ASSIE Marlène - Symposium "Frontiers in Nuclear Structure theory" - May 2022

24/05/2022

Neutron-proton pairing through transfer reactions : where do we stand ? + Alpha clustering in neutron-rich Be

M. Assié, IJCLab Orsay, assie@ijclab.in2p3.fr

Laboratoire de Physique des 2 Infinis

Transfer to study pairing

- General introduction
- stable isotopes : sd-shell
- unstable nuclei: fp shell
 - recent results
 - future studies

Neutron-proton pairing : generalities

John P. Schiffer and William W. True, Rev. Mod. Phys. 48 (1976) 191

- np pairing occurs in 2 different states:
 -T=0 (isoscalar) <-- unique in np pairs
 -T=1 (isovector).
- ► T=0 pairing is stronger than in the T=1 channel

but the question is whether or not the T=0 pairing can create a correlated state in analogy with the BCS superfluid phase.

Where to search for np pairing ? stronger in high-j orbitals --> fp shell

2N-transfer reactions were performed initially in the *sd*-shell nuclei and more recently in the *fp*-shell nuclei. A review of these results is presented here.

24/05/2022

Where to search for np pairing?

- nn, pp pairing increases when asymmetry increases
- np (T=1) pairing decreases drastically outside N=Z nuclei

What about N≠Z nuclei ? - Mixed state (T=0 and T=1) predicted outside of N=Z

Shell Model Monte Carlo

Possible experimental probes for pairing

Masses - BE differences

can be described by an appropriate combination of the symmetry energy and the isovector pairing energy. \rightarrow Evidence for full isovector pairing (nn,np,pp) - charge independence.

A.O. Macchiavelli PRC (2000), A.O. Macchiavelli PLB (2000)

Heavy nuclei accessible, "simple" observable

Rotational properties ("delayed alignments") consistent with T=1 cranking model. Kaneko, Sun, de Angelis, Nuclear Physics A 957 (2017) 144

🕂 Heavy nuclei accessible, 🚥 model dependent, no clear evidence

Knock-out reactions :

Simpson, Tostevin, 50 years of BCS What kind of information can we get ? --> not explored experimentally yet

2n-transfer : Rotational vs. vibrational pairing

- Open shell nuclei -> static deformation of pair field
- "Superfluid" limit
- Rotational-like (parabolic) spectrum for even-N neighbors

(p,t) and (t,p) : $R = \sigma(gs(A) \rightarrow gs(A+2)) \sim \Omega$

- Closed shell : no static deformation of pair field
- "Normal"nuclei limit
- Vibrational-like spectrum
- Enhancement of pair addition/ pair removal cross section

Brink & Broglia, Nuclear superfluidity, Cambridge Press University (2005)

Transposition for np-transfer reactions

The usual observable for np transfer is the ratio $\sigma (0^+)/\sigma (1^+)$ that gives the relative strength of T=1/T=0 pairing.

Typical experimental set-up for 2N transfer experiment in the unstable N=Z nuclei

Low cross-sections ~100 ub and below
 --> thick targets
 --> high beam intensities (>10⁵ pps)

- High resolution & high efficiency gamma array :
 2N transfer populate residual odd-odd nuclei with high density of states
- □ Integration of ³He cryogenic targets for (³He,p) measurements
- O degree detection to clean the spectra from background contributions

05/09/2019

Systematic of $d\sigma(0+)/d\sigma(1+)$

- sd-shell systematic measurement (stable nuclei)
 - □ From litterature & ENSDF:
 - max of cross-section (lowest angle measured) + no error bars
 - first 0+ and first 1+ states taken into account (no centroid)
 - □ Recent consistent remeasurement : Y. Ayyad et al, PRC96 (2017) (open triangles)

50

superfluid limit

 \wedge

20

single particle limit

40

A

30

10

8

Systematic of $d\sigma(0+)/d\sigma(1+)$

- sd-shell systematic measurement (stable nuclei)
 - □ From litterature & ENSDF:
 - max of cross-section (lowest angle measured) + no error bars
 - first 0+ and first 1+ states taken into account (no centroid)
 - □ Recent consistent remeasurement : Y. Ayyad et al, PRC96 (2017) (open triangles)

► fp shell measurements :

□ ⁴⁴Ti(³He,p)⁴⁶V

in inverse kinematics @ Argonne (A.O. Macchiavelli et al)

6.00

 $(p,^{3}He)$

(p,³He) (³He,p)

Systematic of $d\sigma(0+)/d\sigma(1+)$

- sd-shell systematic measurement (stable nuclei)
 - □ *From litterature & ENSDF:*
 - max of cross-section (lowest angle measured) + no error bars
 - first 0+ and first 1+ states taken into account (no centroid)
 - <u>Recent consistent remeasurement</u>: Y. Ayyad et al, PRC96 (2017) (open triangles)

▶ fp shell measurements :

 $\Box \frac{^{44}\text{Ti}(^{3}\text{He},p)^{46}\text{V}}{\text{in inverse kinematics @ Argonne } (A.O. Macchiavelli et al)}$

□ ⁵⁶Ni, ⁵²Fe, ⁴⁸Cr(p, ³He)⁵⁴Co, ⁵⁰Mn :

in inverse kinematics @ LISE (M. Assié et al)

- Ratios obtained in different experiments and at different energies
- --> effect of the reaction mechanism
- L=0 and L=2 contributions overlaping
 --> angular distributions needed

05/09/2019

ESNT workshop - M. Assié - np pairing with transfer reactions

12

Comparison with DWBA

B. Le Crom et al, PLB (2022)

DWBA calculations

with form factors from Sagawa-san team including other shells than f_{7/2} (pairing case) using GXPF1 interaction
 with single particle form factors (no pairing case)
 Potentials set from ⁵⁶Ni(p,d) measurement

Direct vs. sequential ?

correlations kept in the sequential transfer ?

Potel, Rep. Prog. Phys. 76 (2013) 106301

Comparison of ratios of CS

 Good agreement between exp and DWBA+pairing (although with large error bars)

□ T=1 ~ superfluid, T=0 very weak due to the effect of spin-orbit that hinders T=0 pairing in the *fp*-shell.

Open questions on np pairing with transfer

- 1- Effect of the spin-orbit ?
- **Spin-orbit splitting** hinders T=0 pairing in the **f-shell**

- □ What would be the effect for the 2p shell ? (smaller spin-orbit splitting)
 - --> case of ⁵⁸Cu
 - --> ⁵⁸Cu only odd-odd nucleus in fp-shell with g.s. T=0

□ Is there any effect of spin-orbit in the sd-shell ?

 $d_{3/2}$ and $d_{5/2}$ spin-orbit splitting of the same order of magnitude as for $f_{7/2}$ and $f_{5/2}$ and even stronger in the *g*-shell

2- Effect of other (repulsive) channels ?

□ **Baroni et al PRC 2010 :** T=0 pairing weakened by the contributions of ¹P₁ and D-wave (repulsive)

Open questions on np pairing with transfer

Interplay between pairing and deformation

to compare with theoretical predictions.

--> It affects mainly the T=1 component

- ► Case of ⁴⁸Cr : comparison with ratios predicted by DWBA calculations for 2 cases:
 - single particle case (no pairing)
 - np pairing through TNA from Shell Model + GXPF1 calculations (pairing)

september 2020

ASSIE Marlène – PAC 2020 - E805

Experimental method for ⁴⁸Cr(p, ³He)⁴⁶V

Beam production:

Fragmentation of ⁵⁰Cr²³⁺ at 72 MeV/u on 1 mm thick ⁹Be target to produce ⁴⁸Cr at 30 MeV/u with 10⁶pps and 90% purity.

Target: CH₂ target 5 mg/cm²

Experimental set-up:

Given the high density of states in ⁴⁶V, particle-gamma coincidence needed.

--> For the 0+,T=1 (g.s.) : σ (0⁺) & angular distribution can be deduced from E* measurement
 --> For the 1+,T=0 (993 keV) : particle-gamma coincidence to determine σ (1⁺)

 angular distribution from gamma gated E* spectrum (if enough statistics)

Study of the two-nucleon transfer reaction ⁴⁸Cr(p,³He)⁴⁶V

Thank you for your attention and thank you to

V. Girard-Alcindor, H. Jacob (IJCLab)

B. Le Crom^a, M. Assié^{a,*}, Y. Blumenfeld^a, J. Guillot^a, H. Sagawa^b, T. Suzuki^c, M. Honma^b, N.L. Achouri^d, M. Aouadi^d, B. Bastin^e, R. Borcea^f, W.N. Catford^g, E. Clément^e, L. Cáceres^e, M. Caamaño^h, A. Corsiⁱ, G. De France^e, M-C. Delattre^a, F. Delaunay^d, N. De Séréville^a, Q. Deshayes^d, B. Fernandez-Dominguez^h, M. Fisichella^j, S. Franchoo^a, A. Georgiadou^a, J. Gibelin^d, A. Gillibertⁱ, F. Hammache^a, O. Kamalou^e, A. Knapton^g, V. Lapouxⁱ, S. Leblond^d, A.O. Macchiavelli^k, F.M. Marqués^d, A. Matta^{g,1}, L. Ménager^e, P. Morfouace ^{a,2}, N.A. Orr^d, J. Pancin^e, X. Pereira-Lopez^{d,h}, L. Perrot^a, J. Piot^e, E. Pollaccoⁱ, D. Ramos ^{h,3}, T. Roger^e, F. Rotaru^f, A. M. Sánchez-Benítez^{1,4}, M. Sénovilleⁱ, O. Sorlin^e, M. Stanoiu^f, I. Stefan^a, C. Stodel^e, D. Suzuki^{a,5}, J-C Thomas^e, M. Vandebrouck^{e,6}

^aUniversité Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France ^bCenter for Mathematical Sciences, University of Aizu, Aizu-Wakamatsu, Fukushima 965-8580, Japan ^cDepartment of Physics, College of Humanities and Sciences, Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550, Japan ^dLaboratoire de Physique Corpusculaire de Caen, ENSICAEN CNRS/IN2P3, 14050 Caen, France ^eGrand Accélérateur National d'Ions Lourds (GANIL), CEA/DRF-CNRS/IN2P3, Bvd Henri Becquerel, 14076 Caen, France ^fHoria Hulubei National Institute of Physics and Nuclear Engineering, Magurele, Romania ^gDepartment of Physics, University of Surrey, Guildford GU2 5XH, United Kingdom ^hIGFAE and Dpt. de Física de Partículas, Univ. of Santiago de Compostela, E-15758, Santiago de Compostela, Spain ⁱIRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France ^jLaboratori Nazionali del Sud, Instituto Nazionale di Fisica Nucleare, Catania, Italy ^kNuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA ^lNuclear Physics Center, University of Lisbon, P-1649-003 Lisbon, Portugal

Alpha clusters in the neutron-rich Be isotopes

courtesy of D. Beaumel, IJCLab

Clustering in light nuclei

The	Iked	a diagram
		~

For N=Z=2n *alpha-conjugate" nuclei

8	⁸ Be	¹² C 000 7.27	¹⁶ O 14.44	²⁰ Ne 00000 19.17	²⁴ Mg 28.48	²⁸ Si 0000000 38.46
		C	C 7.16	CCC 11.89	21.21	COOOOOOOOOOOOO
ccitation energy			0	00 4.73	0000 14.05 000 13.93 Ne0	24.03 23.91 Ne
Û		IKEDA	Diagram	0	9.32	19.29 0 C 16.75 Mg 9.78
				Maga	han	Si

K.Ikeda, N.Takigawa, H.Horiuchi, PTP (1968)

- Cluster structure typically occurs close to cluster decay thresholds
- Based on properties of some near threshold states
 - Rotational bands with molecule-like structure

Very large moment of inertia

✓ Large alpha-decay widths

Unified picture of clustering

Clustering in light neutron-rich nuclei

GROUND-STATES!

Antisymmetrized Molecular Dynamics (AMD) Y.Kanada-En'yo, H.Horiuchi, Front. Phys. 13 (2018) When Adding neutrons to N=Z nuclei: Various Molecular structures Neutron orbiting around the core of clusters for low-lying states including the ground-state

p orbit ↔ p-orbit in SM limit – reduce clustering s orbit ↔ sd intruder configuration –enhance clustering

Calls for direct evidence of Molecular structure !

Calculations from first principles for Be isotopes

QMC calculation for ⁸Be

R.B. Wiringa, S.C.Pieper, J.Carlsson, V.R. Pandharipande, Phys. Rev. C 62 (2000) Quantum Monte-Carlo AV18 + Urbana IX

Rotational band well reproduced

T.Otsuka, T.Abe et al., Nature comm. 2022

Cluster knockout reactions

- Direct reaction
 - ✓ short reaction time (~10⁻²²s)
 - ✓ one-step dominant
- (e,e'p), (p,2p) and (p,pn) for nucleons
 (p,pa), (a,2a) for alpha cluster
- Well-studied since the 70's with proton and alpha beams on stable targets
- Incident p energy : 100~400 MeV
 (1~0.5-0.25fm)
- > Peripheral reaction
- Extraction of spectroscopic factors S_a
- > Recently: new analysis procedure

Amplitude and cross-section in Distorted Wave Impulse Approximation (DWIA)

 $T_{P_0P_1P_2} = \left\langle \chi_{1,P_1}^{(-)}(R_1) \, \chi_{2,P_2}^{(-)}(R_2) \, \left| t_{p\alpha}(s) \right| \, \chi_{0,P_0}^{(+)}(R_0) \, \varphi_{\alpha}(R_2) \right\rangle$

 $\chi_{0,P_0}^{(+)}(R_0) \ \chi_{1,P_1}^{(-)}(R_1) \ \chi_{2,P_2}^{(-)}(R_2)$ distorted waves for p-A, p-B and α -B Obtained from elastic scattering date

 $t_{p\alpha}(s)$ Transition interaction

 $\varphi_{\alpha}(R_2)$ Cluster Wave function

- Phenomenological
- Microscopic (AMD, ab initio ...)

THSR-based calculations for ¹⁰Be(p, pα) ⁶He^(GS) at 250 MeV/u M.Lyu et al., PRC 97 (20.

<u>Collaboration</u>: **IJCLab, Hong Kong U., RIKEN**, TI Tech, LPC Caen, Tohoku U., RCNP Osaka, CEA Saclay, Kyoto U., TU Darmstadt, NIPNE Bucharest, Kyushu U.

Samurai12 collaboration

HKU: S.D. Chen, J. Lee, P.F. Liang, T. Lokotko, X. X. Xu, <u>Pengjie Li</u>
IJC Lab: M. Assié, <u>D. Beaumel</u>, S. Franchoo, F. Hammache, E. Rindel, I. Stefan
RIKEN: H. Baba, T. Harada, T. Isobe, N.Kitamura, Y. Kubota, H. Otsu, V. Panin,
M. Sasano, <u>D. Suzuki</u>, T. Uesaka, Z. H. Yang, J. Zenihiro
TU Darmstadt: A. Frotscher, H.N. Liu, Y.L. Sun, J. Tanaka, A. Obertelli
LPC Caen: L. Achouri, J. Gibelin, F. M. Marqués, N. Orr
TiTech: Y. Kondo, A. Kurihara, H. Miki, T. Tomai, H. Yamada, M. Yasuda
Tohoku Univ.: Y. Matsuda
RCNP Osaka: , M.J. Lyu, <u>K. Ogata</u>
CEA Saclay: , A. Corsi, A. Gillibert

Target : 2mm-thick solid H

Y.Matsuda et al., NIMA 643 (2011)

Energy calibrations of ESPRI

Particle identification – channel selection

Excitation energy spectra

σ (⁶He^{GS}) = 1.1 MeV

σ (⁸He^{GS}) = 1.1 MeV

Experimental TDX for 10^{-14} **Be(p,p** α)

Clustering evolution with N

Gated by ⁸He residue

Conclusions/Prospects

First measurement of (p,pa) in inverse kinematics with RIB with proper kinematical conditions
 direct evidence of the Molecular structure of the ¹⁰Be GS

First steps to quantitatively probe cluster evolution in GS towards the dripline Preliminary results show large triton K.O. Xsec for the halo nucleus ¹⁴Be

Complementary program using transfer reaction at LISE/GANIL with the MUGAST array E870 experiment accepted at last GANIL PAC meeting (p,a) and (d,⁶Li) pickup reactions in inverse kinematics

Planned study of (p,pa) on n-rich Carbon isotopes at RIKEN/Samurai (accepted expt) (spokesperson: Zaihong Yang)