x̄j2 and
yj1j2j3j4 = ȳj1j2 ȳj3j4 , the collective quartets can be written as

Q̄+
1 = 2#+

1 #+
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These quartets are expressed in terms of the collective isoscalar
and isovector pairs
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+
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, (12)

$+
Jz

=
∑

j1j2

ȳj1j2D
+
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. (13)

It is soon realized that, when formulated in terms of col-
lective pairs, the wave function (4) becomes a complicated
superposition of mixed condensates, formed by all type of
pairs. If the isoscalar quartet is further reduced to include only
the $+

0 pairs, this formalism becomes formally equivalent to
that proposed in Ref. [19] for the treatment of the isovector-
isoscalar pairing forces acting on axially deformed states.

The collective isovector and isoscalar pairs defined above
can be used to construct various PBCS-type states for N = Z
systems. Thus, with the isovector pairs (12) can be formed the
following PBCS states with well-defined numbers of protons
and neutrons [13]:

|PBCS1⟩ = (#+
1 #+

−1)nq |0⟩, (14)

|PBCS0iv⟩ = (#+
0 )2nq |0⟩. (15)

Both states have, as required, J = 0 and Tz = 0, but they do not
have a well-defined total isospin. Similar PBCS states can be
constructed with the isoscalar pairs (13). Of physical interest
is the PBCS state

|PBCS0is⟩ = ($+
0 )2nq |0⟩. (16)

This state has T = 0 and Jz = 0, but it has not a well-
defined angular momentum. Since the states (15) and (16) are
condensates, respectively, of T = 1 and T = 0 proton-neutron
pairs, one might think that a comparison of their correlation
energies could give clear evidence of what type of proton-
neutron pairing is prevailing in N = Z nuclei. However, a
conclusion based only on this comparison would be misleading
because, as shown in the next section, the PBCS approximation
is not accurate enough to describe properly the isovector and
isoscalar pairing correlations.

In this work we consider the case in which the mixing
amplitudes xii ′ and yii ′jj ′ are factorized, as discussed above,
and also the case in which they keep their original form. In both
cases these amplitudes will be constructed variationally by
minimizing the expectation value of the pairing Hamiltonian
in the QCM or PBCS-type states.

The QCM formalism proposed in this paper can also be
applied to the most general spherically symmetric isovector
(T = 1,J = 0) and isoscalar (T = 0,J = 1) pairing forces
described by the Hamiltonian

H =
∑

i

ϵiNi +
∑

i,j

V T =1
J=0 (i,j )

∑

Tz

P +
i,Tz

Pj,Tz

+
∑

i!j,k!l

V T =0
J=1 (ij,kl)

∑

Jz

D+
ij,Jz

Dkl,Jz
. (17)

The pairing interactions are written in this case in terms
of the noncollective pair operators (8) and (9) expressed in
jj coupling. These interactions are not limited to the pairs
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TABLE I. Results of QCM calculations for N = Z nuclei in
various shells obtained with the Hamiltonian (1). Ecorr are the
ground-state correlation energies (19) while ET

P are the isovector and
isoscalar pairing energies defined by Eqs. (22) and (23), respectively.
In brackets we show the errors relative to the exact results obtained
by diagonalization. All energies are in MeV.

Ecorr E
(T =1)
P E

(T =0)
P

20Ne 4.005 (-) −2.740 −2.390
24Mg 5.914 (0.7%) −4.545 −2.660
28Si 6.359 (0.5%) −4.389 −3.058
44Ti 5.477(−) −3.486 −4.478
48Cr 8.571 (0.6%) −6.946 −4.985
52Fe 9.812 (1.1%) −8.576 −4.557
104Te 6.413 (-) −5.929 −2.229
108Xe 11.195 (0.3%) −10.860 −3.677
112Ba 14.377 (0.5%) −14.376 −4.994

ground state and, in brackets, the errors relative to the exact
results obtained by diagonalization. It can be seen that these
errors are very small. In Table I we also show the isovector
(22) and isoscalar (23) pairing energies. We notice that, for all
nuclei, the pairing energies are significant in both channels.

Finally, we applied the QCM approach to the most general
spherically symmetric pairing Hamiltonian (17). In Table II
we present the results of QCM calculations performed by
employing in this Hamiltonian the same input as in Ref. [17].
Namely, the single-particle energies and the pairing interac-
tions for the three sets of nuclei shown in Table II are extracted
from the shell-model forces, respectively USDB [25], KB3G
[26], and the G-matrix two-body force of Ref. [27]. In Table
II the QCM results are compared with the exact results and
with the results of the QM approximation (18) presented in
Ref. [17]. One can see that the QCM approximation, in which
it is supposed that all quartets have the same structure, gives
accurate results, comparable with the QM approximation. In
Table II we also present the results obtained with the quartet
condensate state |QCM⟩ = (Q̄+

1 + Q̄+
0 )nq |0⟩ constructed with

the quartets introduced in Eqs. (10) and (11), expressed in
terms of collective pairs. One can notice that QCM describes

less well the pairing correlations energies as compared with
QCM. On the other hand, as shown in Ref. [16], the QCM
and QCM approximations give very similar results when
one considers only the isovector interaction. This means
that the isoscalar pairing force induces genuine four-body
correlations which cannot be described accurately by a product
of collective pairs. In Table II we also present the results given
by the QCM states constructed only by the isovector or the
isoscalar quartets (10) and (11), i.e., |QCMT =1⟩ = (Q̄+

1 )nq |0⟩
and |QCMT =0⟩ = (Q̄+

0 )nq |0⟩. It can be seen that, for the
present pairing interactions, the isovector pairing correlations
are stronger than the isoscalar ones, with the exception of
nuclei in the sd shell. In all cases, however, as noticed also
in the examples presented above, the isovector and isoscalar
pairing correlations always coexist.

The importance of the mixing between various pairs to
preserve exactly the isospin and the angular momentum of the
ground state can be seen by comparing the predictions of QCM
with the PBCS approximations (14)–(16). As seen in Table III,
the results of the PBCS approximations (14), (15), and (16),
which do not conserve the isospin and the angular momentum,
respectively, are much less accurate than the ones provided by
QCM. We also notice that, for all nuclei PBCS1 gives more
binding than PBCSiv , while the latter gives more binding than
PBCSis , except for sd-shell nuclei. Thus, for sd-shell nuclei
the condensate of isoscalar proton-neutron pairs appears to be
the favorite with respect to the condensate of isovector pairs
while the opposite is true in the other shells. On the other hand,
from Table II one also sees that the approximation QCMT =1,
in which the isovector pairs are mixed together to form a
state with good isospin, gives in sd-shell nuclei more binding
than PBCSis . It is therefore clear that PBCSis results are not
by themselves enough to conclude that the ground state of
sd-shell nuclei is mainly described by a condensate of isoscalar
proton-neutron pairs. A similar conclusion was obtained in
the framework of pair-shell model (see Fig. 5 of Ref. [28]).
In fact, as shown in Tables II and III, a proper description of
the competition between the isovector and isoscalar pairing
correlations requires a ground state in which all types of pairs
are mixed together in order to conserve exactly the spin and
the angular momentum.

TABLE II. Correlation energies (19) relative to various calculations for N = Z nuclei described by the Hamiltonian (17). We show the
results for the QCM the state (4) as well as for the QCM approximations relative to the quartets (10) and (11), i.e., |QCM⟩ = (Q̄+

1 + Q̄+
0 )nq |0⟩,

|QCMT =1⟩ = (Q̄+
1 )nq |0⟩, and |QCMT =0⟩ = (Q̄+

0 )nq |0⟩. The QM results refer to the state (18) and are taken from Ref. [17]. In brackets we show
the relative errors with respect to the exact results obtained by diagonalization. All energies are in MeV.

Exact QM QCM QCM QCMT =1 QCMT =0

20Ne 15.985 15.985 (-) 15.985 (-) 15.510 (2.97%) 14.373 (10.08%) 14.930 (6.60%)
24Mg 28.694 28.626 (0.24%) 28.595 (0.34%) 27.764 (3.24% 23.229 (19.04%) 26.299 (8.35%)
28Si 35.600 35.396 (0.57%) 35.288 (0.88%) 33.913 (4.74%) 28.830 (19.02%) 32.067 (9.92%)
44Ti 7.019 7.019 (-) 7.019 (-) 6.302 (10.21%) 6.273 (10.63%) 4.825 (31.26%)
48Cr 11.649 11.624 (0.21%) 11.614 (0.30%) 10.674 (8.37%) 10.582 (10.67%) 7.075 (39.26%)
52Fe 13.887 13.828 (0.42%) 13.799 (0.63%) 12.971 (6.60%) 12.795 (7.92%) 9.589 (30.95%)
104Te 3.147 3.147 (-) 3.147 (-) 3.052 (3.02%) 3.041 (3.37%) 1.512 (51.95%)
108Xe 5.505 5.495 (0.20%) 5.489 (0.29%) 5.279 (4.10%) 5.239 (4.83%) 2.530 (54.04%)
112Ba 7.059 7.035 (0.34%) 7.017 (0.59%) 6.691 (5.21%) 6.609 (6.37%) 4.391 (37.79%)
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TABLE I. Results of QCM calculations for N = Z nuclei in
various shells obtained with the Hamiltonian (1). Ecorr are the
ground-state correlation energies (19) while ET

P are the isovector and
isoscalar pairing energies defined by Eqs. (22) and (23), respectively.
In brackets we show the errors relative to the exact results obtained
by diagonalization. All energies are in MeV.

Ecorr E
(T =1)
P E

(T =0)
P

20Ne 4.005 (-) −2.740 −2.390
24Mg 5.914 (0.7%) −4.545 −2.660
28Si 6.359 (0.5%) −4.389 −3.058
44Ti 5.477(−) −3.486 −4.478
48Cr 8.571 (0.6%) −6.946 −4.985
52Fe 9.812 (1.1%) −8.576 −4.557
104Te 6.413 (-) −5.929 −2.229
108Xe 11.195 (0.3%) −10.860 −3.677
112Ba 14.377 (0.5%) −14.376 −4.994

ground state and, in brackets, the errors relative to the exact
results obtained by diagonalization. It can be seen that these
errors are very small. In Table I we also show the isovector
(22) and isoscalar (23) pairing energies. We notice that, for all
nuclei, the pairing energies are significant in both channels.

Finally, we applied the QCM approach to the most general
spherically symmetric pairing Hamiltonian (17). In Table II
we present the results of QCM calculations performed by
employing in this Hamiltonian the same input as in Ref. [17].
Namely, the single-particle energies and the pairing interac-
tions for the three sets of nuclei shown in Table II are extracted
from the shell-model forces, respectively USDB [25], KB3G
[26], and the G-matrix two-body force of Ref. [27]. In Table
II the QCM results are compared with the exact results and
with the results of the QM approximation (18) presented in
Ref. [17]. One can see that the QCM approximation, in which
it is supposed that all quartets have the same structure, gives
accurate results, comparable with the QM approximation. In
Table II we also present the results obtained with the quartet
condensate state |QCM⟩ = (Q̄+

1 + Q̄+
0 )nq |0⟩ constructed with

the quartets introduced in Eqs. (10) and (11), expressed in
terms of collective pairs. One can notice that QCM describes

less well the pairing correlations energies as compared with
QCM. On the other hand, as shown in Ref. [16], the QCM
and QCM approximations give very similar results when
one considers only the isovector interaction. This means
that the isoscalar pairing force induces genuine four-body
correlations which cannot be described accurately by a product
of collective pairs. In Table II we also present the results given
by the QCM states constructed only by the isovector or the
isoscalar quartets (10) and (11), i.e., |QCMT =1⟩ = (Q̄+

1 )nq |0⟩
and |QCMT =0⟩ = (Q̄+

0 )nq |0⟩. It can be seen that, for the
present pairing interactions, the isovector pairing correlations
are stronger than the isoscalar ones, with the exception of
nuclei in the sd shell. In all cases, however, as noticed also
in the examples presented above, the isovector and isoscalar
pairing correlations always coexist.

The importance of the mixing between various pairs to
preserve exactly the isospin and the angular momentum of the
ground state can be seen by comparing the predictions of QCM
with the PBCS approximations (14)–(16). As seen in Table III,
the results of the PBCS approximations (14), (15), and (16),
which do not conserve the isospin and the angular momentum,
respectively, are much less accurate than the ones provided by
QCM. We also notice that, for all nuclei PBCS1 gives more
binding than PBCSiv , while the latter gives more binding than
PBCSis , except for sd-shell nuclei. Thus, for sd-shell nuclei
the condensate of isoscalar proton-neutron pairs appears to be
the favorite with respect to the condensate of isovector pairs
while the opposite is true in the other shells. On the other hand,
from Table II one also sees that the approximation QCMT =1,
in which the isovector pairs are mixed together to form a
state with good isospin, gives in sd-shell nuclei more binding
than PBCSis . It is therefore clear that PBCSis results are not
by themselves enough to conclude that the ground state of
sd-shell nuclei is mainly described by a condensate of isoscalar
proton-neutron pairs. A similar conclusion was obtained in
the framework of pair-shell model (see Fig. 5 of Ref. [28]).
In fact, as shown in Tables II and III, a proper description of
the competition between the isovector and isoscalar pairing
correlations requires a ground state in which all types of pairs
are mixed together in order to conserve exactly the spin and
the angular momentum.

TABLE II. Correlation energies (19) relative to various calculations for N = Z nuclei described by the Hamiltonian (17). We show the
results for the QCM the state (4) as well as for the QCM approximations relative to the quartets (10) and (11), i.e., |QCM⟩ = (Q̄+

1 + Q̄+
0 )nq |0⟩,

|QCMT =1⟩ = (Q̄+
1 )nq |0⟩, and |QCMT =0⟩ = (Q̄+

0 )nq |0⟩. The QM results refer to the state (18) and are taken from Ref. [17]. In brackets we show
the relative errors with respect to the exact results obtained by diagonalization. All energies are in MeV.

Exact QM QCM QCM QCMT =1 QCMT =0

20Ne 15.985 15.985 (-) 15.985 (-) 15.510 (2.97%) 14.373 (10.08%) 14.930 (6.60%)
24Mg 28.694 28.626 (0.24%) 28.595 (0.34%) 27.764 (3.24% 23.229 (19.04%) 26.299 (8.35%)
28Si 35.600 35.396 (0.57%) 35.288 (0.88%) 33.913 (4.74%) 28.830 (19.02%) 32.067 (9.92%)
44Ti 7.019 7.019 (-) 7.019 (-) 6.302 (10.21%) 6.273 (10.63%) 4.825 (31.26%)
48Cr 11.649 11.624 (0.21%) 11.614 (0.30%) 10.674 (8.37%) 10.582 (10.67%) 7.075 (39.26%)
52Fe 13.887 13.828 (0.42%) 13.799 (0.63%) 12.971 (6.60%) 12.795 (7.92%) 9.589 (30.95%)
104Te 3.147 3.147 (-) 3.147 (-) 3.052 (3.02%) 3.041 (3.37%) 1.512 (51.95%)
108Xe 5.505 5.495 (0.20%) 5.489 (0.29%) 5.279 (4.10%) 5.239 (4.83%) 2.530 (54.04%)
112Ba 7.059 7.035 (0.34%) 7.017 (0.59%) 6.691 (5.21%) 6.609 (6.37%) 4.391 (37.79%)
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TABLE I. Results of QCM calculations for N = Z nuclei in
various shells obtained with the Hamiltonian (1). Ecorr are the
ground-state correlation energies (19) while ET

P are the isovector and
isoscalar pairing energies defined by Eqs. (22) and (23), respectively.
In brackets we show the errors relative to the exact results obtained
by diagonalization. All energies are in MeV.

Ecorr E
(T =1)
P E

(T =0)
P

20Ne 4.005 (-) −2.740 −2.390
24Mg 5.914 (0.7%) −4.545 −2.660
28Si 6.359 (0.5%) −4.389 −3.058
44Ti 5.477(−) −3.486 −4.478
48Cr 8.571 (0.6%) −6.946 −4.985
52Fe 9.812 (1.1%) −8.576 −4.557
104Te 6.413 (-) −5.929 −2.229
108Xe 11.195 (0.3%) −10.860 −3.677
112Ba 14.377 (0.5%) −14.376 −4.994

ground state and, in brackets, the errors relative to the exact
results obtained by diagonalization. It can be seen that these
errors are very small. In Table I we also show the isovector
(22) and isoscalar (23) pairing energies. We notice that, for all
nuclei, the pairing energies are significant in both channels.

Finally, we applied the QCM approach to the most general
spherically symmetric pairing Hamiltonian (17). In Table II
we present the results of QCM calculations performed by
employing in this Hamiltonian the same input as in Ref. [17].
Namely, the single-particle energies and the pairing interac-
tions for the three sets of nuclei shown in Table II are extracted
from the shell-model forces, respectively USDB [25], KB3G
[26], and the G-matrix two-body force of Ref. [27]. In Table
II the QCM results are compared with the exact results and
with the results of the QM approximation (18) presented in
Ref. [17]. One can see that the QCM approximation, in which
it is supposed that all quartets have the same structure, gives
accurate results, comparable with the QM approximation. In
Table II we also present the results obtained with the quartet
condensate state |QCM⟩ = (Q̄+

1 + Q̄+
0 )nq |0⟩ constructed with

the quartets introduced in Eqs. (10) and (11), expressed in
terms of collective pairs. One can notice that QCM describes

less well the pairing correlations energies as compared with
QCM. On the other hand, as shown in Ref. [16], the QCM
and QCM approximations give very similar results when
one considers only the isovector interaction. This means
that the isoscalar pairing force induces genuine four-body
correlations which cannot be described accurately by a product
of collective pairs. In Table II we also present the results given
by the QCM states constructed only by the isovector or the
isoscalar quartets (10) and (11), i.e., |QCMT =1⟩ = (Q̄+

1 )nq |0⟩
and |QCMT =0⟩ = (Q̄+

0 )nq |0⟩. It can be seen that, for the
present pairing interactions, the isovector pairing correlations
are stronger than the isoscalar ones, with the exception of
nuclei in the sd shell. In all cases, however, as noticed also
in the examples presented above, the isovector and isoscalar
pairing correlations always coexist.

The importance of the mixing between various pairs to
preserve exactly the isospin and the angular momentum of the
ground state can be seen by comparing the predictions of QCM
with the PBCS approximations (14)–(16). As seen in Table III,
the results of the PBCS approximations (14), (15), and (16),
which do not conserve the isospin and the angular momentum,
respectively, are much less accurate than the ones provided by
QCM. We also notice that, for all nuclei PBCS1 gives more
binding than PBCSiv , while the latter gives more binding than
PBCSis , except for sd-shell nuclei. Thus, for sd-shell nuclei
the condensate of isoscalar proton-neutron pairs appears to be
the favorite with respect to the condensate of isovector pairs
while the opposite is true in the other shells. On the other hand,
from Table II one also sees that the approximation QCMT =1,
in which the isovector pairs are mixed together to form a
state with good isospin, gives in sd-shell nuclei more binding
than PBCSis . It is therefore clear that PBCSis results are not
by themselves enough to conclude that the ground state of
sd-shell nuclei is mainly described by a condensate of isoscalar
proton-neutron pairs. A similar conclusion was obtained in
the framework of pair-shell model (see Fig. 5 of Ref. [28]).
In fact, as shown in Tables II and III, a proper description of
the competition between the isovector and isoscalar pairing
correlations requires a ground state in which all types of pairs
are mixed together in order to conserve exactly the spin and
the angular momentum.

TABLE II. Correlation energies (19) relative to various calculations for N = Z nuclei described by the Hamiltonian (17). We show the
results for the QCM the state (4) as well as for the QCM approximations relative to the quartets (10) and (11), i.e., |QCM⟩ = (Q̄+

1 + Q̄+
0 )nq |0⟩,

|QCMT =1⟩ = (Q̄+
1 )nq |0⟩, and |QCMT =0⟩ = (Q̄+

0 )nq |0⟩. The QM results refer to the state (18) and are taken from Ref. [17]. In brackets we show
the relative errors with respect to the exact results obtained by diagonalization. All energies are in MeV.

Exact QM QCM QCM QCMT =1 QCMT =0

20Ne 15.985 15.985 (-) 15.985 (-) 15.510 (2.97%) 14.373 (10.08%) 14.930 (6.60%)
24Mg 28.694 28.626 (0.24%) 28.595 (0.34%) 27.764 (3.24% 23.229 (19.04%) 26.299 (8.35%)
28Si 35.600 35.396 (0.57%) 35.288 (0.88%) 33.913 (4.74%) 28.830 (19.02%) 32.067 (9.92%)
44Ti 7.019 7.019 (-) 7.019 (-) 6.302 (10.21%) 6.273 (10.63%) 4.825 (31.26%)
48Cr 11.649 11.624 (0.21%) 11.614 (0.30%) 10.674 (8.37%) 10.582 (10.67%) 7.075 (39.26%)
52Fe 13.887 13.828 (0.42%) 13.799 (0.63%) 12.971 (6.60%) 12.795 (7.92%) 9.589 (30.95%)
104Te 3.147 3.147 (-) 3.147 (-) 3.052 (3.02%) 3.041 (3.37%) 1.512 (51.95%)
108Xe 5.505 5.495 (0.20%) 5.489 (0.29%) 5.279 (4.10%) 5.239 (4.83%) 2.530 (54.04%)
112Ba 7.059 7.035 (0.34%) 7.017 (0.59%) 6.691 (5.21%) 6.609 (6.37%) 4.391 (37.79%)
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TABLE I. Results of QCM calculations for N = Z nuclei in
various shells obtained with the Hamiltonian (1). Ecorr are the
ground-state correlation energies (19) while ET

P are the isovector and
isoscalar pairing energies defined by Eqs. (22) and (23), respectively.
In brackets we show the errors relative to the exact results obtained
by diagonalization. All energies are in MeV.

Ecorr E
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P E
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P
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ground state and, in brackets, the errors relative to the exact
results obtained by diagonalization. It can be seen that these
errors are very small. In Table I we also show the isovector
(22) and isoscalar (23) pairing energies. We notice that, for all
nuclei, the pairing energies are significant in both channels.

Finally, we applied the QCM approach to the most general
spherically symmetric pairing Hamiltonian (17). In Table II
we present the results of QCM calculations performed by
employing in this Hamiltonian the same input as in Ref. [17].
Namely, the single-particle energies and the pairing interac-
tions for the three sets of nuclei shown in Table II are extracted
from the shell-model forces, respectively USDB [25], KB3G
[26], and the G-matrix two-body force of Ref. [27]. In Table
II the QCM results are compared with the exact results and
with the results of the QM approximation (18) presented in
Ref. [17]. One can see that the QCM approximation, in which
it is supposed that all quartets have the same structure, gives
accurate results, comparable with the QM approximation. In
Table II we also present the results obtained with the quartet
condensate state |QCM⟩ = (Q̄+

1 + Q̄+
0 )nq |0⟩ constructed with

the quartets introduced in Eqs. (10) and (11), expressed in
terms of collective pairs. One can notice that QCM describes

less well the pairing correlations energies as compared with
QCM. On the other hand, as shown in Ref. [16], the QCM
and QCM approximations give very similar results when
one considers only the isovector interaction. This means
that the isoscalar pairing force induces genuine four-body
correlations which cannot be described accurately by a product
of collective pairs. In Table II we also present the results given
by the QCM states constructed only by the isovector or the
isoscalar quartets (10) and (11), i.e., |QCMT =1⟩ = (Q̄+

1 )nq |0⟩
and |QCMT =0⟩ = (Q̄+

0 )nq |0⟩. It can be seen that, for the
present pairing interactions, the isovector pairing correlations
are stronger than the isoscalar ones, with the exception of
nuclei in the sd shell. In all cases, however, as noticed also
in the examples presented above, the isovector and isoscalar
pairing correlations always coexist.

The importance of the mixing between various pairs to
preserve exactly the isospin and the angular momentum of the
ground state can be seen by comparing the predictions of QCM
with the PBCS approximations (14)–(16). As seen in Table III,
the results of the PBCS approximations (14), (15), and (16),
which do not conserve the isospin and the angular momentum,
respectively, are much less accurate than the ones provided by
QCM. We also notice that, for all nuclei PBCS1 gives more
binding than PBCSiv , while the latter gives more binding than
PBCSis , except for sd-shell nuclei. Thus, for sd-shell nuclei
the condensate of isoscalar proton-neutron pairs appears to be
the favorite with respect to the condensate of isovector pairs
while the opposite is true in the other shells. On the other hand,
from Table II one also sees that the approximation QCMT =1,
in which the isovector pairs are mixed together to form a
state with good isospin, gives in sd-shell nuclei more binding
than PBCSis . It is therefore clear that PBCSis results are not
by themselves enough to conclude that the ground state of
sd-shell nuclei is mainly described by a condensate of isoscalar
proton-neutron pairs. A similar conclusion was obtained in
the framework of pair-shell model (see Fig. 5 of Ref. [28]).
In fact, as shown in Tables II and III, a proper description of
the competition between the isovector and isoscalar pairing
correlations requires a ground state in which all types of pairs
are mixed together in order to conserve exactly the spin and
the angular momentum.

TABLE II. Correlation energies (19) relative to various calculations for N = Z nuclei described by the Hamiltonian (17). We show the
results for the QCM the state (4) as well as for the QCM approximations relative to the quartets (10) and (11), i.e., |QCM⟩ = (Q̄+
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0 )nq |0⟩. The QM results refer to the state (18) and are taken from Ref. [17]. In brackets we show
the relative errors with respect to the exact results obtained by diagonalization. All energies are in MeV.
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104Te 3.147 3.147 (-) 3.147 (-) 3.052 (3.02%) 3.041 (3.37%) 1.512 (51.95%)
108Xe 5.505 5.495 (0.20%) 5.489 (0.29%) 5.279 (4.10%) 5.239 (4.83%) 2.530 (54.04%)
112Ba 7.059 7.035 (0.34%) 7.017 (0.59%) 6.691 (5.21%) 6.609 (6.37%) 4.391 (37.79%)
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TABLE I. Results of QCM calculations for N = Z nuclei in
various shells obtained with the Hamiltonian (1). Ecorr are the
ground-state correlation energies (19) while ET

P are the isovector and
isoscalar pairing energies defined by Eqs. (22) and (23), respectively.
In brackets we show the errors relative to the exact results obtained
by diagonalization. All energies are in MeV.

Ecorr E
(T =1)
P E

(T =0)
P

20Ne 4.005 (-) −2.740 −2.390
24Mg 5.914 (0.7%) −4.545 −2.660
28Si 6.359 (0.5%) −4.389 −3.058
44Ti 5.477(−) −3.486 −4.478
48Cr 8.571 (0.6%) −6.946 −4.985
52Fe 9.812 (1.1%) −8.576 −4.557
104Te 6.413 (-) −5.929 −2.229
108Xe 11.195 (0.3%) −10.860 −3.677
112Ba 14.377 (0.5%) −14.376 −4.994

ground state and, in brackets, the errors relative to the exact
results obtained by diagonalization. It can be seen that these
errors are very small. In Table I we also show the isovector
(22) and isoscalar (23) pairing energies. We notice that, for all
nuclei, the pairing energies are significant in both channels.

Finally, we applied the QCM approach to the most general
spherically symmetric pairing Hamiltonian (17). In Table II
we present the results of QCM calculations performed by
employing in this Hamiltonian the same input as in Ref. [17].
Namely, the single-particle energies and the pairing interac-
tions for the three sets of nuclei shown in Table II are extracted
from the shell-model forces, respectively USDB [25], KB3G
[26], and the G-matrix two-body force of Ref. [27]. In Table
II the QCM results are compared with the exact results and
with the results of the QM approximation (18) presented in
Ref. [17]. One can see that the QCM approximation, in which
it is supposed that all quartets have the same structure, gives
accurate results, comparable with the QM approximation. In
Table II we also present the results obtained with the quartet
condensate state |QCM⟩ = (Q̄+

1 + Q̄+
0 )nq |0⟩ constructed with

the quartets introduced in Eqs. (10) and (11), expressed in
terms of collective pairs. One can notice that QCM describes

less well the pairing correlations energies as compared with
QCM. On the other hand, as shown in Ref. [16], the QCM
and QCM approximations give very similar results when
one considers only the isovector interaction. This means
that the isoscalar pairing force induces genuine four-body
correlations which cannot be described accurately by a product
of collective pairs. In Table II we also present the results given
by the QCM states constructed only by the isovector or the
isoscalar quartets (10) and (11), i.e., |QCMT =1⟩ = (Q̄+

1 )nq |0⟩
and |QCMT =0⟩ = (Q̄+

0 )nq |0⟩. It can be seen that, for the
present pairing interactions, the isovector pairing correlations
are stronger than the isoscalar ones, with the exception of
nuclei in the sd shell. In all cases, however, as noticed also
in the examples presented above, the isovector and isoscalar
pairing correlations always coexist.

The importance of the mixing between various pairs to
preserve exactly the isospin and the angular momentum of the
ground state can be seen by comparing the predictions of QCM
with the PBCS approximations (14)–(16). As seen in Table III,
the results of the PBCS approximations (14), (15), and (16),
which do not conserve the isospin and the angular momentum,
respectively, are much less accurate than the ones provided by
QCM. We also notice that, for all nuclei PBCS1 gives more
binding than PBCSiv , while the latter gives more binding than
PBCSis , except for sd-shell nuclei. Thus, for sd-shell nuclei
the condensate of isoscalar proton-neutron pairs appears to be
the favorite with respect to the condensate of isovector pairs
while the opposite is true in the other shells. On the other hand,
from Table II one also sees that the approximation QCMT =1,
in which the isovector pairs are mixed together to form a
state with good isospin, gives in sd-shell nuclei more binding
than PBCSis . It is therefore clear that PBCSis results are not
by themselves enough to conclude that the ground state of
sd-shell nuclei is mainly described by a condensate of isoscalar
proton-neutron pairs. A similar conclusion was obtained in
the framework of pair-shell model (see Fig. 5 of Ref. [28]).
In fact, as shown in Tables II and III, a proper description of
the competition between the isovector and isoscalar pairing
correlations requires a ground state in which all types of pairs
are mixed together in order to conserve exactly the spin and
the angular momentum.

TABLE II. Correlation energies (19) relative to various calculations for N = Z nuclei described by the Hamiltonian (17). We show the
results for the QCM the state (4) as well as for the QCM approximations relative to the quartets (10) and (11), i.e., |QCM⟩ = (Q̄+

1 + Q̄+
0 )nq |0⟩,

|QCMT =1⟩ = (Q̄+
1 )nq |0⟩, and |QCMT =0⟩ = (Q̄+

0 )nq |0⟩. The QM results refer to the state (18) and are taken from Ref. [17]. In brackets we show
the relative errors with respect to the exact results obtained by diagonalization. All energies are in MeV.

Exact QM QCM QCM QCMT =1 QCMT =0

20Ne 15.985 15.985 (-) 15.985 (-) 15.510 (2.97%) 14.373 (10.08%) 14.930 (6.60%)
24Mg 28.694 28.626 (0.24%) 28.595 (0.34%) 27.764 (3.24% 23.229 (19.04%) 26.299 (8.35%)
28Si 35.600 35.396 (0.57%) 35.288 (0.88%) 33.913 (4.74%) 28.830 (19.02%) 32.067 (9.92%)
44Ti 7.019 7.019 (-) 7.019 (-) 6.302 (10.21%) 6.273 (10.63%) 4.825 (31.26%)
48Cr 11.649 11.624 (0.21%) 11.614 (0.30%) 10.674 (8.37%) 10.582 (10.67%) 7.075 (39.26%)
52Fe 13.887 13.828 (0.42%) 13.799 (0.63%) 12.971 (6.60%) 12.795 (7.92%) 9.589 (30.95%)
104Te 3.147 3.147 (-) 3.147 (-) 3.052 (3.02%) 3.041 (3.37%) 1.512 (51.95%)
108Xe 5.505 5.495 (0.20%) 5.489 (0.29%) 5.279 (4.10%) 5.239 (4.83%) 2.530 (54.04%)
112Ba 7.059 7.035 (0.34%) 7.017 (0.59%) 6.691 (5.21%) 6.609 (6.37%) 4.391 (37.79%)
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1. Introduction

The role played by α-like quartets for systems of nucleons in-
teracting by proton-neutron (pn) pairing forces has been debated 
for many years [1– 7]. In a series of recent studies we have shown 
that α-like quartets, defined as correlated structures of two pro-
tons and two neutrons coupled to total isospin T = 0, represent 
the key elements for a proper description of N = Z systems gov-
erned by proton-neutron pairing interactions. In the case of a 
state-independent isovector pairing Hamiltonian, in particular, we 
have provided semi-analytical expressions of the T = 0 seniority-
zero eigenstates and shown that these are linear superpositions of 
products of distinct α-like quartets built by two collective T = 1
pairs [8]. For the same Hamiltonian it has also been shown that 
a trial state formed by a single product of quartets of different 
structure provides ground state correlation energies which coincide 
with the exact values up to the 5th digit [9]. Similar approximate 
solutions in terms of products of distinct quartets have been also 
proposed for the isoscalar-isovector pairing interactions [10].

A particular class of quartet states of physical interest are those 
built by a product of identical quartets. These states, called quar-
tet condensates, have been studied for both the isovector [11] and 
isoscalar-isovector [12,13] pairing Hamiltonians in the framework 
of quartet condensation model (QCM) approach. In the special case 
of the state-independent isovector pairing Hamiltonian of Ref. [8], 
the link between the complex exact structure of the ground state 

* Corresponding author.
E-mail address: sandulescu@theory.nipne.ro (N. Sandulescu).

and this simple approximation scheme has been discussed in detail 
[14]. The QCM approach, which conserves exactly both the particle 
number and the isospin, has been found to describe accurately the 
ground state correlation energies of proton-neutron pairing Hamil-
tonians, with an accuracy below 1%. The quartet correlations have 
turned out to be important also in the ground state of N > Z
systems. For these systems the ground state has been well approx-
imated by a condensate of α-like quartets to which a condensate 
of pairs, built with the extra neutrons, is appended [15,16]. Finally 
it is worth mentioning that also in the case of realistic shell-model 
type interactions, the quartet condensate has been found to ap-
proximate well the ground state of N = Z nuclei [17– 19] and, to a 
good extent, also the first excited 0+ states of sd-shell nuclei [19].

With the only exception of Ref. [19], all the studies men-
tioned above have been fully addressed to a description of the 
ground states of proton-neutron pairing Hamiltonians. The pur-
pose of this paper is to extend these studies to the excited states 
of these Hamiltonians. This work will be focused on even-even 
N = Z systems for which, as said above, the ground state can be 
well-approximated by a condensate of α-like quartets. For these 
systems we shall analyze a particular class of excited states built 
by breaking a quartet from the condensate which describes the 
ground state and replacing it with an “excited” quartet. This ap-
proximation will be analyzed for various isovector and isovector-
isoscalar proton-neutron pairing Hamiltonians and the results will 
be contrasted with the exact eigenstates provided by diagonaliza-
tion.

The manuscript is structured as follows. In Section 2, we will 
illustrate our approach in the case of the isovector pairing. In 
Section 3, we will discuss the case of an isovector plus isoscalar 

https://doi.org/10.1016/j.physletb.2021.136476
0370-2693/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
SCOAP3.
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pairing Hamiltonian. Finally, in Section 4, we will summarize the 
results and draw the conclusions.

2. Excited states for the isovector pairing

The isovector pairing Hamiltonian considered in this section has 
the expression

H =
∑

i

ϵi Ni +
∑

i, j

V T =1
J=0 (i, j)

∑

T z

P+
i,T z

P+
j,T z

(1)

where

Ni =
∑

σ=±,τ=± 1
2

a†
iστ aiστ , P+

i,T z
=

√
2 ji + 1

2
[a+

i a+
i ]T =1, J=0

T z
. (2)

The operator a†
iστ (aiστ ) creates (annihilates) a nucleon in the 

single-particle state i characterized by the quantum numbers 
(σ , τ ), where σ = ± labels states which are conjugate with re-
spect to time reversal and τ = ± 1

2 is the projection of the isospin 
of the nucleon. The operator P †

iT z
(PiT z ) creates (annihilates) a 

pair of nucleons in time-reversed states with total isospin T = 1. 
The three isospin projection T z correspond to pp, nn and pn
pairs. In Eq. (2) the pair operators are written for the case of a 
spherically-symmetric Hamiltonian with pairs which have a well-
defined angular momentum J=0.

We start by recalling the quartet condensation model (QCM) 
for the ground state of this Hamiltonian, which will be used below 
for introducing the new class of excited states. In Ref. [9] it was 
shown that the ground state of the Hamiltonian (1) with nq/2 ac-
tive protons and neutrons can be well approximated by a quartet 
condensate:

|Q C M⟩ = (Q +
iv)nq |−⟩ (3)

where

Q +
iv =

∑

i j

xi j[P †
i P †

j]T =0=
∑

i j

xi j
1√
3
(P †

i1 P †
j−1 + P †

i−1 P †
j1 − P †

i0 P †
j0)

(4)

is the collective quartet built by a linear combination of two non-
collective isovector pairs coupled to the total isospin T = 0. By 
construction the quartet (4) contains two types of 4-body corre-
lations between the protons and neutrons: (a), those generated by 
the isospin coupling and, (b), those arising from the mixing pa-
rameters xij .

In order to establish a connection between collective quartets 
and collective pairs, in Ref. [11] the mixing parameters have been 
taken separable in the indices, i.e., xij = xi x j . In this approximation 
the ground state becomes

|Q C M⟩ = (Q
+
iv)nq |−⟩ (5)

where the new quartet operator

Q
+
iv = 2$+

1 $+
−1 − ($+

0 )2 (6)

is expressed in terms of the collective pair $+
t = ∑

xi P+
it . From 

Eq. (6) one can see that in this approximation the quartets contain 
only those 4-body correlations generated by the isospin coupling. 
We remark that it has been recently shown that the QCM state (5)
results from the projection on the isospin T = 0 and the particle 
number of the BCS-type function e$+

0 |−⟩ [20].
In order to study the excitation spectrum of the Hamiltonian (1)

for the same system of protons and neutrons, in the present study 

we shall consider a new class of QCM states obtained by remov-
ing a quartet from the condensate describing the ground state and 
replacing it with a new “excited” quartet. We shall explore this ap-
proximation in correspondence with both types of condensates (3)
and (5).

We shall begin from the condensate (3), in which the quartets 
have the most general expression (4) without any factorization of 
the amplitudes xij . We shall refer to this case as Approximation 
(A). The excited states have the form

|%ν⟩ = Q̃ +
ν (Q +

iv)nq−1|−⟩, (7)

where

Q̃ +
ν =

∑

i j

y(ν)
i j [P+

i P+
j ]T =0 (8)

represents the excited collective quartet. These excited states are 
therefore linear superpositions of the states

[P+
i P+

j ]T =0(Q +
iv)nq−1|−⟩. (9)

In order to construct the amplitudes y(ν)
i j defining the collective 

quartet Q̃ +
ν , once a QCM calculation for the ground state has been 

performed and the quartet Q +
iv has been defined, it suffices to 

diagonalize the Hamiltonian (1) in the space spanned by the non-
orthogonal states (9). Being built in terms of non-collective oper-
ators P+

iT z
which create pairs of nucleons in time-reversed states, 

the eigenstates (7) are zero seniority states [21].
To test this approximation, we shall consider a system with 6 

protons and 6 neutrons interacting through a state independent 
isovector pairing force (i.e. V T =1

J=0 (i, j) ≡ −g in Eq. (1)) and dis-
tributed over 6 equidistant levels with four-fold degeneracy (due 
to the presence of both spin and isospin degrees of freedom). 
There are two different ways (equivalent in practice) to interpret 
this model space. On one side, this space can be associated with 
a set of single-particle states of orbital angular momentum l=0 
and j=1/2. In this case the quartets are built by pairs with an-
gular momentum J =0 and, consequently, all the states (7) have 
J =0. Alternatively, the single-particle levels can represent a set of 
axially-deformed single-particle states associated with an intrinsic 
deformed mean field. In the latter case the pairs operators, defined 
by P+

i,T z
= [a+

i a+
i ]T =1

T z
, and the eigenstates (7) have J z=0 but not 

well-defined angular momentum. In a realistic application of the 
model the deformed mean field can be generated self-consistently 
by Hartree-Fock calculations [11]. Here, as a natural continuation 
of the works of Refs. [8,14], we have adopted a schematic model 
with the single-particle energies ϵi = −16 + 2(i − 1) which are 
characterized by a constant spacing 'ϵ = 2.

In Fig. 1a we compare the excitation energies provided by the 
approximation (7), as a function of the pairing strength g , with 
the exact results obtained by diagonalization. One can observe that 
the approximation (7) works well for all pairing strengths, from 
weak to strong coupling regimes. It can be also noticed that the 
exact low-lying spectrum contains a few states which cannot be 
represented by the approximation (7).

As a next step we shall consider the same type of approxima-
tion discussed so far but in correspondence with the ground state 
condensate (5), where we assume a factorization xij = xi x j of the 
amplitudes of the quartets. This implies that the quartets are now 
built in terms of the collective isovector pair $+ , as described in 
Eq. (6). We shall refer to this case as Approximation (B). The ex-
cited states are now defined as

|%ν⟩ = Q̂ +
ν (Q

+
iv)nq−1|−⟩, (10)

with
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pairing Hamiltonian. Finally, in Section 4, we will summarize the 
results and draw the conclusions.

2. Excited states for the isovector pairing

The isovector pairing Hamiltonian considered in this section has 
the expression
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∑
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The operator a†
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single-particle state i characterized by the quantum numbers 
(σ , τ ), where σ = ± labels states which are conjugate with re-
spect to time reversal and τ = ± 1

2 is the projection of the isospin 
of the nucleon. The operator P †

iT z
(PiT z ) creates (annihilates) a 

pair of nucleons in time-reversed states with total isospin T = 1. 
The three isospin projection T z correspond to pp, nn and pn
pairs. In Eq. (2) the pair operators are written for the case of a 
spherically-symmetric Hamiltonian with pairs which have a well-
defined angular momentum J=0.

We start by recalling the quartet condensation model (QCM) 
for the ground state of this Hamiltonian, which will be used below 
for introducing the new class of excited states. In Ref. [9] it was 
shown that the ground state of the Hamiltonian (1) with nq/2 ac-
tive protons and neutrons can be well approximated by a quartet 
condensate:
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is the collective quartet built by a linear combination of two non-
collective isovector pairs coupled to the total isospin T = 0. By 
construction the quartet (4) contains two types of 4-body corre-
lations between the protons and neutrons: (a), those generated by 
the isospin coupling and, (b), those arising from the mixing pa-
rameters xij .

In order to establish a connection between collective quartets 
and collective pairs, in Ref. [11] the mixing parameters have been 
taken separable in the indices, i.e., xij = xi x j . In this approximation 
the ground state becomes
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where the new quartet operator

Q
+
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0 )2 (6)

is expressed in terms of the collective pair $+
t = ∑
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it . From 

Eq. (6) one can see that in this approximation the quartets contain 
only those 4-body correlations generated by the isospin coupling. 
We remark that it has been recently shown that the QCM state (5)
results from the projection on the isospin T = 0 and the particle 
number of the BCS-type function e$+

0 |−⟩ [20].
In order to study the excitation spectrum of the Hamiltonian (1)

for the same system of protons and neutrons, in the present study 

we shall consider a new class of QCM states obtained by remov-
ing a quartet from the condensate describing the ground state and 
replacing it with a new “excited” quartet. We shall explore this ap-
proximation in correspondence with both types of condensates (3)
and (5).

We shall begin from the condensate (3), in which the quartets 
have the most general expression (4) without any factorization of 
the amplitudes xij . We shall refer to this case as Approximation 
(A). The excited states have the form
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In order to construct the amplitudes y(ν)
i j defining the collective 

quartet Q̃ +
ν , once a QCM calculation for the ground state has been 

performed and the quartet Q +
iv has been defined, it suffices to 

diagonalize the Hamiltonian (1) in the space spanned by the non-
orthogonal states (9). Being built in terms of non-collective oper-
ators P+

iT z
which create pairs of nucleons in time-reversed states, 

the eigenstates (7) are zero seniority states [21].
To test this approximation, we shall consider a system with 6 

protons and 6 neutrons interacting through a state independent 
isovector pairing force (i.e. V T =1

J=0 (i, j) ≡ −g in Eq. (1)) and dis-
tributed over 6 equidistant levels with four-fold degeneracy (due 
to the presence of both spin and isospin degrees of freedom). 
There are two different ways (equivalent in practice) to interpret 
this model space. On one side, this space can be associated with 
a set of single-particle states of orbital angular momentum l=0 
and j=1/2. In this case the quartets are built by pairs with an-
gular momentum J =0 and, consequently, all the states (7) have 
J =0. Alternatively, the single-particle levels can represent a set of 
axially-deformed single-particle states associated with an intrinsic 
deformed mean field. In the latter case the pairs operators, defined 
by P+
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= [a+

i a+
i ]T =1

T z
, and the eigenstates (7) have J z=0 but not 

well-defined angular momentum. In a realistic application of the 
model the deformed mean field can be generated self-consistently 
by Hartree-Fock calculations [11]. Here, as a natural continuation 
of the works of Refs. [8,14], we have adopted a schematic model 
with the single-particle energies ϵi = −16 + 2(i − 1) which are 
characterized by a constant spacing 'ϵ = 2.

In Fig. 1a we compare the excitation energies provided by the 
approximation (7), as a function of the pairing strength g , with 
the exact results obtained by diagonalization. One can observe that 
the approximation (7) works well for all pairing strengths, from 
weak to strong coupling regimes. It can be also noticed that the 
exact low-lying spectrum contains a few states which cannot be 
represented by the approximation (7).

As a next step we shall consider the same type of approxima-
tion discussed so far but in correspondence with the ground state 
condensate (5), where we assume a factorization xij = xi x j of the 
amplitudes of the quartets. This implies that the quartets are now 
built in terms of the collective isovector pair $+ , as described in 
Eq. (6). We shall refer to this case as Approximation (B). The ex-
cited states are now defined as
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pairing Hamiltonian. Finally, in Section 4, we will summarize the 
results and draw the conclusions.

2. Excited states for the isovector pairing

The isovector pairing Hamiltonian considered in this section has 
the expression

H =
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∑
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single-particle state i characterized by the quantum numbers 
(σ , τ ), where σ = ± labels states which are conjugate with re-
spect to time reversal and τ = ± 1

2 is the projection of the isospin 
of the nucleon. The operator P †

iT z
(PiT z ) creates (annihilates) a 

pair of nucleons in time-reversed states with total isospin T = 1. 
The three isospin projection T z correspond to pp, nn and pn
pairs. In Eq. (2) the pair operators are written for the case of a 
spherically-symmetric Hamiltonian with pairs which have a well-
defined angular momentum J=0.

We start by recalling the quartet condensation model (QCM) 
for the ground state of this Hamiltonian, which will be used below 
for introducing the new class of excited states. In Ref. [9] it was 
shown that the ground state of the Hamiltonian (1) with nq/2 ac-
tive protons and neutrons can be well approximated by a quartet 
condensate:

|Q C M⟩ = (Q +
iv)nq |−⟩ (3)

where

Q +
iv =

∑

i j

xi j[P †
i P †

j]T =0=
∑

i j

xi j
1√
3
(P †

i1 P †
j−1 + P †

i−1 P †
j1 − P †

i0 P †
j0)

(4)

is the collective quartet built by a linear combination of two non-
collective isovector pairs coupled to the total isospin T = 0. By 
construction the quartet (4) contains two types of 4-body corre-
lations between the protons and neutrons: (a), those generated by 
the isospin coupling and, (b), those arising from the mixing pa-
rameters xij .

In order to establish a connection between collective quartets 
and collective pairs, in Ref. [11] the mixing parameters have been 
taken separable in the indices, i.e., xij = xi x j . In this approximation 
the ground state becomes

|Q C M⟩ = (Q
+
iv)nq |−⟩ (5)

where the new quartet operator

Q
+
iv = 2$+

1 $+
−1 − ($+

0 )2 (6)

is expressed in terms of the collective pair $+
t = ∑

xi P+
it . From 

Eq. (6) one can see that in this approximation the quartets contain 
only those 4-body correlations generated by the isospin coupling. 
We remark that it has been recently shown that the QCM state (5)
results from the projection on the isospin T = 0 and the particle 
number of the BCS-type function e$+

0 |−⟩ [20].
In order to study the excitation spectrum of the Hamiltonian (1)

for the same system of protons and neutrons, in the present study 

we shall consider a new class of QCM states obtained by remov-
ing a quartet from the condensate describing the ground state and 
replacing it with a new “excited” quartet. We shall explore this ap-
proximation in correspondence with both types of condensates (3)
and (5).

We shall begin from the condensate (3), in which the quartets 
have the most general expression (4) without any factorization of 
the amplitudes xij . We shall refer to this case as Approximation 
(A). The excited states have the form

|%ν⟩ = Q̃ +
ν (Q +

iv)nq−1|−⟩, (7)

where

Q̃ +
ν =

∑

i j

y(ν)
i j [P+

i P+
j ]T =0 (8)

represents the excited collective quartet. These excited states are 
therefore linear superpositions of the states

[P+
i P+

j ]T =0(Q +
iv)nq−1|−⟩. (9)

In order to construct the amplitudes y(ν)
i j defining the collective 

quartet Q̃ +
ν , once a QCM calculation for the ground state has been 

performed and the quartet Q +
iv has been defined, it suffices to 

diagonalize the Hamiltonian (1) in the space spanned by the non-
orthogonal states (9). Being built in terms of non-collective oper-
ators P+

iT z
which create pairs of nucleons in time-reversed states, 

the eigenstates (7) are zero seniority states [21].
To test this approximation, we shall consider a system with 6 

protons and 6 neutrons interacting through a state independent 
isovector pairing force (i.e. V T =1

J=0 (i, j) ≡ −g in Eq. (1)) and dis-
tributed over 6 equidistant levels with four-fold degeneracy (due 
to the presence of both spin and isospin degrees of freedom). 
There are two different ways (equivalent in practice) to interpret 
this model space. On one side, this space can be associated with 
a set of single-particle states of orbital angular momentum l=0 
and j=1/2. In this case the quartets are built by pairs with an-
gular momentum J =0 and, consequently, all the states (7) have 
J =0. Alternatively, the single-particle levels can represent a set of 
axially-deformed single-particle states associated with an intrinsic 
deformed mean field. In the latter case the pairs operators, defined 
by P+

i,T z
= [a+

i a+
i ]T =1

T z
, and the eigenstates (7) have J z=0 but not 

well-defined angular momentum. In a realistic application of the 
model the deformed mean field can be generated self-consistently 
by Hartree-Fock calculations [11]. Here, as a natural continuation 
of the works of Refs. [8,14], we have adopted a schematic model 
with the single-particle energies ϵi = −16 + 2(i − 1) which are 
characterized by a constant spacing 'ϵ = 2.

In Fig. 1a we compare the excitation energies provided by the 
approximation (7), as a function of the pairing strength g , with 
the exact results obtained by diagonalization. One can observe that 
the approximation (7) works well for all pairing strengths, from 
weak to strong coupling regimes. It can be also noticed that the 
exact low-lying spectrum contains a few states which cannot be 
represented by the approximation (7).

As a next step we shall consider the same type of approxima-
tion discussed so far but in correspondence with the ground state 
condensate (5), where we assume a factorization xij = xi x j of the 
amplitudes of the quartets. This implies that the quartets are now 
built in terms of the collective isovector pair $+ , as described in 
Eq. (6). We shall refer to this case as Approximation (B). The ex-
cited states are now defined as

|%ν⟩ = Q̂ +
ν (Q

+
iv)nq−1|−⟩, (10)

with
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pairing Hamiltonian. Finally, in Section 4, we will summarize the 
results and draw the conclusions.

2. Excited states for the isovector pairing

The isovector pairing Hamiltonian considered in this section has 
the expression

H =
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∑
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=
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The operator a†
iστ (aiστ ) creates (annihilates) a nucleon in the 

single-particle state i characterized by the quantum numbers 
(σ , τ ), where σ = ± labels states which are conjugate with re-
spect to time reversal and τ = ± 1

2 is the projection of the isospin 
of the nucleon. The operator P †

iT z
(PiT z ) creates (annihilates) a 

pair of nucleons in time-reversed states with total isospin T = 1. 
The three isospin projection T z correspond to pp, nn and pn
pairs. In Eq. (2) the pair operators are written for the case of a 
spherically-symmetric Hamiltonian with pairs which have a well-
defined angular momentum J=0.

We start by recalling the quartet condensation model (QCM) 
for the ground state of this Hamiltonian, which will be used below 
for introducing the new class of excited states. In Ref. [9] it was 
shown that the ground state of the Hamiltonian (1) with nq/2 ac-
tive protons and neutrons can be well approximated by a quartet 
condensate:

|Q C M⟩ = (Q +
iv)nq |−⟩ (3)

where

Q +
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∑
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(4)

is the collective quartet built by a linear combination of two non-
collective isovector pairs coupled to the total isospin T = 0. By 
construction the quartet (4) contains two types of 4-body corre-
lations between the protons and neutrons: (a), those generated by 
the isospin coupling and, (b), those arising from the mixing pa-
rameters xij .

In order to establish a connection between collective quartets 
and collective pairs, in Ref. [11] the mixing parameters have been 
taken separable in the indices, i.e., xij = xi x j . In this approximation 
the ground state becomes

|Q C M⟩ = (Q
+
iv)nq |−⟩ (5)

where the new quartet operator

Q
+
iv = 2$+

1 $+
−1 − ($+

0 )2 (6)

is expressed in terms of the collective pair $+
t = ∑

xi P+
it . From 

Eq. (6) one can see that in this approximation the quartets contain 
only those 4-body correlations generated by the isospin coupling. 
We remark that it has been recently shown that the QCM state (5)
results from the projection on the isospin T = 0 and the particle 
number of the BCS-type function e$+

0 |−⟩ [20].
In order to study the excitation spectrum of the Hamiltonian (1)

for the same system of protons and neutrons, in the present study 

we shall consider a new class of QCM states obtained by remov-
ing a quartet from the condensate describing the ground state and 
replacing it with a new “excited” quartet. We shall explore this ap-
proximation in correspondence with both types of condensates (3)
and (5).

We shall begin from the condensate (3), in which the quartets 
have the most general expression (4) without any factorization of 
the amplitudes xij . We shall refer to this case as Approximation 
(A). The excited states have the form

|%ν⟩ = Q̃ +
ν (Q +

iv)nq−1|−⟩, (7)

where

Q̃ +
ν =

∑

i j

y(ν)
i j [P+

i P+
j ]T =0 (8)

represents the excited collective quartet. These excited states are 
therefore linear superpositions of the states

[P+
i P+

j ]T =0(Q +
iv)nq−1|−⟩. (9)

In order to construct the amplitudes y(ν)
i j defining the collective 

quartet Q̃ +
ν , once a QCM calculation for the ground state has been 

performed and the quartet Q +
iv has been defined, it suffices to 

diagonalize the Hamiltonian (1) in the space spanned by the non-
orthogonal states (9). Being built in terms of non-collective oper-
ators P+

iT z
which create pairs of nucleons in time-reversed states, 

the eigenstates (7) are zero seniority states [21].
To test this approximation, we shall consider a system with 6 

protons and 6 neutrons interacting through a state independent 
isovector pairing force (i.e. V T =1

J=0 (i, j) ≡ −g in Eq. (1)) and dis-
tributed over 6 equidistant levels with four-fold degeneracy (due 
to the presence of both spin and isospin degrees of freedom). 
There are two different ways (equivalent in practice) to interpret 
this model space. On one side, this space can be associated with 
a set of single-particle states of orbital angular momentum l=0 
and j=1/2. In this case the quartets are built by pairs with an-
gular momentum J =0 and, consequently, all the states (7) have 
J =0. Alternatively, the single-particle levels can represent a set of 
axially-deformed single-particle states associated with an intrinsic 
deformed mean field. In the latter case the pairs operators, defined 
by P+

i,T z
= [a+

i a+
i ]T =1

T z
, and the eigenstates (7) have J z=0 but not 

well-defined angular momentum. In a realistic application of the 
model the deformed mean field can be generated self-consistently 
by Hartree-Fock calculations [11]. Here, as a natural continuation 
of the works of Refs. [8,14], we have adopted a schematic model 
with the single-particle energies ϵi = −16 + 2(i − 1) which are 
characterized by a constant spacing 'ϵ = 2.

In Fig. 1a we compare the excitation energies provided by the 
approximation (7), as a function of the pairing strength g , with 
the exact results obtained by diagonalization. One can observe that 
the approximation (7) works well for all pairing strengths, from 
weak to strong coupling regimes. It can be also noticed that the 
exact low-lying spectrum contains a few states which cannot be 
represented by the approximation (7).

As a next step we shall consider the same type of approxima-
tion discussed so far but in correspondence with the ground state 
condensate (5), where we assume a factorization xij = xi x j of the 
amplitudes of the quartets. This implies that the quartets are now 
built in terms of the collective isovector pair $+ , as described in 
Eq. (6). We shall refer to this case as Approximation (B). The ex-
cited states are now defined as

|%ν⟩ = Q̂ +
ν (Q

+
iv)nq−1|−⟩, (10)

with
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pairing Hamiltonian. Finally, in Section 4, we will summarize the 
results and draw the conclusions.

2. Excited states for the isovector pairing

The isovector pairing Hamiltonian considered in this section has 
the expression

H =
∑

i

ϵi Ni +
∑
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V T =1
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The operator a†
iστ (aiστ ) creates (annihilates) a nucleon in the 

single-particle state i characterized by the quantum numbers 
(σ , τ ), where σ = ± labels states which are conjugate with re-
spect to time reversal and τ = ± 1

2 is the projection of the isospin 
of the nucleon. The operator P †

iT z
(PiT z ) creates (annihilates) a 

pair of nucleons in time-reversed states with total isospin T = 1. 
The three isospin projection T z correspond to pp, nn and pn
pairs. In Eq. (2) the pair operators are written for the case of a 
spherically-symmetric Hamiltonian with pairs which have a well-
defined angular momentum J=0.

We start by recalling the quartet condensation model (QCM) 
for the ground state of this Hamiltonian, which will be used below 
for introducing the new class of excited states. In Ref. [9] it was 
shown that the ground state of the Hamiltonian (1) with nq/2 ac-
tive protons and neutrons can be well approximated by a quartet 
condensate:

|Q C M⟩ = (Q +
iv)nq |−⟩ (3)

where

Q +
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j]T =0=
∑
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(4)

is the collective quartet built by a linear combination of two non-
collective isovector pairs coupled to the total isospin T = 0. By 
construction the quartet (4) contains two types of 4-body corre-
lations between the protons and neutrons: (a), those generated by 
the isospin coupling and, (b), those arising from the mixing pa-
rameters xij .

In order to establish a connection between collective quartets 
and collective pairs, in Ref. [11] the mixing parameters have been 
taken separable in the indices, i.e., xij = xi x j . In this approximation 
the ground state becomes

|Q C M⟩ = (Q
+
iv)nq |−⟩ (5)

where the new quartet operator

Q
+
iv = 2$+

1 $+
−1 − ($+

0 )2 (6)

is expressed in terms of the collective pair $+
t = ∑

xi P+
it . From 

Eq. (6) one can see that in this approximation the quartets contain 
only those 4-body correlations generated by the isospin coupling. 
We remark that it has been recently shown that the QCM state (5)
results from the projection on the isospin T = 0 and the particle 
number of the BCS-type function e$+

0 |−⟩ [20].
In order to study the excitation spectrum of the Hamiltonian (1)

for the same system of protons and neutrons, in the present study 

we shall consider a new class of QCM states obtained by remov-
ing a quartet from the condensate describing the ground state and 
replacing it with a new “excited” quartet. We shall explore this ap-
proximation in correspondence with both types of condensates (3)
and (5).

We shall begin from the condensate (3), in which the quartets 
have the most general expression (4) without any factorization of 
the amplitudes xij . We shall refer to this case as Approximation 
(A). The excited states have the form

|%ν⟩ = Q̃ +
ν (Q +

iv)nq−1|−⟩, (7)

where

Q̃ +
ν =

∑

i j

y(ν)
i j [P+
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j ]T =0 (8)

represents the excited collective quartet. These excited states are 
therefore linear superpositions of the states

[P+
i P+

j ]T =0(Q +
iv)nq−1|−⟩. (9)

In order to construct the amplitudes y(ν)
i j defining the collective 

quartet Q̃ +
ν , once a QCM calculation for the ground state has been 

performed and the quartet Q +
iv has been defined, it suffices to 

diagonalize the Hamiltonian (1) in the space spanned by the non-
orthogonal states (9). Being built in terms of non-collective oper-
ators P+

iT z
which create pairs of nucleons in time-reversed states, 

the eigenstates (7) are zero seniority states [21].
To test this approximation, we shall consider a system with 6 

protons and 6 neutrons interacting through a state independent 
isovector pairing force (i.e. V T =1

J=0 (i, j) ≡ −g in Eq. (1)) and dis-
tributed over 6 equidistant levels with four-fold degeneracy (due 
to the presence of both spin and isospin degrees of freedom). 
There are two different ways (equivalent in practice) to interpret 
this model space. On one side, this space can be associated with 
a set of single-particle states of orbital angular momentum l=0 
and j=1/2. In this case the quartets are built by pairs with an-
gular momentum J =0 and, consequently, all the states (7) have 
J =0. Alternatively, the single-particle levels can represent a set of 
axially-deformed single-particle states associated with an intrinsic 
deformed mean field. In the latter case the pairs operators, defined 
by P+

i,T z
= [a+

i a+
i ]T =1

T z
, and the eigenstates (7) have J z=0 but not 

well-defined angular momentum. In a realistic application of the 
model the deformed mean field can be generated self-consistently 
by Hartree-Fock calculations [11]. Here, as a natural continuation 
of the works of Refs. [8,14], we have adopted a schematic model 
with the single-particle energies ϵi = −16 + 2(i − 1) which are 
characterized by a constant spacing 'ϵ = 2.

In Fig. 1a we compare the excitation energies provided by the 
approximation (7), as a function of the pairing strength g , with 
the exact results obtained by diagonalization. One can observe that 
the approximation (7) works well for all pairing strengths, from 
weak to strong coupling regimes. It can be also noticed that the 
exact low-lying spectrum contains a few states which cannot be 
represented by the approximation (7).

As a next step we shall consider the same type of approxima-
tion discussed so far but in correspondence with the ground state 
condensate (5), where we assume a factorization xij = xi x j of the 
amplitudes of the quartets. This implies that the quartets are now 
built in terms of the collective isovector pair $+ , as described in 
Eq. (6). We shall refer to this case as Approximation (B). The ex-
cited states are now defined as

|%ν⟩ = Q̂ +
ν (Q

+
iv)nq−1|−⟩, (10)

with
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Fig. 3. The low-lying spectrum provided by the QCM approximation (17) for the 
valence nucleons of 28Si interacting by an isovector pairing force extracted from the 
USDB interaction. The numbers are the overlaps between the QCM and the exact 
wave functions. Energies are in MeV.

Q̃ +
ν, J J z

=
∑

T ′

∑

J1(i1 j1)

∑

J2(i2 j2)

Y (ν)
J J z

(T ′, J1(i1 j1), J2(i2 j2))

×[P+
J1,T ′(i1, j1)P+

J2,T ′(i2, j2)]J ,T =0
J z

. (16)

This quartet is employed to define the exited states

|"ν, J J z ⟩ = Q̃ ν, J J z (Q +
iv)nq−1|−⟩, (17)

where the collective quartet Q +
iv is still restricted to isovector pairs 

only. Q +
iv has been assumed to be of the type (4), by therefore 

excluding a factorization of the coefficients xij . Similarly to the 
cases discussed above, in order to find the coefficients Y (ν)

J M of the 
quartet (16) and so construct the excited states one needs to diag-
onalize the Hamiltonian (1) in the space of non-orthogonal states

[P+
J1,T ′(i1, j1)P+

J2,T ′(i2, j2)]J ,T =0
J z

(Q +
iv)nq−1|−⟩. (18)

To assess the validity of the approximation (17) we have per-
formed calculations for a system of N = Z = 6 nucleons moving 
in the sd-shell and interacting with an isovector pairing force ex-
tracted from the USDB interaction [23]. This system corresponds 
to 28Si. The energies obtained for the low-lying T = 0 states (17)
are given in Fig. 3 and are compared with the exact eigenvalues 
(calculated with the shell model code BIGSTICK [24]). As it can be 
seen, the approximation (17) reproduces quite well the exact re-
sults with overlaps between corresponding states which are close 
to unity for all the low-lying states.

3. Excited states for the isovector-isoscalar pairing

The isovector-isoscalar pairing Hamiltonian has the expression

H =
∑

i

ϵi Ni +
∑

i, j

V T =1
J=0 (i, j)

∑

T z

P+
i,T z

P j,T z

+
∑

i≤ j,k≤l

V T =0
J=1 (i j,kl)

∑

J z

D+
i j, J z

Dkl, J z . (19)

The first two terms are the same as in Eq. (1) while the last term 
is the isoscalar pairing interaction written in term of the isoscalar 
pair operator

D+
j1 j2 J z

= 1
√

1 + δ j1 j2

[a+
j1

a+
j2
]J=1,T =0

J z
(20)

As in the previous section, we start by recalling the QCM ap-
proach for the ground state of the isovector-isoscalar Hamiltonian 
[13]. For even-even N = Z systems the QCM ansatz for the ground 
state has formally the same expression as in the case of isovector 
pairing

Fig. 4. The low-lying spectrum provided by the QCM approximation (24) for the 
valence nucleons of 28Si interacting by an isovector-isoscalar pairing force extracted 
from the USDB interaction. The numbers are the overlaps between the QCM and the 
exact wave functions. Energies are in MeV.

|%gs⟩ = (Q +
ivs)

nq |0⟩. (21)

The difference is that now the quartet operator Q +
ivs , still having 

total isospin T = 0, is the sum of two quartets

Q +
ivs = Q +

iv + Q +
is , (22)

where Q +
iv is the quartet (4) built by isovector pairs while Q +

is is 
formed by two isoscalar pairs coupled to total J = 0, i.e.,

Q +
is =

∑

j1 j2 j3 j4

y j1 j2 j3 j4[D+
j1 j2

D+
j3 j4

]J=0. (23)

A simpler version of this approach can be obtained by adopting 
in (23) the factorization y j1 j2 j3 j4 = y j1, j2= j̄1

y j3, j4= j̄3
(the bar in-

dicating time-reversing) and by using the expression (6) for the 
isovector quartet. This QCM approximation has been investigated 
in detail in Ref. [12] and will not be further discussed in the 
present work.

Acting as in the isovector pairing case, in correspondence with 
the QCM ansatz (21) for the ground state, we construct a class of 
excited states by replacing a quartet of the condensate with an “ex-
cited” quartet. For the case of a spherically-symmetric mean field, 
these states take the form

|"ν, J J z ⟩ = Q̃ ν, J J z (Q +
ivs)

nq−1|−⟩, (24)

where the operator Q̃ ν, J J z is identical to that defined in Eq. (16). 
In order to define its coefficients Y (ν)

J J z
, one has now to diagonalize 

the Hamiltonian (19) in the basis of non-orthogonal states

[P+
J1,T ′(i1, j1)P+

J2,T ′(i2, j2)]J ,T =0
J z

(Q +
ivs)

nq−1|−⟩. (25)

To illustrate the accuracy of the approximation (24) we have 
still referred to the case of 28Si and assumed an isovector-isoscalar 
pairing force corresponding to the ( J = 0, T = 1) and ( J = 1, T =
0) channels of the USDB interaction [23]. Exact and approximate 
spectra are shown in Fig. 4. It can be seen that the inclusion of 
the isoscalar force removes the degeneracies observed in the case 
of the isovector interaction. The overall agreement is good also in 
this case although the quality of the overlaps is, in some cases, not 
as high as that of Fig. 3. As a peculiarity, we notice that the first 
excited J = 6 state has not a corresponding state in the QCM ap-
proximation while the second J = 6 exact state is well reproduced 
both for the energy and the overlap.

4. Summary and conclusions

We have extended the quartet condensation model (QCM) to 
describe the T = 0 excited states of proton-neutron pairing Hamil-
tonians. These excited states have been generated by breaking a 
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Fig. 1. Excitation spectra of the isovector pairing Hamiltonian (1) for a system of N = Z = 6 particles moving on 6 equidistant levels. Dashed lines in Figs. 1a and 1b refer, 
respectively, to the approximations (A) and (B) discussed in the text while full lines represent the exact results. Energies and the pairing strength g are in units of the spacing 
!ϵ between the levels.

Fig. 2. Low-lying spectra of the isovector pairing Hamiltonian (1) for the same sys-
tem discussed in Fig. 1 and a pairing strength g = 1. The spectra (A) and (B) refer, 
respectively, to the Approximations (A) and (B) discussed in the text while the spec-
trum EX corresponds to the exact one. Energies and the pairing strength g are in 
units of the spacing !ϵ between the levels.

Q̂ +
ν = [̃$+

ν $+]T =0 ∝ $̃+
ν,1$

+
−1 + $̃+

ν,−1$
+
1 − $̃+

ν,0$
+
0 . (11)

The state |%ν⟩ differs from the corresponding ground state |Q C M⟩
only for the presence of the “excited” pair $̃+

ν,t = ∑
i z(ν)

i P+
it , the 

pair $+ being instead that defining the quartets Q
+
iv . In order to 

define the coefficients z(ν)
i it suffices to diagonalize the Hamilto-

nian in the basis of non-orthogonal states

[P+
i $+]T =0(Q

+
iv)nq−1|−⟩. (12)

In Fig. 1b we show the eigenvalues corresponding to the ex-
cited quartets (10) for the same system considered above. Only 5 
approximate excited states can be built in this case (the index i
of (12) ranging over the number of the levels) and they are seen 
to follow quite closely the behavior of 5 exact low-lying excited 
states. From a comparison with Fig. 1a one may notice that, for val-
ues of g > 0.8, the 5 exact eigenstates in this figure coincide with 
the 5 lowest excited states of the Hamiltonian (1) while for smaller 
values of g an “intruder” exact eigenstate exists which crosses 
these states and which is not reproduced in the Approximation 
(B). In this figure, for simplicity, only 5 exact excited eigenstates 
have been reported and the agreement with the approximate ones 
appears fairly good, the largest deviations being observed in the 
weak coupling regime.

In order to better understand the quality of the Approximations 
(A) and (B) in the calculations just discussed, in Fig. 2 we show 
a more detailed description of the results of these approximations 
in a specific case. The calculations of this figure refer to a value of 
the strength g = 1.0 and report not only the spectra but also the 
overlaps between exact and approximate eigenstates. One can no-
tice that the overlaps are very large both in the approximation (A) 
and (B). An overlap equal to zero indicates that the corresponding 
exact eigenstate is not a QCM state.

Two remarks are in order with reference to this figure. The 
first remark concerns the approximate ground states. These ground 
states are those resulting from the diagonalization of the Hamilto-
nian (1) in the space of states (9 ) (Approximation (A)) and in the 
space of states (12) (Approximation (B)). Strictly speaking, thus, 
they are not true QCM condensates since one of the quartets re-
sults from a diagonalization and is not constrained to be equal to 
the others. However, the fact that the QCM ground state corre-
sponds to a minimum in energy, causes this new quartet to be 
essentially identical to the others as we have also verified by the 
fact that both the energy and the overlap of this state are basically 
indistinguishable from those of the true QCM state. The second 
remark has to do with a peculiarity of the exact spectrum already 
evidenced in Figs. 1a and 1b, namely the existence of degeneracies. 
The evaluation of the overlaps between a generic state |α⟩ and 
two degenerate states |'1⟩ and '2⟩ is hampered by the fact that 
the wave functions of the degenerate states cannot be unambigu-
ously defined since any other two states |'(+)

12 ⟩ = d1|ψ1⟩ + d2|ψ2⟩
and |'(−)

12 ⟩ = d1|ψ1⟩ − d2|ψ2⟩, with d2
1 + d2

2 = 1, also represent a 
pair of degenerate eigenstates with the same energy. The over-
laps ⟨α|'(±)

12 ⟩ obviously depend on the (arbitrary) coefficients d1
and d2. In such a circumstance we have followed the approach of 
Ref. [22] and introduced the quantity M(12)

α = ⟨α|'1⟩2 + ⟨α|'2⟩2. 
This quantity is invariant with respect to any transformation |'(±)

12 ⟩
and it can be seen to provide the maximum squared overlap be-
tween the state |α⟩ and a generic state |'(+)

12 ⟩. This maximum is 
found in correspondence with the state

|'(+)
12 ⟩ = 1

√
M(12)

α

(⟨α|'1⟩|'1⟩ + ⟨α|'2⟩|'2⟩) (13)

while the paired eigenstate

|'(−)
12 ⟩ = 1

√
M(12)

α

(⟨α|'1⟩|'1⟩ − ⟨α|'2⟩|'2⟩) (14)

is, by construction, such that ⟨α|'(−)
12 ⟩ = 0 [22]. The overlap shown 

in Fig. 2 in correspondence to two degenerate states |'1⟩ and '2⟩
is thus the square root of the quantity M(12)

α .
The examples discussed so far have involved quartets formed 

by the isovector operators P+
iT z

, which under the assumption of 
spherical symmetry, are characterized by an angular momentum 
J = 0. In what follows, aiming at a more realistic application of 
the isovector pairing Hamiltonian (1) in a spherical mean field, we 
introduce the most general pair creation operator

P+
J J z,T T z

(i, j) = [a+
i a+

j ]J T
J z T Z

(15)

and, by means of this, the most general collective T = 0 quartet
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pairing Hamiltonian. Finally, in Section 4, we will summarize the 
results and draw the conclusions.

2. Excited states for the isovector pairing

The isovector pairing Hamiltonian considered in this section has 
the expression

H =
∑

i

ϵi Ni +
∑

i, j

V T =1
J=0 (i, j)

∑

T z

P+
i,T z

P+
j,T z

(1)

where

Ni =
∑

σ=±,τ=± 1
2

a†
iστ aiστ , P+

i,T z
=

√
2 ji + 1

2
[a+

i a+
i ]T =1, J=0

T z
. (2)

The operator a†
iστ (aiστ ) creates (annihilates) a nucleon in the 

single-particle state i characterized by the quantum numbers 
(σ , τ ), where σ = ± labels states which are conjugate with re-
spect to time reversal and τ = ± 1

2 is the projection of the isospin 
of the nucleon. The operator P †

iT z
(PiT z ) creates (annihilates) a 

pair of nucleons in time-reversed states with total isospin T = 1. 
The three isospin projection T z correspond to pp, nn and pn
pairs. In Eq. (2) the pair operators are written for the case of a 
spherically-symmetric Hamiltonian with pairs which have a well-
defined angular momentum J=0.

We start by recalling the quartet condensation model (QCM) 
for the ground state of this Hamiltonian, which will be used below 
for introducing the new class of excited states. In Ref. [9] it was 
shown that the ground state of the Hamiltonian (1) with nq/2 ac-
tive protons and neutrons can be well approximated by a quartet 
condensate:

|Q C M⟩ = (Q +
iv)nq |−⟩ (3)

where

Q +
iv =

∑

i j

xi j[P †
i P †

j]T =0=
∑

i j

xi j
1√
3
(P †

i1 P †
j−1 + P †

i−1 P †
j1 − P †

i0 P †
j0)

(4)

is the collective quartet built by a linear combination of two non-
collective isovector pairs coupled to the total isospin T = 0. By 
construction the quartet (4) contains two types of 4-body corre-
lations between the protons and neutrons: (a), those generated by 
the isospin coupling and, (b), those arising from the mixing pa-
rameters xij .

In order to establish a connection between collective quartets 
and collective pairs, in Ref. [11] the mixing parameters have been 
taken separable in the indices, i.e., xij = xi x j . In this approximation 
the ground state becomes

|Q C M⟩ = (Q
+
iv)nq |−⟩ (5)

where the new quartet operator

Q
+
iv = 2$+

1 $+
−1 − ($+

0 )2 (6)

is expressed in terms of the collective pair $+
t = ∑

xi P+
it . From 

Eq. (6) one can see that in this approximation the quartets contain 
only those 4-body correlations generated by the isospin coupling. 
We remark that it has been recently shown that the QCM state (5)
results from the projection on the isospin T = 0 and the particle 
number of the BCS-type function e$+

0 |−⟩ [20].
In order to study the excitation spectrum of the Hamiltonian (1)

for the same system of protons and neutrons, in the present study 

we shall consider a new class of QCM states obtained by remov-
ing a quartet from the condensate describing the ground state and 
replacing it with a new “excited” quartet. We shall explore this ap-
proximation in correspondence with both types of condensates (3)
and (5).

We shall begin from the condensate (3), in which the quartets 
have the most general expression (4) without any factorization of 
the amplitudes xij . We shall refer to this case as Approximation 
(A). The excited states have the form

|%ν⟩ = Q̃ +
ν (Q +

iv)nq−1|−⟩, (7)

where

Q̃ +
ν =

∑

i j

y(ν)
i j [P+

i P+
j ]T =0 (8)

represents the excited collective quartet. These excited states are 
therefore linear superpositions of the states

[P+
i P+

j ]T =0(Q +
iv)nq−1|−⟩. (9)

In order to construct the amplitudes y(ν)
i j defining the collective 

quartet Q̃ +
ν , once a QCM calculation for the ground state has been 

performed and the quartet Q +
iv has been defined, it suffices to 

diagonalize the Hamiltonian (1) in the space spanned by the non-
orthogonal states (9). Being built in terms of non-collective oper-
ators P+

iT z
which create pairs of nucleons in time-reversed states, 

the eigenstates (7) are zero seniority states [21].
To test this approximation, we shall consider a system with 6 

protons and 6 neutrons interacting through a state independent 
isovector pairing force (i.e. V T =1

J=0 (i, j) ≡ −g in Eq. (1)) and dis-
tributed over 6 equidistant levels with four-fold degeneracy (due 
to the presence of both spin and isospin degrees of freedom). 
There are two different ways (equivalent in practice) to interpret 
this model space. On one side, this space can be associated with 
a set of single-particle states of orbital angular momentum l=0 
and j=1/2. In this case the quartets are built by pairs with an-
gular momentum J =0 and, consequently, all the states (7) have 
J =0. Alternatively, the single-particle levels can represent a set of 
axially-deformed single-particle states associated with an intrinsic 
deformed mean field. In the latter case the pairs operators, defined 
by P+

i,T z
= [a+

i a+
i ]T =1

T z
, and the eigenstates (7) have J z=0 but not 

well-defined angular momentum. In a realistic application of the 
model the deformed mean field can be generated self-consistently 
by Hartree-Fock calculations [11]. Here, as a natural continuation 
of the works of Refs. [8,14], we have adopted a schematic model 
with the single-particle energies ϵi = −16 + 2(i − 1) which are 
characterized by a constant spacing 'ϵ = 2.

In Fig. 1a we compare the excitation energies provided by the 
approximation (7), as a function of the pairing strength g , with 
the exact results obtained by diagonalization. One can observe that 
the approximation (7) works well for all pairing strengths, from 
weak to strong coupling regimes. It can be also noticed that the 
exact low-lying spectrum contains a few states which cannot be 
represented by the approximation (7).

As a next step we shall consider the same type of approxima-
tion discussed so far but in correspondence with the ground state 
condensate (5), where we assume a factorization xij = xi x j of the 
amplitudes of the quartets. This implies that the quartets are now 
built in terms of the collective isovector pair $+ , as described in 
Eq. (6). We shall refer to this case as Approximation (B). The ex-
cited states are now defined as

|%ν⟩ = Q̂ +
ν (Q

+
iv)nq−1|−⟩, (10)

with

2

Ground state 

Excited states 
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Fig. 3. The low-lying spectrum provided by the QCM approximation (17) for the 
valence nucleons of 28Si interacting by an isovector pairing force extracted from the 
USDB interaction. The numbers are the overlaps between the QCM and the exact 
wave functions. Energies are in MeV.

Q̃ +
ν, J J z

=
∑

T ′

∑

J1(i1 j1)

∑

J2(i2 j2)

Y (ν)
J J z

(T ′, J1(i1 j1), J2(i2 j2))

×[P+
J1,T ′(i1, j1)P+

J2,T ′(i2, j2)]J ,T =0
J z

. (16)

This quartet is employed to define the exited states

|"ν, J J z ⟩ = Q̃ ν, J J z (Q +
iv)nq−1|−⟩, (17)

where the collective quartet Q +
iv is still restricted to isovector pairs 

only. Q +
iv has been assumed to be of the type (4), by therefore 

excluding a factorization of the coefficients xij . Similarly to the 
cases discussed above, in order to find the coefficients Y (ν)

J M of the 
quartet (16) and so construct the excited states one needs to diag-
onalize the Hamiltonian (1) in the space of non-orthogonal states

[P+
J1,T ′(i1, j1)P+

J2,T ′(i2, j2)]J ,T =0
J z

(Q +
iv)nq−1|−⟩. (18)

To assess the validity of the approximation (17) we have per-
formed calculations for a system of N = Z = 6 nucleons moving 
in the sd-shell and interacting with an isovector pairing force ex-
tracted from the USDB interaction [23]. This system corresponds 
to 28Si. The energies obtained for the low-lying T = 0 states (17)
are given in Fig. 3 and are compared with the exact eigenvalues 
(calculated with the shell model code BIGSTICK [24]). As it can be 
seen, the approximation (17) reproduces quite well the exact re-
sults with overlaps between corresponding states which are close 
to unity for all the low-lying states.

3. Excited states for the isovector-isoscalar pairing

The isovector-isoscalar pairing Hamiltonian has the expression

H =
∑

i

ϵi Ni +
∑

i, j

V T =1
J=0 (i, j)

∑

T z

P+
i,T z

P j,T z

+
∑

i≤ j,k≤l

V T =0
J=1 (i j,kl)

∑

J z

D+
i j, J z

Dkl, J z . (19)

The first two terms are the same as in Eq. (1) while the last term 
is the isoscalar pairing interaction written in term of the isoscalar 
pair operator

D+
j1 j2 J z

= 1
√

1 + δ j1 j2

[a+
j1

a+
j2
]J=1,T =0

J z
(20)

As in the previous section, we start by recalling the QCM ap-
proach for the ground state of the isovector-isoscalar Hamiltonian 
[13]. For even-even N = Z systems the QCM ansatz for the ground 
state has formally the same expression as in the case of isovector 
pairing

Fig. 4. The low-lying spectrum provided by the QCM approximation (24) for the 
valence nucleons of 28Si interacting by an isovector-isoscalar pairing force extracted 
from the USDB interaction. The numbers are the overlaps between the QCM and the 
exact wave functions. Energies are in MeV.

|%gs⟩ = (Q +
ivs)

nq |0⟩. (21)

The difference is that now the quartet operator Q +
ivs , still having 

total isospin T = 0, is the sum of two quartets

Q +
ivs = Q +

iv + Q +
is , (22)

where Q +
iv is the quartet (4) built by isovector pairs while Q +

is is 
formed by two isoscalar pairs coupled to total J = 0, i.e.,

Q +
is =

∑

j1 j2 j3 j4

y j1 j2 j3 j4[D+
j1 j2

D+
j3 j4

]J=0. (23)

A simpler version of this approach can be obtained by adopting 
in (23) the factorization y j1 j2 j3 j4 = y j1, j2= j̄1

y j3, j4= j̄3
(the bar in-

dicating time-reversing) and by using the expression (6) for the 
isovector quartet. This QCM approximation has been investigated 
in detail in Ref. [12] and will not be further discussed in the 
present work.

Acting as in the isovector pairing case, in correspondence with 
the QCM ansatz (21) for the ground state, we construct a class of 
excited states by replacing a quartet of the condensate with an “ex-
cited” quartet. For the case of a spherically-symmetric mean field, 
these states take the form

|"ν, J J z ⟩ = Q̃ ν, J J z (Q +
ivs)

nq−1|−⟩, (24)

where the operator Q̃ ν, J J z is identical to that defined in Eq. (16). 
In order to define its coefficients Y (ν)

J J z
, one has now to diagonalize 

the Hamiltonian (19) in the basis of non-orthogonal states

[P+
J1,T ′(i1, j1)P+

J2,T ′(i2, j2)]J ,T =0
J z

(Q +
ivs)

nq−1|−⟩. (25)

To illustrate the accuracy of the approximation (24) we have 
still referred to the case of 28Si and assumed an isovector-isoscalar 
pairing force corresponding to the ( J = 0, T = 1) and ( J = 1, T =
0) channels of the USDB interaction [23]. Exact and approximate 
spectra are shown in Fig. 4. It can be seen that the inclusion of 
the isoscalar force removes the degeneracies observed in the case 
of the isovector interaction. The overall agreement is good also in 
this case although the quality of the overlaps is, in some cases, not 
as high as that of Fig. 3. As a peculiarity, we notice that the first 
excited J = 6 state has not a corresponding state in the QCM ap-
proximation while the second J = 6 exact state is well reproduced 
both for the energy and the overlap.

4. Summary and conclusions

We have extended the quartet condensation model (QCM) to 
describe the T = 0 excited states of proton-neutron pairing Hamil-
tonians. These excited states have been generated by breaking a 

4
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Fig. 3. The low-lying spectrum provided by the QCM approximation (17) for the 
valence nucleons of 28Si interacting by an isovector pairing force extracted from the 
USDB interaction. The numbers are the overlaps between the QCM and the exact 
wave functions. Energies are in MeV.
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∑
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∑
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J J z
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×[P+
J1,T ′(i1, j1)P+

J2,T ′(i2, j2)]J ,T =0
J z

. (16)

This quartet is employed to define the exited states

|"ν, J J z ⟩ = Q̃ ν, J J z (Q +
iv)nq−1|−⟩, (17)

where the collective quartet Q +
iv is still restricted to isovector pairs 

only. Q +
iv has been assumed to be of the type (4), by therefore 

excluding a factorization of the coefficients xij . Similarly to the 
cases discussed above, in order to find the coefficients Y (ν)

J M of the 
quartet (16) and so construct the excited states one needs to diag-
onalize the Hamiltonian (1) in the space of non-orthogonal states

[P+
J1,T ′(i1, j1)P+

J2,T ′(i2, j2)]J ,T =0
J z

(Q +
iv)nq−1|−⟩. (18)

To assess the validity of the approximation (17) we have per-
formed calculations for a system of N = Z = 6 nucleons moving 
in the sd-shell and interacting with an isovector pairing force ex-
tracted from the USDB interaction [23]. This system corresponds 
to 28Si. The energies obtained for the low-lying T = 0 states (17)
are given in Fig. 3 and are compared with the exact eigenvalues 
(calculated with the shell model code BIGSTICK [24]). As it can be 
seen, the approximation (17) reproduces quite well the exact re-
sults with overlaps between corresponding states which are close 
to unity for all the low-lying states.

3. Excited states for the isovector-isoscalar pairing

The isovector-isoscalar pairing Hamiltonian has the expression

H =
∑

i

ϵi Ni +
∑

i, j

V T =1
J=0 (i, j)

∑

T z

P+
i,T z

P j,T z

+
∑

i≤ j,k≤l

V T =0
J=1 (i j,kl)

∑

J z

D+
i j, J z

Dkl, J z . (19)

The first two terms are the same as in Eq. (1) while the last term 
is the isoscalar pairing interaction written in term of the isoscalar 
pair operator

D+
j1 j2 J z

= 1
√

1 + δ j1 j2

[a+
j1

a+
j2
]J=1,T =0

J z
(20)

As in the previous section, we start by recalling the QCM ap-
proach for the ground state of the isovector-isoscalar Hamiltonian 
[13]. For even-even N = Z systems the QCM ansatz for the ground 
state has formally the same expression as in the case of isovector 
pairing

Fig. 4. The low-lying spectrum provided by the QCM approximation (24) for the 
valence nucleons of 28Si interacting by an isovector-isoscalar pairing force extracted 
from the USDB interaction. The numbers are the overlaps between the QCM and the 
exact wave functions. Energies are in MeV.

|%gs⟩ = (Q +
ivs)

nq |0⟩. (21)

The difference is that now the quartet operator Q +
ivs , still having 

total isospin T = 0, is the sum of two quartets

Q +
ivs = Q +

iv + Q +
is , (22)

where Q +
iv is the quartet (4) built by isovector pairs while Q +

is is 
formed by two isoscalar pairs coupled to total J = 0, i.e.,

Q +
is =

∑

j1 j2 j3 j4

y j1 j2 j3 j4[D+
j1 j2

D+
j3 j4

]J=0. (23)

A simpler version of this approach can be obtained by adopting 
in (23) the factorization y j1 j2 j3 j4 = y j1, j2= j̄1

y j3, j4= j̄3
(the bar in-

dicating time-reversing) and by using the expression (6) for the 
isovector quartet. This QCM approximation has been investigated 
in detail in Ref. [12] and will not be further discussed in the 
present work.

Acting as in the isovector pairing case, in correspondence with 
the QCM ansatz (21) for the ground state, we construct a class of 
excited states by replacing a quartet of the condensate with an “ex-
cited” quartet. For the case of a spherically-symmetric mean field, 
these states take the form

|"ν, J J z ⟩ = Q̃ ν, J J z (Q +
ivs)

nq−1|−⟩, (24)

where the operator Q̃ ν, J J z is identical to that defined in Eq. (16). 
In order to define its coefficients Y (ν)

J J z
, one has now to diagonalize 

the Hamiltonian (19) in the basis of non-orthogonal states

[P+
J1,T ′(i1, j1)P+

J2,T ′(i2, j2)]J ,T =0
J z

(Q +
ivs)

nq−1|−⟩. (25)

To illustrate the accuracy of the approximation (24) we have 
still referred to the case of 28Si and assumed an isovector-isoscalar 
pairing force corresponding to the ( J = 0, T = 1) and ( J = 1, T =
0) channels of the USDB interaction [23]. Exact and approximate 
spectra are shown in Fig. 4. It can be seen that the inclusion of 
the isoscalar force removes the degeneracies observed in the case 
of the isovector interaction. The overall agreement is good also in 
this case although the quality of the overlaps is, in some cases, not 
as high as that of Fig. 3. As a peculiarity, we notice that the first 
excited J = 6 state has not a corresponding state in the QCM ap-
proximation while the second J = 6 exact state is well reproduced 
both for the energy and the overlap.

4. Summary and conclusions

We have extended the quartet condensation model (QCM) to 
describe the T = 0 excited states of proton-neutron pairing Hamil-
tonians. These excited states have been generated by breaking a 
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Fig. 3. The low-lying spectrum provided by the QCM approximation (17) for the 
valence nucleons of 28Si interacting by an isovector pairing force extracted from the 
USDB interaction. The numbers are the overlaps between the QCM and the exact 
wave functions. Energies are in MeV.
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This quartet is employed to define the exited states

|"ν, J J z ⟩ = Q̃ ν, J J z (Q +
iv)nq−1|−⟩, (17)

where the collective quartet Q +
iv is still restricted to isovector pairs 

only. Q +
iv has been assumed to be of the type (4), by therefore 

excluding a factorization of the coefficients xij . Similarly to the 
cases discussed above, in order to find the coefficients Y (ν)

J M of the 
quartet (16) and so construct the excited states one needs to diag-
onalize the Hamiltonian (1) in the space of non-orthogonal states

[P+
J1,T ′(i1, j1)P+

J2,T ′(i2, j2)]J ,T =0
J z

(Q +
iv)nq−1|−⟩. (18)

To assess the validity of the approximation (17) we have per-
formed calculations for a system of N = Z = 6 nucleons moving 
in the sd-shell and interacting with an isovector pairing force ex-
tracted from the USDB interaction [23]. This system corresponds 
to 28Si. The energies obtained for the low-lying T = 0 states (17)
are given in Fig. 3 and are compared with the exact eigenvalues 
(calculated with the shell model code BIGSTICK [24]). As it can be 
seen, the approximation (17) reproduces quite well the exact re-
sults with overlaps between corresponding states which are close 
to unity for all the low-lying states.
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As in the previous section, we start by recalling the QCM ap-
proach for the ground state of the isovector-isoscalar Hamiltonian 
[13]. For even-even N = Z systems the QCM ansatz for the ground 
state has formally the same expression as in the case of isovector 
pairing
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valence nucleons of 28Si interacting by an isovector-isoscalar pairing force extracted 
from the USDB interaction. The numbers are the overlaps between the QCM and the 
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(the bar in-
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isovector quartet. This QCM approximation has been investigated 
in detail in Ref. [12] and will not be further discussed in the 
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To illustrate the accuracy of the approximation (24) we have 
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pairing force corresponding to the ( J = 0, T = 1) and ( J = 1, T =
0) channels of the USDB interaction [23]. Exact and approximate 
spectra are shown in Fig. 4. It can be seen that the inclusion of 
the isoscalar force removes the degeneracies observed in the case 
of the isovector interaction. The overall agreement is good also in 
this case although the quality of the overlaps is, in some cases, not 
as high as that of Fig. 3. As a peculiarity, we notice that the first 
excited J = 6 state has not a corresponding state in the QCM ap-
proximation while the second J = 6 exact state is well reproduced 
both for the energy and the overlap.

4. Summary and conclusions

We have extended the quartet condensation model (QCM) to 
describe the T = 0 excited states of proton-neutron pairing Hamil-
tonians. These excited states have been generated by breaking a 
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Fig. 3. The low-lying spectrum provided by the QCM approximation (17) for the 
valence nucleons of 28Si interacting by an isovector pairing force extracted from the 
USDB interaction. The numbers are the overlaps between the QCM and the exact 
wave functions. Energies are in MeV.
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Fig. 3. The low-lying spectrum provided by the QCM approximation (17) for the 
valence nucleons of 28Si interacting by an isovector pairing force extracted from the 
USDB interaction. The numbers are the overlaps between the QCM and the exact 
wave functions. Energies are in MeV.
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(calculated with the shell model code BIGSTICK [24]). As it can be 
seen, the approximation (17) reproduces quite well the exact re-
sults with overlaps between corresponding states which are close 
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still referred to the case of 28Si and assumed an isovector-isoscalar 
pairing force corresponding to the ( J = 0, T = 1) and ( J = 1, T =
0) channels of the USDB interaction [23]. Exact and approximate 
spectra are shown in Fig. 4. It can be seen that the inclusion of 
the isoscalar force removes the degeneracies observed in the case 
of the isovector interaction. The overall agreement is good also in 
this case although the quality of the overlaps is, in some cases, not 
as high as that of Fig. 3. As a peculiarity, we notice that the first 
excited J = 6 state has not a corresponding state in the QCM ap-
proximation while the second J = 6 exact state is well reproduced 
both for the energy and the overlap.
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Fig. 3. The low-lying spectrum provided by the QCM approximation (17) for the 
valence nucleons of 28Si interacting by an isovector pairing force extracted from the 
USDB interaction. The numbers are the overlaps between the QCM and the exact 
wave functions. Energies are in MeV.
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sults with overlaps between corresponding states which are close 
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Fig. 3. The low-lying spectrum provided by the QCM approximation (17) for the 
valence nucleons of 28Si interacting by an isovector pairing force extracted from the 
USDB interaction. The numbers are the overlaps between the QCM and the exact 
wave functions. Energies are in MeV.
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formed by two isoscalar pairs coupled to total J = 0, i.e.,

Q +
is =

∑

j1 j2 j3 j4

y j1 j2 j3 j4[D+
j1 j2

D+
j3 j4

]J=0. (23)

A simpler version of this approach can be obtained by adopting 
in (23) the factorization y j1 j2 j3 j4 = y j1, j2= j̄1

y j3, j4= j̄3
(the bar in-

dicating time-reversing) and by using the expression (6) for the 
isovector quartet. This QCM approximation has been investigated 
in detail in Ref. [12] and will not be further discussed in the 
present work.

Acting as in the isovector pairing case, in correspondence with 
the QCM ansatz (21) for the ground state, we construct a class of 
excited states by replacing a quartet of the condensate with an “ex-
cited” quartet. For the case of a spherically-symmetric mean field, 
these states take the form

|"ν, J J z ⟩ = Q̃ ν, J J z (Q +
ivs)

nq−1|−⟩, (24)

where the operator Q̃ ν, J J z is identical to that defined in Eq. (16). 
In order to define its coefficients Y (ν)

J J z
, one has now to diagonalize 

the Hamiltonian (19) in the basis of non-orthogonal states

[P+
J1,T ′(i1, j1)P+

J2,T ′(i2, j2)]J ,T =0
J z

(Q +
ivs)

nq−1|−⟩. (25)

To illustrate the accuracy of the approximation (24) we have 
still referred to the case of 28Si and assumed an isovector-isoscalar 
pairing force corresponding to the ( J = 0, T = 1) and ( J = 1, T =
0) channels of the USDB interaction [23]. Exact and approximate 
spectra are shown in Fig. 4. It can be seen that the inclusion of 
the isoscalar force removes the degeneracies observed in the case 
of the isovector interaction. The overall agreement is good also in 
this case although the quality of the overlaps is, in some cases, not 
as high as that of Fig. 3. As a peculiarity, we notice that the first 
excited J = 6 state has not a corresponding state in the QCM ap-
proximation while the second J = 6 exact state is well reproduced 
both for the energy and the overlap.

4. Summary and conclusions

We have extended the quartet condensation model (QCM) to 
describe the T = 0 excited states of proton-neutron pairing Hamil-
tonians. These excited states have been generated by breaking a 
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Fig. 3. The low-lying spectrum provided by the QCM approximation (17) for the 
valence nucleons of 28Si interacting by an isovector pairing force extracted from the 
USDB interaction. The numbers are the overlaps between the QCM and the exact 
wave functions. Energies are in MeV.
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This quartet is employed to define the exited states

|"ν, J J z ⟩ = Q̃ ν, J J z (Q +
iv)nq−1|−⟩, (17)

where the collective quartet Q +
iv is still restricted to isovector pairs 

only. Q +
iv has been assumed to be of the type (4), by therefore 

excluding a factorization of the coefficients xij . Similarly to the 
cases discussed above, in order to find the coefficients Y (ν)

J M of the 
quartet (16) and so construct the excited states one needs to diag-
onalize the Hamiltonian (1) in the space of non-orthogonal states
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(Q +
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To assess the validity of the approximation (17) we have per-
formed calculations for a system of N = Z = 6 nucleons moving 
in the sd-shell and interacting with an isovector pairing force ex-
tracted from the USDB interaction [23]. This system corresponds 
to 28Si. The energies obtained for the low-lying T = 0 states (17)
are given in Fig. 3 and are compared with the exact eigenvalues 
(calculated with the shell model code BIGSTICK [24]). As it can be 
seen, the approximation (17) reproduces quite well the exact re-
sults with overlaps between corresponding states which are close 
to unity for all the low-lying states.

3. Excited states for the isovector-isoscalar pairing

The isovector-isoscalar pairing Hamiltonian has the expression
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∑
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The first two terms are the same as in Eq. (1) while the last term 
is the isoscalar pairing interaction written in term of the isoscalar 
pair operator

D+
j1 j2 J z

= 1
√

1 + δ j1 j2

[a+
j1

a+
j2
]J=1,T =0

J z
(20)

As in the previous section, we start by recalling the QCM ap-
proach for the ground state of the isovector-isoscalar Hamiltonian 
[13]. For even-even N = Z systems the QCM ansatz for the ground 
state has formally the same expression as in the case of isovector 
pairing

Fig. 4. The low-lying spectrum provided by the QCM approximation (24) for the 
valence nucleons of 28Si interacting by an isovector-isoscalar pairing force extracted 
from the USDB interaction. The numbers are the overlaps between the QCM and the 
exact wave functions. Energies are in MeV.
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To illustrate the accuracy of the approximation (24) we have 
still referred to the case of 28Si and assumed an isovector-isoscalar 
pairing force corresponding to the ( J = 0, T = 1) and ( J = 1, T =
0) channels of the USDB interaction [23]. Exact and approximate 
spectra are shown in Fig. 4. It can be seen that the inclusion of 
the isoscalar force removes the degeneracies observed in the case 
of the isovector interaction. The overall agreement is good also in 
this case although the quality of the overlaps is, in some cases, not 
as high as that of Fig. 3. As a peculiarity, we notice that the first 
excited J = 6 state has not a corresponding state in the QCM ap-
proximation while the second J = 6 exact state is well reproduced 
both for the energy and the overlap.

4. Summary and conclusions
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describe the T = 0 excited states of proton-neutron pairing Hamil-
tonians. These excited states have been generated by breaking a 
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Fig. 3. The low-lying spectrum provided by the QCM approximation (17) for the 
valence nucleons of 28Si interacting by an isovector pairing force extracted from the 
USDB interaction. The numbers are the overlaps between the QCM and the exact 
wave functions. Energies are in MeV.
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from the USDB interaction. The numbers are the overlaps between the QCM and the 
exact wave functions. Energies are in MeV.
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To illustrate the accuracy of the approximation (24) we have 
still referred to the case of 28Si and assumed an isovector-isoscalar 
pairing force corresponding to the ( J = 0, T = 1) and ( J = 1, T =
0) channels of the USDB interaction [23]. Exact and approximate 
spectra are shown in Fig. 4. It can be seen that the inclusion of 
the isoscalar force removes the degeneracies observed in the case 
of the isovector interaction. The overall agreement is good also in 
this case although the quality of the overlaps is, in some cases, not 
as high as that of Fig. 3. As a peculiarity, we notice that the first 
excited J = 6 state has not a corresponding state in the QCM ap-
proximation while the second J = 6 exact state is well reproduced 
both for the energy and the overlap.
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Fig. 3. The low-lying spectrum provided by the QCM approximation (17) for the 
valence nucleons of 28Si interacting by an isovector pairing force extracted from the 
USDB interaction. The numbers are the overlaps between the QCM and the exact 
wave functions. Energies are in MeV.
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To illustrate the accuracy of the approximation (24) we have 
still referred to the case of 28Si and assumed an isovector-isoscalar 
pairing force corresponding to the ( J = 0, T = 1) and ( J = 1, T =
0) channels of the USDB interaction [23]. Exact and approximate 
spectra are shown in Fig. 4. It can be seen that the inclusion of 
the isoscalar force removes the degeneracies observed in the case 
of the isovector interaction. The overall agreement is good also in 
this case although the quality of the overlaps is, in some cases, not 
as high as that of Fig. 3. As a peculiarity, we notice that the first 
excited J = 6 state has not a corresponding state in the QCM ap-
proximation while the second J = 6 exact state is well reproduced 
both for the energy and the overlap.
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pair condensate formed by the neutron pairs in excess [13]; (iii) when treated by the quartet

condensation formalism the isovector pairing is able to describe reasonably well the Wigner

energies [14].

The scope of this letter is to generalize the quartet condensation model of Ref. [12] for the

treatment of both the isovector pairing and isoscalar proton-neutron pairing. An important

prediction of this formalism, at variance with most HFB calculations, is the coexistence of

the isovector and isoscalar proton-neutron correlations for any pairing interactions and any

N=Z system.

The systems we study here are composed of an equal number of neutrons and protons

which move in a deformed mean field with axially symmetry. The nucleons are interacting

through an isoscalar proton-neutron pairing force and an isovector pairing force, the latter

including both the proton-neutron pairing and like-particle pairing. The Hamiltonian which

describe these systems is given by:

Ĥ =
∑

i,τ=±1/2

εiτNiτ +
∑

i,j

V T=1(i, j)
∑

t=−1,0,1

P+
i,tPj,t +

∑

i,j

V T=0(i, j)D+
i,0Dj,0 (1)

where εiτ are the single-particle energies associated to the mean fields of neutrons (τ = 1/2)

and protons (τ = −1/2). In the case of the axially mean field, supposed here, i = {a,Ω},

where Ω is the projection of the angular momentum on z-axis, while a are the other quantum

numbers which label the single-particle sates. The second term is the most general isovector

pairing interaction expressed by the non-collective pair operators P+
i,1= ν+

i ν
+
ī , P

+
i,−1= π+

i π
+
ī

and P+
i,0 = (ν+

i π
+
ī + π+

i ν
+
ī )/

√
2. The third term is the isoscalar proton-neutron pairing

interaction while D+
i,0= (ν+

i π
+
ī − π+

i ν
+
ī )/

√
2 is the operator which creates a non-collective

isoscalar proton-neutron pairs. The operators ν+
i and π+

i create, respectively, a neutron and

a proton in the state i while ī = {a,−Ω} denotes the time conjugate of the state i.

It can be observed that all pairs operators considered here are constructed with the

nucleons in time-reversed axially deformed states. Therefore the pairs have Jz = 0, where

Jz is the projection of the angular momentum on z-axis, but not a well-defined J . In fact,

the isovector pairs and the isoscalar pairs with Jz = 0, built with axially deformed states,

can be seen as a superposition of pairs with J = {0, 2, 4, ..} and, respectively, J = {1, 3,5, ..}.

This fact means that the Hamiltonian (1) is not physically equivalent with the spherically

symmetric pairing Hamiltonians in which are considered only J=0 isovector pairs and J=1

isoscalar proton-neutron pairs.
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a proton in the state i while ī = {a,−Ω} denotes the time conjugate of the state i.

It can be observed that all pairs operators considered here are constructed with the

nucleons in time-reversed axially deformed states. Therefore the pairs have Jz = 0, where

Jz is the projection of the angular momentum on z-axis, but not a well-defined J . In fact,

the isovector pairs and the isoscalar pairs with Jz = 0, built with axially deformed states,

can be seen as a superposition of pairs with J = {0, 2, 4, ..} and, respectively, J = {1, 3,5, ..}.

This fact means that the Hamiltonian (1) is not physically equivalent with the spherically

symmetric pairing Hamiltonians in which are considered only J=0 isovector pairs and J=1

isoscalar proton-neutron pairs.
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Ĥ =
∑

i,τ=±1/2

εiτNiτ +
∑

i,j

V T=1(i, j)
∑

t=−1,0,1

P+
i,tPj,t +

∑

i,j

V T=0(i, j)D+
i,0Dj,0 (1)

where εiτ are the single-particle energies associated to the mean fields of neutrons (τ = 1/2)

and protons (τ = −1/2). In the case of the axially mean field, supposed here, i = {a,Ω},

where Ω is the projection of the angular momentum on z-axis, while a are the other quantum

numbers which label the single-particle sates. The second term is the most general isovector

pairing interaction expressed by the non-collective pair operators P+
i,1= ν+

i ν
+
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This fact means that the Hamiltonian (1) is not physically equivalent with the spherically

symmetric pairing Hamiltonians in which are considered only J=0 isovector pairs and J=1

isoscalar proton-neutron pairs.

3
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ij
∑ [Piτ

+Pjτ '
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Pi1
+ =ν i

+ν i
+ Pi−1

+ = π i
+π i

+

isovector isoscalar 

N.S, D.Negrea, D. Gambacurta, Phys. Lett. B (2015)  

exact solution for degenerate levels  ! 



Competition between isovector and isoscalar pairing 

isovector and isoscalar pairing  always coexist together  

| iv >= (Q+ )nq |− > | is >= (Δ0
+2 )nq |− >|Ψ >= (Q+ +Δ0

+2 )nq |− >

Vparing
T={0,1} = v0

T={0,1}δ(r1 − r2 )P̂S={0,1} v0
T=0 =1.5 v0

T=1

pairing on top of  deformed  Skyrme-HF 

N.S, D.Negrea, D. Gambacurta, Phys. Lett. B (2015)  

TABLE I: Correlation energies calculated in the PQCM approximation compared to the exact

results. Are shown also the correlations energies obtained with the isovector | ivi and isoscalar

| isi states defined by Eqs. (8,9). In the last column are given the overlaps between these states.

exact |  i | ivi | isi hiv | isi

20Ne 11.38 11.38 (0.00%) 11.31 (0.62%) 10.92 (4.00%) 0.976

24Mg 19.32 19.31 (0.03%) 19.18 ( 0.74%) 18.93 (2.00%) 0.980

28Si 18.74 18.74 (0.01%) 18.71 ( 0.14%) 18.54 (1.07%) 0.992

44Ti 7.095 7.094 (0.02%) 7.08 (0.18%) 6.30 (10.78%) 0.928

48Cr 12.78 12.76 (0.1%) 12.69 ( 0.67%) 12.22 (4.37%) 0.936

52Fe 16.39 16.34 (0.26%) 16.19 ( 1.17%) 15.62 (4.65%) 0.946

104Te 4.53 4.52 (0.06%) 4.49 (0.82%) 4.02 (11.26%) 0.955

108Xe 8.08 8.03 (0.61%) 7.96 (1.45%) 6.75 (16.47%) 0.814

112Ba 9.36 9.27 (0.93%) 9.22 (1.43 %) 7.50 (19.81%) 0.784

consider 10 single-particle levels above the closed cores mentioned above. Since the mean

field is axially symmetric, the levels are double degenerate over the projection of the angular

momentum on z axis. In addition, because we neglect the Coulomb interaction, the levels

are also degenerate in isospin.

How to fix the pairing interactions in the two channels for N=Z nuclei is a di�cult task.

Here we shall use the prescriptions suggested in Refs.[5, 17, 18]. Thus, for the pairing force

in the coordinate space we take a zero range delta interaction V
T=0,1(r1, r2) = V

T=0,1
0 �(r1 �

r2). The matrix elements of this interaction in the isovector and the isoscalar channels are

calculated by projecting out from the two-body wave function the component with the total

spin S=0 and, respectively, with (S = 1, Sz = 0). The strength of the force in the the

two channel is taken as V
T=1
0 = V0 and V

T=0
0 = xV0. Since the values of the constants

V0 and x are also a matter of debate, we have done calculations with various parameters,

i.e., V0 = {300, 465, 720} and x = {1, 1.25, 1.5, 175}. Because the conclusions relevant for

this study are similar in all these calculations, below we are presenting only the results for

V0 = 465 and x = 1.5, which are the values suggested, respectively, in Ref.[17] and Ref.[5].

The results of the calculations are displayed in Table I. In the second and third columns
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We analyze the contribution of isovector and isoscalar proton-neutron pairing to the binding energies of even-
even nuclei with N − Z = 0, 2, 4 and atomic mass 20 < A < 100. The binding energies are calculated in the
mean-field approach by coupling a Skyrme-type functional to an isovector-isoscalar pairing force of zero range.
The latter is treated in the framework of quartet condensation model (QCM), which conserves exactly the particle
number and the isospin. The interdependence of pairing and deformation is taken into account by performing
self-consistent Skyrme-HF + QCM calculations in the intrinsic system. It is shown that the binding energies
are not changing much when the isoscalar pairing is switched on. This fact is related to the off-diagonal matrix
elements of the pairing force, which are less attractive for the isoscalar force, and to the competition between the
isoscalar and isovector pairing channels.
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I. INTRODUCTION

In nuclei close to N = Z line, it is usually considered to be
important two types of proton-neutron (pn) pairing correla-
tions, corresponding to spin-singlet isovector (S = 0, T = 1)
and spin-triplet isoscalar (S = 1, T = 0) pn pairs. Due to the
isospin invariance of nuclear forces, the isovector pn pairing is
supposed to play a similar role as the standard neutron-neutron
and proton-proton pairing. Much less is known, however,
about the role played by the isoscalar pn pairing in nuclei.
In fact, for many years, a lot of effort has been focused on
finding the fingerprints of isoscalar pn pairing correlations in
various nuclear observables such as binding energies, high-
spin excitations, proton-neutron transfer cross sections, etc.
(e.g., see the recent reviews [1,2]).

The majority of theoretical studies on pn pairing have
been done in the Hartree-Fock-Bogoliubov (HFB) approach.
In HFB, the pn pairing, both isovector and isoscalar, is treated
together with the like-particle pairing through the generalized
Bogoliubov transformation (e.g., see Refs. [3– 5] and refer-
ences quoted therein). For most nuclei, the HFB calculations
predict T = 1 pairing correlations in the ground state. The
T = 0 pairing and the coexistence between T = 1 and T = 0
pairing is predicted for a few nuclei, but these predictions
depend strongly on the chosen parameters and the calculation
scheme. It is also not clear how these predictions are affected
by the nonconservation of particle number, isospin, and angu-
lar momentum, which are specific to HFB calculations done
with the isovector-isoscalar pairing interactions. To conserve
all these quantities in HFB calculations is a difficult task and
some results along this line exist only for the trivial case

* Corresponding author: sandulescu@theory.nipne.ro

of degenerate levels [6,7]. Realistic beyond-HFB calculations
with particle number and angular-momentum projections have
been done recently, but with the projection performed after
the variation [8]. Another source of uncertainty comes from
the fact that, in the majority of HFB calculations, the mean
field is kept fixed, so the competition between pairing and
deformation is not taken into account dynamically [4]. This is
also the case of the most recent HFB calculations, done on the
top of a fixed spherically symmetric mean field, in which the
effect of the deformation on pairing is neglected completely
[5].

An alternative approach to take into account the isovector-
isoscalar pairing correlations in mean-field approximations
was proposed in Refs. [9,10]. In this approach, called the quar-
tet condensation model (QCM), the ground state of N = Z
nuclei is described as a product of quartets built by two pro-
tons and two neutrons coupled to the total isospin T = 0. By
construction, in the QCM the ground state conserves exactly
both the particle number and the isospin. When the quartets
are built with spherically symmetric single-particle states, the
QCM ground state has also a well-defined angular momentum
[11].

Previous studies have shown that the QCM approach pro-
vides accurate results for isovector-isoscalar pairing Hamil-
tonians which can be solved exactly [9– 11]. The purpose
of this work is to extend these studies to self-consistent
mean-field plus pairing calculations and to analyze, within
the QCM framework, the contribution of T = 1 and T = 0
pairing correlations to the ground-state energy of nuclei
close to N = Z line. The novel feature of the present cal-
culations is that they take into account dynamically the
competition between pairing and deformation in a formalism
which conserves exactly both the particle number and the
isospin.

2469-9985/2022/105(3)/034325(9) 034325-1 ©2022 American Physical Society
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pair condensate formed by the neutron pairs in excess [13]; (iii) when treated by the quartet

condensation formalism the isovector pairing is able to describe reasonably well the Wigner

energies [14].

The scope of this letter is to generalize the quartet condensation model of Ref. [12] for the

treatment of both the isovector pairing and isoscalar proton-neutron pairing. An important

prediction of this formalism, at variance with most HFB calculations, is the coexistence of

the isovector and isoscalar proton-neutron correlations for any pairing interactions and any

N=Z system.

The systems we study here are composed of an equal number of neutrons and protons

which move in a deformed mean field with axially symmetry. The nucleons are interacting

through an isoscalar proton-neutron pairing force and an isovector pairing force, the latter

including both the proton-neutron pairing and like-particle pairing. The Hamiltonian which

describe these systems is given by:

Ĥ =
∑

i,τ=±1/2

εiτNiτ +
∑

i,j

V T=1(i, j)
∑

t=−1,0,1

P+
i,tPj,t +

∑

i,j

V T=0(i, j)D+
i,0Dj,0 (1)

where εiτ are the single-particle energies associated to the mean fields of neutrons (τ = 1/2)

and protons (τ = −1/2). In the case of the axially mean field, supposed here, i = {a,Ω},

where Ω is the projection of the angular momentum on z-axis, while a are the other quantum

numbers which label the single-particle sates. The second term is the most general isovector

pairing interaction expressed by the non-collective pair operators P+
i,1= ν+

i ν
+
ī , P

+
i,−1= π+

i π
+
ī

and P+
i,0 = (ν+

i π
+
ī + π+

i ν
+
ī )/

√
2. The third term is the isoscalar proton-neutron pairing

interaction while D+
i,0= (ν+

i π
+
ī − π+

i ν
+
ī )/

√
2 is the operator which creates a non-collective

isoscalar proton-neutron pairs. The operators ν+
i and π+

i create, respectively, a neutron and

a proton in the state i while ī = {a,−Ω} denotes the time conjugate of the state i.

It can be observed that all pairs operators considered here are constructed with the

nucleons in time-reversed axially deformed states. Therefore the pairs have Jz = 0, where

Jz is the projection of the angular momentum on z-axis, but not a well-defined J . In fact,

the isovector pairs and the isoscalar pairs with Jz = 0, built with axially deformed states,

can be seen as a superposition of pairs with J = {0, 2, 4, ..} and, respectively, J = {1, 3,5, ..}.

This fact means that the Hamiltonian (1) is not physically equivalent with the spherically

symmetric pairing Hamiltonians in which are considered only J=0 isovector pairs and J=1

isoscalar proton-neutron pairs.
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It can be observed that all pairs operators considered here are constructed with the

nucleons in time-reversed axially deformed states. Therefore the pairs have Jz = 0, where

Jz is the projection of the angular momentum on z-axis, but not a well-defined J . In fact,

the isovector pairs and the isoscalar pairs with Jz = 0, built with axially deformed states,

can be seen as a superposition of pairs with J = {0, 2, 4, ..} and, respectively, J = {1, 3,5, ..}.

This fact means that the Hamiltonian (1) is not physically equivalent with the spherically

symmetric pairing Hamiltonians in which are considered only J=0 isovector pairs and J=1
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Fig. 1. The energy difference between the lowest T = 1 and T = 0 states as a function of N = Z = A/2. The
experimental data are extracted from Ref. [16]. The solid lines show the exact results obtained by diagonalizing
the Hamiltonian (1). The calculations correspond to the strength V0 = 465 MeV fm−3 and to various scaling
factors w.

For the scaling factor w we also used various values, w = {1.0, 1.3, 1.5, 1.6}. To find the most
appropriate value of w for the strength V0 = 465 MeV fm−3 we searched for the best agreement
with the energy difference between the first excited state and the ground state of odd–odd nuclei.
These energy differences are shown in Fig. 1 by black squares. It is worth mentioning that the lowest
T = 0 state can have various angular momenta J ≥ 1 (e.g., the ground states of 22Na and 26Al have
J = 3 and J = 5, respectively).

The theoretical results shown in Fig. 1 correspond to the exact diagonalization of the Hamiltonian
(1) in a space spanned by 10 single-particle levels above the 16O and 40Ca cores. The best agreement
with the experimental data is obtained by choosing w = 1.6 for sd-shell nuclei and w = 1.0 for
pf -shell nuclei. The results corresponding to this choice are indicated in Fig. 1 by full symbols.
In Fig. 1 we also show the results obtained considering only the isovector pairing force, i.e., for
w = 0.0. It can be seen that in this case the predictions are quite far from the data, especially for
the sd-shell nuclei. For the nuclei above 100Sn there are no experimental data on low-lying states
available to be used for fixing the scaling factor w. Therefore, for these nuclei, we have chosen the
same value for w as for the pf -shell nuclei.

With the parameters of the Hamiltonian fixed as explained above, we have studied the accuracy
of the energies of the lowest T = 0 and T = 1 states predicted by the extended QCM approach
for the odd–odd nuclei. The results are presented in Table 2. This shows the correlation energies
defined as Ecorr = E0 −E, where E is the total energy, while E0 is the noninteracting energy obtained
by switching off the pairing interactions. The correlation energies predicted by the QCM functions
(6), (7) are given in the fourth column. The errors relative to the exact energies shown in the third
column are given in brackets. It can be observed that, for all the states and nuclei shown in Table
2, the errors are small, under 1%. We can thus conclude that the QCM functions (6), (7) provide an
accurate description of the lowest T = 0 and T = 1 states of the Hamiltonian (1).

One of the advantages of the QCM approach is the opportunity to study the relevance of various
types of pairing correlations directly through the structure of the trial states (6), (7). As discussed in
the previous section, this is possible by using the approximations (10)–(15). The correlation energies
corresponding to these approximations are shown in Table 2. The errors relative to the exact results
are given in brackets. One can observe that the smallest errors correspond to the approximations (10),
(11), in which the contribution of the isoscalar pairs in the even–even core of the QCM functions is
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The structure of lowest T=0 and T=1 states 

T=0  ground state 

T=1 ground  state  

Table 2: Correlation energies, in MeV, for the lowest T=1 and T=0 states. In the brackets

are given the errors relative to the exact values indicated in the 3rd column. Are shown the

results corresponding to the QCM states (6,7) and to the approximations defined by Eqs.

(10-15).

Exact |QCMi |iv/is;QCMivi |iv;Cisi/|Cisi |Civi/|is;Civi
22Na T=0 13.87 13.87 (0.00%) 13.86 (0.07%) 13.85 (0.12%) 13.85 (0.15%)

T=1 13.23 13.23 (0.03%) 13.22 (0.05%) 12.97 (1.97%) 13.22 (0.11%)
26Al T=0 22.06 22.05 (0.03%) 22.04 (0.07%) 21.94 (0.53%) 21.79 (1.24%)

T=1 21.07 21.06 (0.02%) 21.05 (0.07%) 20.93 (0.66%) 20.98 (0.41%)
30P T=0 12.66 12.60 (0.44%) 12.55 (0.86%) 11.96 (5.86%) 11.94 (5.95%)

T=1 11.72 11.66 (0.44%) 11.62 (0.82%) 10.94 (7.11%) 10.96 (6.94%)
46V T=1 7.92 7.92 (0.04%) 7.91 (0.10%) 7.33 (8.11%) 7.76 (2.11%)

T=0 6.93 6.93 (0.01%) 6.93 (0.07%) 6.73 (2.99%) 6.79 (2.05%)
50Mn T=1 12.77 12.76 (0.07%) 12.75 (0.14%) 12.52 (2.02%) 12.62 (1.22%)

T=0 12.37 12.36 (0.04%) 12.34 (0.24%) 12.18 (1.61%) 12.19 (1.48%)
54Co T=1 16.14 16.12 (0.14%) 16.09 (0.28%) 15.67 (3.01%) 15.86 (1.78%)

T=0 15.93 15.92 (0.04%) 15.89 (0.22%) 15.53 (2.56%) 15.66 (1.73%)
106I T=1 5.15 5.14 (0.08%) 5.13 (0.23%) 4.71 (9.37%) 4.93 (4.51%)

T=0 4.53 4.52 (0.04%) 4.51 (0.42%) 4.19 (7.84%) 4.29 (5.53%)
110Cs T=1 8.03 7.98 (0.56%) 7.97 (0.75%) 7.16 (12.14%) 7.59 (5.86%)

T=0 7.09 7.06 (0.45%) 7.04 (0.80%) 6.47 (9.64%) 6.65 (6.77%)
114La T=1 9.76 9.72 (0.36%) 9.69 (0.73%) 8.79 (11.03%) 9.27 (5.23%)

T=0 8.95 8.93 (0.28%) 8.92 (0.42%) 8.31 (7.74%) 8.51 (5.18%)

non-interacting energy obtained by switching o↵ the pairing interactions. The correlation

energies predicted by the QCM functions (6,7) are given in the 4th column. In the brackets

are indicated the errors relative to the exact energies shown in the 3rd column. It can be

observed that for all the states and nuclei shown in Table 2 the errors are small, under 1%.

We can thus conclude that the QCM functions (6,7) provide an accurate description of the

lowest T=0 and T=1 states of the Hamiltonian (1).

One of the advantages of the QCM approach is the opportunity to study the relevance of

various types of pairing correlations directly through the structure of the trial states (6,7).

As discussed in the previous Section, this is possible by using the approximations (10-15).

The correlation energies corresponding to these approximations are shown in Table 2. In

brackets are given the errors relative to the exact results. One can observe that the smallest

errors correspond to the approximations (10,11) in which the contribution of the isoscalar

pairs in the even-even core of the QCM functions is neglected. It can be seen that, compared

to the calculations with the full QCM functions, in these approximations the errors are

increasing by 2-3 times for T=1 states and by larger factors for some T=0 states. However,

all the errors relative to the exact results remain under 1%.
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Fig. 2. Pairing energies, in MeV, for the odd–odd N = Z nuclei as a function of the mass number A. In the
upper (lower) panel are shown the results for the sd-shell (pf -shell) nuclei.

contributions from the isoscalar (isovector) pairing correlations, a fact that comes from the mixing
of isovector and isoscalar degrees of freedom through the even–even core of the QCM functions.

In the upper (a) panel of Fig. 2 are plotted the pairing energies in the ground T = 0 states of
sd-shell nuclei. The pairing energy ET=0

pn for 18F, which corresponds to one T = 0 pair above 16O,
is shown for reference. It can be seen that the curves for ET=0

pn and ET=1
pn are almost parallel. This

indicates that the extra pairing energy in the T = 0 channel for A > 18 is related mainly to the
contribution of the odd pn T = 0 pairs. It is also worth noticing that the total pairing energy in the
T = 1 channel also contains the contribution from the proton–proton (pp) and neutron–neutron (nn)
pairing energies, which, due to the isospin symmetry, are equal to the pn T = 1 pairing energy.
Therefore, the total isovector pairing energy is comparable to the isoscalar pairing energy, although
the latter contains in addition a large contribution from the extra odd T = 0 pair.

In the lower (b) panel of Fig. 2 are plotted the pairing energies for the T = 1 ground states of
pf -shell nuclei. It can be seen that ET=0

pn is smaller than ET=1
pn and also smaller than the like-particle

pairing energy. At variance with what is seen in the upper panel, the energy difference ET=1
pn − ET=0

pn
for A > 42 is much larger than the energy of the odd pn T = 1 pair in 42Sc. Therefore, the larger pn
pairing energy in the isovector channel is not caused only by the extra pn T = 1 pair attached to the
even–even core.
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T = 1 channel also contains the contribution from the proton–proton (pp) and neutron–neutron (nn)
pairing energies, which, due to the isospin symmetry, are equal to the pn T = 1 pairing energy.
Therefore, the total isovector pairing energy is comparable to the isoscalar pairing energy, although
the latter contains in addition a large contribution from the extra odd T = 0 pair.
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pf -shell nuclei. It can be seen that ET=0

pn is smaller than ET=1
pn and also smaller than the like-particle

pairing energy. At variance with what is seen in the upper panel, the energy difference ET=1
pn − ET=0

pn
for A > 42 is much larger than the energy of the odd pn T = 1 pair in 42Sc. Therefore, the larger pn
pairing energy in the isovector channel is not caused only by the extra pn T = 1 pair attached to the
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T=0 pairing energy in odd-odd  N=Z  is originating from the odd T=0 pair  



conclusions  on odd-odd N=Z nuclei 

from the isospin of  the ground  states of  odd-odd N=Z nuclei one 
cannot draw conclusions on  the pn condensates in these nuclei !      

can we really probe the T=0 pn condensation by pn transfer ? 



•  fingerprints of nn pair condensation:       pair transfer  on a chain of isotopes  

•   fingerprints of quartet condensation :  alpha particle transfer along N=Z line ? 
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Kyoto, October 24th, 2011 slide 18/21

G. Potel et al, PRL107 (2011)    

projected-HFB/BCS and QCM predict a quartet condensation, not a pn condensation !  

can we extrapolate this BCS picture of  nn pairing condensation  to pn pairing ? 

Like-particle pair transfer versus a transfer 
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I(P1T,OL1,a2) has an anomaly starting with the UN 
threshold. Therefore, in Fig. 1(b) we have shown, 
by the dashed line, the values speculated from 
the calculation of Vph\TAL\ 2 above the ZN thresh-
old. 

Now let us see where these peaks come from. 
We can see that the two peaks are essentially de-
pendent on the character of TA E, in which SA con-
version is explicitly taken into account, by plot-
ting Fphl TAL\ 2 with respect to MAN as is shown 
in Fig. 1(c). The values calculated with potential 
set 1 a re indicated by a solid line. Two peaks 
naturally and clearly appear. The Vph\ TAL\2 cal-
culated with potential set 2 is indicated by a 
dashed line in Fig. 1(c). Notice that the peak just 
above the AN threshold clearly appears while the 
peak just below the EiV threshold does not appear. 

Thus we can give physical meanings to the two 
peaks. Firstly, the two peaks are simultaneous-
ly explained by two-channel formalism and these 
peaks are essentially dependent on the character 
of TA E. Secondly, the peak just below the ZiV 
threshold is mainly due to the Kp resonance; this 

Single-particle widths (spectroscopic strengths) 
of bound states in nuclei throughout the periodic 
table are well measured experimentally and to a 
considerable extent understood theoretically. 
The same has not been true experimentally until 
fairly recently and, in large measure, is still 
not true theoretically for a-particle spectroscop-
ic strengths. In this Letter we present for the 
first time the detailed experimental systematics 
of the ground-state a-particle spectroscopic 
strengths for nuclei ranging from 20Ne to 66Zn. 
The results, in summary, are an oscillatory de-
crease from 20Ne to 32S whose details are in sur-
prisingly good agreement with SU(3) theory, fol-
lowed by a striking increase at 36Ar and 40Ca. 
The spectroscopic strengths then decrease to a 

peak would not be explained by kinematical ef-
fects alone. Thirdly, the peak just above the AN 
threshold is due to the two-channel final-state in-
teraction or Ap final-state interaction associated 
with the DA conversion process. 

One of the authors (E.S.) would like to thank 
Professor Abdus Salam, the International Atomic 
Energy Agency, and UNESCO for hospitality at 
the International Centre for Theoretical Physics, 
Trieste. 
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minimum at 52Ti, after which they r ise again. 
This behavior in the upper half of the sd shell 
and lower half of the fp shell is not yet amenable 
to theoretical explanation. 

The results were obtained from measurements 
of the (6Li, d) reaction in the sd and//? shells1"*8 

using the University of Rochester MP tandem 
Van de Graaff accelerator. A study similar to 
that discussed here, but using the (d, 6Li) pickup 
reaction, was recently reported by Becchetti 
et al.9 In the limited region of overlap with the 
present results, the agreement is good as dis-
cussed below. 

The targets employed in the work reported here 
a re 1 6 ' l s O , 20'21«22Ne, 24'25Mg, 28Si, 32S, 36Ar, 
40, 42, 44, 48pg, 50rp^ 50, 5 2 p r 54, 5 6 p e a n d 5 8 » 6 0 » 6 2 N i 

Systematics of Ground-State a-Particle Spectroscopic Strengths for sd- and //7-Shell Nuclei* 

N. Anantaraman, C. L. Bennett, J. P. Draayer,f H. W. Fulbright, H. E. Gove, and J. Toke 
Nuclear Structure Research Laboratory, University of Rochester, Rochester, New York 14627 

(Received 13 August 1975) 

We present systematics of the ground-state a -particle spectroscopic strengths for nu-
clei from 20Ne to 66Zn, measured in the (6Li,d) reaction. An oscillatory decrease from 
20Ne to 32S, which is in excellent agreement with SU(3) theory, is followed by a striking 
and unexplained increase at 36Ar and 40Ca and then a decrease up to 52Ti, after which 
there is again a rise. 
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Alpha-clustering systematics from the quasifree (p,pa j knockout reaction
T. A. Carey, * P. G. Roos, N. S. Chant, A. Nadasen, and H. L. Chen

Department ofPhysics and Astronomy, Uni Uersity ofMaryland, College Park, Maryland 20742
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Cross sections for the (p,pa) reaction at 101.5 MeV have been measured for nine nuclei ranging from "0to "Zn.
Distorted-wave impulse approximation analyses of the ground state transitions provide relative alpha-cluster
spectroscopic factors in qualitative agreement with ('Li,d) studies, although quantitative differences exist. The
calculations are sensitive to the bound alpha-cluster parametrization, so that the experimental data suggest limits on
the rms radius of the cluster-core wave function.

NUCLEAR REACTIONS ~O, Ne, Mg, Si, S, Ca, "Ti, Fe, " Zn (p,pn),
E = 101.5 MeV; Measured (E&, E~, 8&, ON); DWIA analysis; deduced spectroscop-

ic factors.

Distorted-wave Born approximation (DWBA)
analyses of ('Li, d) cross section measurements
on even-even nuclei in the 2s-1d and 1f-2P shells
by Anantaraman et al. ' show an interesting oscil-
latory structure in the extracted alpha-cluster
spectroscopic factors, peaking near the closed
shell nuclei "0and "Ca and rising for the f-p
shell nuclei. A different DWBA analysis of the
same data' is in excellent agreement with those
reported in Ref. 1 for 44 &A ~ 52, but yields
values for 52 &A. & 66 which remain small and
relatively constant. However, an analysis by
Hanson et al. ' of ('Li, d) data obtained at about
the same energy tends to support the original
conclusions of Ref. 1. These analyses differ
principally in their choices of optical model po-
tentials for the QWBA calculations. Thus, there
appears to be considerable sensitivity to the
choice of these potentials as might be expected
since the ('Li, d) reaction is poorly momentum
matched for L =0 transitions (typically by more
than 200 MeV/c at 0' for the energies used).
As an alternative, alpha cluster spectroscopic

factors can be determined using quasifree alpha
knockout reactions which have the advantage that
momentum matching is possible at any bombarding
energy. Studies of the (p,po) reaction at 100 MeV

on 1P-shell nuclei4 provide absolute spectroscopic
factor s in good agr cement with she ll model pre-
dictions. Tests of the reaction mechanism' ' in-
dicate that the distorted-wave impulse approxi-
mation' (DWIA) provides a satisfactory descrip-
tion of the (P, Pn) reaction at these energies.
Furthermore, the proton and alpha optical po-
tentials required for the distorted wave analysis
are certainly better known than the 'Li potentials
needed for the equivalent ('Li, d) analysis. We
therefore chose to measure the (P,Pn) reaction
for nine of the nuclei studied with the ('Li, d}
reaction, to explore the oscillatory structure
observed in Ref. 1.
The experiment was carried out using a 101.5

MeV proton beam from the University of Mary-
land Cyclotron to bombard solid targets of '4Mg
(&99%), "Si (natural SiO, ), '"Ca (natural), "Ti
(&9K/o), and Zn (&99/0) and gas targets of "0
(natural), "Ne (&99/0), and "S (natural H, S). The
outgoing protons were detected with a 4.2 msr
solid state detector telescope consisting of a
500 pm Si surface barrier &E and a 15 mm in-
trinsic Ge E detector. The outgoing alpha par-
ticles were detected in a 1.3 msr 200 pm/4 mm
Si solid state &E/E detector telescope. ' Overall,
the absolute error due to target thicknesses,
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clei from 20Ne to 66Zn, measured in the (6Li,d) reaction. An oscillatory decrease from 
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(6Li,d) and (p,pα) data are consistent up to 32S ->28Si 



Spectroscopic factors (SF) : experiment 

28Si:  two possible values & large errors !  

need for better data !   
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Spectroscopic factors : theoretical calculations 

A. Volya, M. Sambataro and N.S, in preparation 

not a clear plateau region: sd- shell is too small 
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QCM (J=0,2,4) gives results close to SM 



Conclusions on a transfer (SF) 

to probe the quarteting one needs a transfer data for  a longer chain of  N=Z nuclei   ! 

α transfer in pf  – shell nuclei ? 

SM and QCM gives similar results for SF  

the ground state correlations in N=Z nuclei are of  quartet type  



one step ahead ? 

the Josephson effect ?  
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Josephson-like junctions, transiently established in heavy ion collisions between superfluid nuclei, few MeV
below the Coulomb barrier, allow for the back and forth transfer of a nuclear Cooper pair of e↵ectively charged
nucleons and thus the emission of �-rays. The semiclassical description of single Cooper pair alternating cur-
rent is shown to contain the gauge phases and gauge rotational frequencies as required by the Josephson (ac)
e↵ect, in keeping with the derivation of the transfer (tunneling) Hamiltonian in a gauge invariant representation.
The fact that such reaction description is equivalent to a second order DWBA T -matrix formulation extensively
used in the study of pairing rotational bands with two-particle transfer reactions, together with the nuclear struc-
ture result that the Bardeen-Cooper-Schrie↵er (BCS) condensation order parameter ↵0 =

P
⌫>0 U⌫V⌫ (number

of Cooper pairs), sum of the coherence factors U⌫V⌫ (proportional to the two-nucleon transfer spectroscopic
amplitudes), is quite stable with respect to model description, is found to be connected with the emergence of
two strongly convergent parameters (conserved quantities) within the time the abnormal densities of the two
superfluid nuclei overlap: a) the correlation length (dc); b) the number of emitted �-rays per cycle (ac), and
thus the dipole moment of the successively transferred nucleons. Result which leads to a nuclear parallel with
the direct current (dc) and alternating current (ac) Josephson e↵ects, and which testifies to the validity of BCS
theory of superconductivity down to few Cooper pair condensates, and single Cooper pair alternating currents.
The physics at the basis of a quantitative description of Cooper pair tunneling between weakly coupled super-
conductors or superfluid nuclei at energies below the Coulomb barrier, is that the process is dominated by the
successive transfer of the two partner fermions entangled over distances of the order of the coherence length,
⇡ 104Å in the case of lead, and 13.5 fm in the case of the reaction 116Sn +60 Ni !114 Sn(gs) +62 Ni(gs) at few
MeV below the Coulomb barrier.
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“ It has been suggested that heavy-ion reactions involving transfer of  two nucleons between superconducting  
nuclei [...] should exhibit enhancement phenomena similar to those observed in the Josephson effect in  
ordinary superconductors. Such an effect might also be observed in the alpha-transfer between alpha-
superconducting nuclei.”  



Thanks for your attention 


