Semimicroscopic algebraic approach to quarteting and its relation to other models

J. Cseh

ATOMKI, Debrecen, Hungary
cseh@atomki.hu
I. Defintions
II. Relations to other quartet models
III. Algebraic formalism
IV. Relation to shell, cluster, collective mod: MUSY
V. Features of MUSY
VI. Applications
VII. Summary and conclusions

I. Definitions (SAQM)

Quartet: $2 p+2 n$ shell configuration
with quartet symmetry
light: Ust(4) [1,1,1,1], S(4): [4]
heavy: S(4): [4]
Note: different major shells are allowed.
Algebraic $\mathrm{U}(3)$: both the basis and the operators.
Semimicroscopic: microsc. model space (no-core)

+ phenomenological oprators

II. Relation to other quartet models

1. 67-73: Danos, Gillet, Arima, Ginocchio, Satpathy

Similar: $2 p+2 n$ shell configuration
Different: spectrum from empirical data.
2. M. Harvey NPA 202, 191

Similar: Quartet symmetry
Different: spectrum from empirical data.
3. 80's: Algebraic: Iachello, Jackson, Dukelsky...

Similar: algebraic spectrumgeneration
Different: no micriscopic quartet,
U(6)
4. Quartet condensate '83 Gambhir, Ring, Schuck

Similar: $2 p+2 n$
Different: condansate
5. Recent (N. Sandulescu, M. Sambataro...)

Similar: quartet degrees of freedom
Different: condensate
single shell
formalism
group: U(6)

Shell Model

III. Algebraic formalism

III.1. Elliott-model
J.P. Elliott, Proc. R. Soc. 245 (1958) 128, 562.

Single major shell
Bilinear products of creation and annihil operators of oscillator quanta.

$$
\begin{array}{r}
U(3) \supset S U(3) \supset S O(3) \\
\left|\left[n_{1}, n_{2}, n_{3}\right],(\lambda, \mu) \quad K \quad L\right\rangle \\
H=C_{U 3}^{(1)}+a C_{S U 3}^{(2)}+a C_{S O 3}^{(2)}
\end{array}
$$

Dynamical symmetry: basis + analytical solution.

III.2. Connection to collective and cluster mod. 1958

Elliott: Proc. Roy. Soc. A 245, 28, 562 (1958)
Spectra of light nuclei, deformation + rotation from spherical shell model: SU(3).

From shell model to cluster model:
Wildermuth-Kanellopoulos: Nucl. Phys. 7, 150 (1958) Harm. osc. appr.

Cluster-shell connection: SU(3).
Bayman-Bohr: Nucl. Phys. 9, 596 (1958/59).

A quadrupole collective or a cluster band is picked up from the spherical shell model basis by their special $\operatorname{SU}(3)$ symmetry.

For a single major-shell problem the connection between the shell, collective and cluster models is provided by an SU(3) dynamical symmetry:

$$
U(3) \supset S U(3) \supset S O(3) .
$$

IV. Relation to shell, cluster and collective models: MUSY Multiconfigurational dynamical symmetry

Extension of the $\mathrm{U}(3)$ connection from 1958
(J. Cseh, Phys. Rev. C 103 (2021) 064322.)
$\mathrm{U}_{\mathrm{s}}(3) \otimes \mathrm{U}_{\mathrm{e}}(3) \supset \mathrm{U}(3) \supset \mathrm{SU}(3) \supset \mathrm{SO}(3)$
Intersection of the
-(No-core) Symplectic shell model
-Contracted symplectic collective model
-Microscopic and semimicroscopic cluster models

Symplectic shell model
G. Rosensteel, D. Rowe, PRL 38 (1977) 10

Extension of Elliott, microscopic coll. model

$$
\begin{gathered}
\mathrm{Sp}(6, \mathrm{R}) \\
\left|\left[n_{1}^{s}, n_{2}^{s}, n_{3}^{s}\right],\left[n_{1}^{e}, n_{2}^{e}, n_{3}^{e}\right], \rho,\left[n_{1}, n_{2}, n_{3}\right],(\lambda, \mu), K, L\right\rangle
\end{gathered}
$$

Multi-shell extension of the Elliott model, microscopic version of the collective model.

Symmetry-adapted no-core shell model
T. Dytrych et al. J. Phys. G 35 (2008) 123101

Symmetry-adapted (no-core) quartet model J. Cseh, Phys. Lett. B 743, 213 (2015).

Contracted symplectic model
(D.J. Rowe, G. Rosensteel, Phys. Rev. C 25 (1982) 3236(R);
O. Castanos, J. P. Draayer, Nucl. Phys. A 491 (1989) 349.)
$\mathrm{U}_{\mathrm{s}}(3) \otimes \mathrm{U}_{\mathrm{e}}(6) \supset \mathrm{U}_{\mathrm{s}}(3) \otimes \mathrm{U}_{\mathrm{e}}(3) \supset \mathrm{U}(3) \supset \mathrm{SU}(3) \supset \mathrm{SO}(3)$
Simpler mathematical structure, bosonized description, algebraic collective model of the multi-shell problem.

Cluster model

Microscopic or semimicroscopic: antisymmetrization.

Semimicroscopic algebraic cluster model
J. Cseh, G. Lévai, Ann. Phys. 230 (1994) 165.
$\mathrm{U}_{\mathrm{C}_{1}}(3) \otimes \mathrm{U}_{\mathrm{C}_{2}}(3) \otimes \mathrm{U}_{\mathrm{R}}(4) \supset$

$$
\mathrm{U}_{\mathrm{c}}(3) \otimes \mathrm{U}_{\mathrm{R}}(3) \supset \mathrm{U}(3) \supset \mathrm{SU}(3) \supset \mathrm{SO}(3)
$$

Microscopic model space, algebraic operators. Internal cluster structure: Elliott model, relative motion: modified vibron.

Shell (quartet), cluster and collective states: representation labels of an algebra-chain
(J. Cseh, Phys. Rev. C 103 (2021) 064322.)

$$
\mathrm{U}_{\mathrm{s}}(3) \otimes \mathrm{U}_{\mathrm{e}}(3) \supset \mathrm{U}(3) \supset \mathrm{SU}(3) \supset \mathrm{SO}(3)
$$

Spin-isospin sector:
 in symplectic
 contarcted symplectic
 semimicroscopic algebraic cluster models

$$
\mathrm{U}^{\mathrm{ST}}(4) \supset \mathrm{U}^{\mathrm{S}}(2) \otimes \mathrm{U}^{\mathrm{T}}(2)
$$

Relation of the SAQM to the shell model: it is a symmetry-governed truncation of the no-core shell model

Relation of the cluster and collective model: MUSY is the common intersection of them

$$
\mathrm{U}_{\mathrm{s}}(3) \otimes \mathrm{U}_{\mathrm{e}}(3) \supset \mathrm{U}(3) \supset \mathrm{SU}(3) \supset \mathrm{SO}(3)
$$

Shell Model

Cluster Model

SM

CM

Ind. part.
SO(3)

SU(2)
$\mathrm{O}(4)$

IV. Features of MUSY

A) Composite symmetry of a composite sytem:

1. $U(3)$ dysy in each configuration, $\mathrm{U}_{\mathrm{s}}(3) \otimes \mathrm{U}_{\mathrm{e}}(3) \supset \mathrm{U}(3) \supset \mathrm{SU}(3) \supset \mathrm{SO}(3)$
2. symmetry transforming the configurations (in the pseudo space of particle indeces) identical spectra invariant or transformed H-operator

Similar to SUSY models.
B) Can be realised with invariant and non-invariant interactions.
C) Dual (dynamic SU3) and spont. (SO3) breaking.
D) Shape isomers: stability and selfconsist. of SU3 emerging symmetry.

V. Applications

A) Shape isomers from the stability and selfconsistency of the (quasidynamiclal) U(3)

J. Cseh, G. Riczu, J. Darai, Phys. Lett. B 795 (2019) 160.

J. Darai, J. Cseh, D. Jenkins, Phys. Rev. C 86 (2012) 064309 D. Jenkins et al. Phys. Rev. C 86 (2012) 064308

W. Sciani, Y. Otani, A. Lépine-Szily, et al, Phys. Rev. C 80 (2009) 034319
J. Cseh, J. Darai,et al.

Phys Rev. C 80 (2009) 034320

Applications C)
Allowed and forbidden cluster configurations (reaction channels)

Cluster-shell duality

${ }^{16} \mathrm{O}+{ }^{12} \mathrm{C}$	${ }^{28} \mathrm{Si}$	${ }^{24} \mathrm{Mg}+\alpha$	Quant. no.
(I)			4[28,8,4]
			$2[24,8,6]$
	$\underset{\square}{ }$		1[22,8,7]
			O[20,8,8]

Applications D)

Unified description of spectra of different configurations in different regions of energy and deformation (experimental spectra, shape isomers).

$H=\epsilon n+\alpha C_{S U 3}^{2}+\beta C_{S U 3}^{3}+\frac{1}{2 \theta} L^{2}$

J. Cseh, G Riczu, Phys. Lett B 757, 312 (2016)

Shape isomers of $\mathrm{N}=\mathrm{Z}$ nuclei
PRC 107, 044315 (2023)
Stable deformations
Possible clusterizations
Cluster-shell duality

Energy spectra

V. Summary

SAQM:
$2 p+2 n$ shell config. q-symm: [4],
multi-shell space, algebraic $U(3)$ formalism.

Friendly relations to other quartet models.
Well-defined connection to shell, cluster and collective models: MUSY.

$$
\mathrm{U}_{\mathrm{s}}(3) \otimes \mathrm{U}_{\mathrm{e}}(3) \supset \mathrm{U}(3) \supset \mathrm{SU}(3) \supset \mathrm{SO}(3)
$$

dynamical symmetry in each configuration (SAQM central pillar).

+ transformations between them.

Comparison

NS-MS SAQM

quartet
configuration
symmetry
mod. space
formalism
algebra

4 nucl.
$2 p+2 n$
condensate individual

$$
\mathrm{T}=0
$$

[1,1,1,1],[4]
single shell multi shell
coll.pair.approx SA-NCSM
(U(6))
U(3)
dominent interact. pairing q. q
exact location on the shell model phase space?

Thank you for your attention!

