Disentangling nuclear wave functions

Calvin W. Johnson

"This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Award Number DE-FG02-03ER41272 and Office of High Energy Physics, under Award Number DE-SC0019465 "

Expt. \& Theo. Aspects of Neutron-Proton Pairing, Saclay, Sept 2023

What do we need to describe atomic nuclei?

What are the crucial degrees of freedom? i.e.,

- Deformation (single particles/mean-field)
- Pairing ($\mathrm{S}=0, \mathrm{~T}=1$ and $\mathrm{S}=1, \mathrm{~T}=0$ or neutron-proton pairing)
- Quartets/ 'alpha clusters’
- Other clusters?

What do we need to describe atomic nuclei?

What are the crucial degrees of freedom? i.e.,

- Deformation (single particles/mean-field)
- Pairing ($\mathrm{S}=0, \mathrm{~T}=1$ and $\mathrm{S}=1, \mathrm{~T}=0$ or proton-neutron pairing)
- Quartets/ 'alpha clusters’
- Other clusters?

In other words, how do we know that quartets are more important than triplets?

What do we need to describe

We could look at entanglement

Isn't that just another word for 'correlations'?

- Quartets/ 'alpha clusters

Expt. \& Theo. Aspects of Neutron-Proton Pairing, Saclay, Sept 2023

The difference between correlations and entanglement

The difference between correlations and entanglement

Expt. \& Theo. Aspects of Neutron-Proton Pairing, Saclay, Sept 2023

The difference between correlations and entanglement

Expt. \& Theo. Aspects of Neutron-Proton Pairing, Saclay, Sept 2023

Entanglement has a formal definition, typically in bipartite systems, that is, systems with a tensor product basis

$$
|\Psi\rangle=\sum_{i, a} c_{i, a}|i\rangle \otimes|a\rangle
$$

Expt. \& Theo. Aspects of Neutron-Proton Pairing, Saclay, Sept 2023

Entanglement has a formal definition, typically in bipartite systems, that is, systems with a tensor product basis

$$
|\Psi\rangle=\sum_{i, a} c_{i, a}|i\rangle \otimes|a\rangle
$$

From this we define the formal density operator

$$
\hat{\rho}=|\Psi\rangle\langle\Psi|
$$

and the formal density matrix

$$
\rho_{i a, j b}=c_{i, a} c_{j, b}^{*}
$$

Expt. \& Theo. Aspects of Neutron-Proton Pairing, Saclay, Sept 2023

Entanglement has a formal definition, typically in bipartite systems, that is, systems with a tensor product basis

$$
|\Psi\rangle=\sum_{i, a} c_{i, a}|i\rangle \otimes|a\rangle
$$

From this we define the formal density operator

$$
\hat{\rho}=|\Psi\rangle\langle\Psi|
$$

and the formal density matrix

$$
\rho_{i a, j b}=c_{i, a} c_{j, b}^{*}
$$

The formal density matrix has $\operatorname{tr} \rho=1$, and is idempotent: $\rho^{2}=\rho$,
which implies eigenvalues 0,1

Expt. \& Theo. Aspects of Neutron-Proton Pairing, Saclay, Sept 2023

Entanglement has a formal definition, typically in bipartite systems, tha systems with a tensor product b

$$
|\Psi\rangle=\sum_{i, a} c_{i, a}|i\rangle \otimes|a\rangle
$$

What's with this 'formal' designation?

From this we define the formal den.

$$
\hat{\rho}=|\Psi\rangle\langle\Psi|
$$

and the formal density matrix

$$
\rho_{i a, j b}=c_{i, a} c_{j, b}^{*}
$$

The formal density matrix has $\operatorname{tr} \rho$: and is idempotent: $\rho^{2}=\rho$,
which implies eigenvalues 0,1

In many-body theory we often introduce various density operators, such as the one-body density

$$
\hat{c}_{i}^{\dagger} \hat{c}_{j}
$$

$$
\hat{c}_{i}^{\dagger} \hat{c}_{j}
$$

and the two-body density

$$
\hat{c}_{i}^{\dagger} \hat{c}_{j}^{\dagger} \hat{c}_{l} \hat{c}_{k}
$$

Expt. \& Theo. Aspects of Neutron-Proton Pairing, Saclay, Sept 2023

In many-body theory we often introduce various density operators, such as the one-body density

$$
\hat{c}_{i}^{\dagger} \hat{c}_{j}
$$

and the two-body density

$$
\hat{c}_{i}^{\dagger} \hat{c}_{j}^{\dagger} \hat{c}_{l} \hat{c}_{k}
$$

BUT - these density operators and their matrices have different traces from the formal density matrix.

Expt. \& Theo. Aspects of Neutron-Proton Pairing, Saclay, Sept 2023

$$
\operatorname{tr}\left\langle\hat{c}_{i}^{\dagger} \hat{c}_{j}\right\rangle=A
$$

and

$$
\operatorname{tr}\left\langle\hat{c}_{i}^{\dagger} \hat{c}_{j}^{\dagger} \hat{c}_{l} \hat{c}_{k}\right\rangle=A(A-1) / 2
$$

in general, the trace of an a-body density

$$
\text { is }\binom{A}{a}=\frac{A!}{a!(A-a)!} \text {. }
$$

The difference between the 'formal' density matrix and the a-body density matrices will be a challenge for us.....

Expt. \& Theo. Aspects of Neutron-Proton Pairing, Saclay, Sept 2023

Next we define the reduced density matrix by tracing over one of the partitions:

$$
\begin{gathered}
|\Psi\rangle=\sum_{i, a} c_{i, a}|i\rangle \otimes|a\rangle \quad \hat{\rho}=|\Psi\rangle\langle\Psi| \quad \rho_{i a, j b}=c_{i, a} c_{j, b}^{*} \\
\rho_{i, j}^{r e d}=\operatorname{tr}_{a} \rho=\sum_{a} c_{i, a} c_{j, a}^{*}
\end{gathered}
$$

The reduced density matrix still has $\operatorname{tr} \rho=1$,
but is no longer necessarily idempotent: $\rho^{2} \neq \rho$,
which implies (some) eigenvalues between 0 and 1

Expt. \& Theo. Aspects of Neutron-Proton Pairing, Saclay, Sept 2023

Next we define the reduced density matrix by tracing over one of the partitions:

$$
\begin{gathered}
|\Psi\rangle=\sum_{i, a} c_{i, a}|i\rangle \otimes|a\rangle \quad \hat{\rho}=|\Psi\rangle\langle\Psi| \quad \rho_{i a, j b}=c_{i, a} c_{j, b}^{*} \\
\rho_{i, j}^{r e d}=\operatorname{tr}_{a} \rho=\sum_{a} c_{i, a} c_{j, a}^{*}
\end{gathered}
$$

The reduced density matrix still has $\operatorname{tr} \rho=1$,
but is no longer necessarily idempotent: $\rho^{2} \neq \rho$,
which implies (some) eigenvalues between 0 and 1

If idempotent, the partitions are not entangled
but if not idempotent, the partitions are entangled

Expt. \& Theo. Aspects of Neutron-Proton Pairing, Saclay, Sept 2023

Next we define the reduced density matrix by tracing over one of the partitions:

$$
\begin{gathered}
|\Psi\rangle=\sum_{i, a} c_{i, a}|i\rangle \otimes|a\rangle \quad \hat{\rho}=|\Psi\rangle\langle\Psi| \quad \rho_{i a, j b}=c_{i, a} c_{j, b}^{*} \\
\rho_{i, j}^{r e d}=\operatorname{tr}_{a} \rho=\sum_{a} c_{i, a} c_{j, a}^{*}
\end{gathered}
$$

The reduced density matrix still has $\operatorname{tr} \rho=1$,
but is no longer necessarily idempotent: $\rho^{2} \neq \rho$,
which implies (some) eigenvalues between 0 and 1

If idempotent, the partitions are not entangled
Looking at the eigenvalues of the reduced density matrix is related to singular value decomposition and is also called Schmidt decomposition
but if not idempotent, the partitions are entangled

Expt. \& Theo. Aspects of Neutron-Proton Pairing, Saclay, Sept 2023

Often one characterizes the eigenvalues by the entanglement entropy: $\quad S=-\sum_{n} \lambda_{n} \ln \lambda_{n}$

$$
\begin{aligned}
& \text { (eigenvalues of } \rho \text { red } \\
& 0 \leq \lambda_{n} \leq 1
\end{aligned}
$$

If the reduced density matrix has dimension N, then the maximum entropy is $S_{\max }=\ln N$.

Early calculation of entanglement in nuclear systems:
O. Gorton MS thesis, 2018; CWJ and O. C. Gorton, J. Phys. G 50, 045110 (2023)

The bipartite system was protons and neutrons, which works like a formal density matrix.

$$
|\Psi\rangle=\sum_{i, a} c_{i, a}\left|p_{i}\right\rangle \otimes\left|n_{a}\right\rangle
$$

Expt. \& Theo. Aspects of Neutron-Proton Pairing, Saclay, Sept 2023

Here and throughout I calculate wave functions using configuration-interaction, expanding in an M-scheme (fixed total J_{z}) basis of shell-model Slater determinants.

Here I also use empirical interactions, such as Brown \& Richter's USDB interaction for the valence $s d$ space (with frozen ${ }^{16} \mathrm{O}$ core).

In most shell-model codes, such as Bigstick, the basis already is bipartite in proton and neutron components, so carrying out such a decomposition is easy.

$$
|\Psi\rangle=\sum_{i, \phi}\left\langle c_{i, 0} \mid p_{i}\right\rangle \otimes\left|n_{a}\right\rangle
$$

can be extracted easily from Bigstick shell model code
Expt. \& Theo. Aspects of Neutron-Proton Pairing, Saclay, Sept 2023
$\mathrm{Z}=\mathrm{N}$ nuclides in $s d$ shell

Expt. \& Theo. Aspects of Neutron-Proton Pairing, Saclay, Sept 2023
$\mathrm{Z}=\mathrm{N}$ nuclides in sd shell

Expt. \& Theo. Aspects of Neutron-Proton Pairing, Saclay, Sept 2023

What we learn from this:

The shell structure (single-particle energies + monopole (n^{2} terms), strongly affect the entropy,
and when you remove those terms, the entropies are similar to those from using random two-body interactions, at least for $\mathrm{N}=\mathrm{Z}$.

For $\mathrm{N}>\mathrm{Z}($ or $<\mathrm{Z})$ we see interesting but unexplained patterns....

Other related calculations:

Robin, Savage, and Pillet, Phys. Rev. C 103, 034325 (2021)
Use one- and two-nucleon entanglement to show that natural orbitals lead to decoupling of active and inactive spaces (basically, a 'simpler' wave function)
A. Perez-Obiol, et al, arXiv:2307.05197

Calculates entanglement entropy with different slices of partitioning. Z protons / N neutrons partitions (as in CWJ \& Gorton) has lowest entropy.

Can we use entanglement (or lack thereof) to signal important degrees of freedom?

Expt. \& Theo. Aspects of Neutron-Proton Pairing, Saclay, Sept 2023

Can we use entanglement (or lack thereof) to signal important degrees of freedom?

Entanglement measures how 'independent' a partition of a space is.
So, naively, one might imagine dominant degrees of freedom might have significantly smaller entanglement (or significantly larger)

So let's compute the entanglement of $1,2,3,4, \ldots$ particles with the rest of the system. What pops out?

For instance, are two particles less entangled ('pairs') than three particles?

This is easier said than done.
Entanglement requires a bipartite basis

$$
|\Psi\rangle=\sum_{i, a} c_{i, a}|i\rangle \otimes|a\rangle
$$

However with indistinguishable particles, this can be tricky. (Because of the different traces)

We could normalize the a-body density matrices (so trace =1), but:

A single Slater determinant would have nontrivial eigenvalues, which implies entanglement.

If we keep the combinatoric normalization, however, a single Slater determinant has zero entanglement entropy for any a-body correlations.

This latter makes sense because, intuitively, one would argue that, in second quantization, a single Slater determinant partitions trivially:

$$
\left.c_{1}^{\dagger} c_{2}^{\dagger} c_{3}^{\dagger}\left|c_{4}^{\dagger} c_{5}^{\dagger} c_{6}^{\dagger}\right| 0\right\rangle
$$

Expt. \& Theo. Aspects of Neutron-Proton Pairing, Saclay, Sept 2023

SAN Diego State
UNIVERSITY

Even keeping the combinatoric trace, how do we compare the results?

One way would be to compute $\mathrm{S} / \mathrm{S}_{\text {max }}$

Expt. \& Theo. Aspects of Neutron-Proton Pairing, Saclay, Sept 2023

SAN Diego State
UNIVERSITY

Even keeping the combinatoric trace, how do we compare the results?

One way would be to compute $S / S_{\text {max }}$

How to do this:

1. Solve $\widehat{H}|\Psi\rangle=E|\Psi\rangle$ using shell model code
2. Compute $\rho_{a b c . ., r s t}=\langle\Psi| \hat{c}_{a}^{\dagger} \hat{c}_{b}^{\dagger} \hat{c}_{c}^{\dagger} \ldots \hat{c}_{t} \hat{c}_{s} \hat{c}_{r}|\Psi\rangle$
3. Find eigenvalues λ_{n} of ρ (because density, $\lambda_{n} \geq 0$)
4. $S=-\Sigma_{n} \lambda_{n} \ln \lambda_{n}$

${ }^{24} \mathrm{Mg}$ (valence $s d$)

ground state S/S max

cluster	USDB	USDB (no mono)	random
$2 p$	0.782	0.933	0.926
$1 p, 1 \mathrm{n}$	0.818	0.959	0.955
$3 p$	0.643	0.802	0.805
$2 p, 1 \mathrm{n}$	0.733	0.886	0.886
$4 p$	0.410	0.543	0.557
$3 p, 1 \mathrm{n}$	0.576	0.720	0.721
$2 p, 2 n$	0.643	0.751	0.753

Expt. \& Theo. Aspects of Neutron-Proton Pairing, Saclay, Sept 2023

${ }^{28} \mathrm{Si}$ (valence $s d$)

$$
\text { ground state } S / S_{\max }
$$

cluster	USDB	USDB (no mono)	random
$2 p$	0.698	0.977	0.970
$1 p, 1 n$	0.720	0.984	0.982
$3 p$	0.640	0.941	0.933
$2 p, 1 n$	0.681	0.961	0.963
$4 p$	0.556	0.874	0.859
$3 p, 1 n$	0.622	0.923	0.926
$2 p, 2 n$	0.646	0.933	0.944

Expt. \& Theo. Aspects of Neutron-Proton Pairing, Saclay, Sept 2023

${ }^{28} \mathrm{Si}$ (valence $s d$)

ground state $S / S_{\max }$

cluster	USDB	USDB (no mono)	USDB, s.p.e. $\times 10$	
$2 p$	0.698	0.977	0.0377	
$1 p, 1 n$	0.720	0.984	0.0426	
$3 p$	0.640	0.941	0.0320	Almost a perfect single
$2 p, 1 \mathrm{n}$	0.681	0.961	0.0355	Slater determinant
$4 p$	0.556	0.874	0.0263	
$3 p, 1 n$	0.622	0.923	0.0302	
$2 p, 2 n$	0.646	0.933	0.0316	

Effect of shell structure on entropies

Expt. \& Theo. Aspects of Neutron-Proton Pairing, Saclay, Sept 2023

${ }^{32} S$ (valence $s d$)

ground state S / S max

cluster	USDB	USDB (no mono)	random
$2 p$	0.700	0.988	0.929
$1 p, 1 n$	0.716	0.991	0.939
$3 p$	0.659	0.973	0.904
$2 p, 1 n$	0.687	0.980	0.025
$4 p$	0.613	0.949	0.866
$3 p, 1 n$	0.648	0.963	0.900
$2 p, 2 n$	0.661	0.967	0.911

Expt. \& Theo. Aspects of Neutron-Proton Pairing, Saclay, Sept 2023

This doesn't show what we hoped for!
Should I give up?

San Diego State UNIVERSITY

Expt. \& Theo. Aspects of Neutron-Proton Pairing, Saclay, Sept 2023

This doesn't show what we hoped for!
Should I give up?

Not yet!

Expt. \& Theo. Aspects of Neutron-Proton Pairing, Saclay, Sept 2023

On the airplane ride here, I remembered something...

Expt. \& Theo. Aspects of Neutron-Proton Pairing, Saclay, Sept 2023

Often one characterizes the eigenvalues by the entanglement entropy: $\quad S=-\sum_{n} \lambda_{n} \ln \lambda_{n}$

The entanglement entropy is convenient but blunt.
Sometimes one plots the entanglement spectrum
which, traditionally, is $-\ln \left(\lambda_{\mathrm{n}}\right)$
Li and Haldane, PRL 101, 010504 (2008)
Small values (= large λ_{n}) and 'gaps' in the spectrum are meaningful

Expt. \& Theo. Aspects of Neutron-Proton Pairing, Saclay, Sept 2023

How to do this:

1. Solve $\widehat{H}|\Psi\rangle=E|\Psi\rangle$ using shell model code
2. Compute $\rho_{a b c . ., r s t}=\langle\Psi| \hat{c}_{a}^{\dagger} \hat{c}_{b}^{\dagger} \hat{c}_{c}^{\dagger} \ldots \hat{c}_{t} \hat{c}_{s} \hat{c}_{r}|\Psi\rangle$
3. Find eigenvalues λ_{n} of ρ (because density, 1 ? $\geq \lambda_{n} \geq 0$)
4. Plot $-\ln \left(\lambda_{n}\right)$
(also see Sambataro \& Sandulescu, Ann. Phys. 413, 168061 (2020) and N. Sandulescu's talk from this workshop series, 2019)

In most of my calculations, I remove the shell structure (single-particle energies and monopole interactions) and compare to a randomly generated two-body interaction; the latter acts as a control.

Expt. \& Theo. Aspects of Neutron-Proton Pairing, Saclay, Sept 2023

${ }^{32} S$ (valence $s d$)

ground state S / S max

cluster	USDB	USDB (no mono)	random
$2 p$	0.700	0.988	0.929
$1 p, 1 n$	0.716	0.991	0.939
$3 p$	0.659	0.973	0.904
$2 p, 1 n$	0.687	0.980	0.025
$4 p$	0.613	0.949	0.866
$3 p, 1 n$	0.648	0.963	0.900
$2 p, 2 n$	0.661	0.967	0.911

Expt. \& Theo. Aspects of Neutron-Proton Pairing, Saclay, Sept 2023

${ }^{32} \mathrm{~S}$ (valence $s d$)

ground state $-\ln \lambda$
USDB (no mono) random
USDB USDB (no mono)

SAN Diego State UNIVERSITY

These have very similar entropies, but the spectra differ

Expt. \& Theo. Aspects of Neutron-Proton Pairing, Saclay, Sept 2023

${ }^{32} \mathrm{~S}$ (valence $s d$)

ground state $-\ln \lambda$
USDB (no mono) random

SAN Diego State UNIVERSITY

USDB USDB (no mono)

These have very similar entropies, but the spectra differ

Expt. \& Theo. Aspects of Neutron-Proton Pairing, Saclay, Sept 2023

Expt. \& Theo. Aspects of Neutron-Proton Pairing, Saclay, Sept 2023

Expt. \& Theo. Aspects of Neutron-Proton Pairing, Saclay, Sept 2023

${ }^{24} \mathrm{Mg}$ (valence sd)
 ground state $-\ln \lambda_{n}$

San Diego State UNIVERSITY

USDB (traceless)
random

These have very similar entropies, but the spectra differ
...while these spectra are not very different

Expt. \& Theo. Aspects of Neutron-Proton Pairing, Saclay, Sept 2023

$$
\begin{aligned}
& { }^{24} \mathrm{Mg}(\text { valence } s d) \\
& \text { ground state }-\ln \lambda_{\mathrm{n}} \\
& \text { USDB (no mono) }
\end{aligned}
$$

No evidence for strong triplet correlations

Expt. \& Theo. Aspects of Neutron-Proton Pairing, Saclay, Sept 2023

${ }^{24} \mathrm{Mg}$ (valence $s d$)
 $$
\text { ground state }-\ln \lambda_{n}
$$

USDB isoscalar pairing isovector pairing

Expt. \& Theo. Aspects of Neutron-Proton Pairing, Saclay, Sept 2023

${ }^{24} \mathrm{Mg}$ (valence $s d$)
 $$
\text { ground state }-\ln \lambda_{n}
$$

USDB isoscalar pairing isovector pairing

Expt. \& Theo. Aspects of Neutron-Proton Pairing, Saclay, Sept 2023

${ }^{24} \mathrm{Mg}$ (valence $s d$)
 $$
\text { ground state }-\ln \lambda_{\mathrm{n}}
$$

USDB isoscalar pairing isovector pairing

Expt. \& Theo. Aspects of Neutron-Proton Pairing, Saclay, Sept 2023

${ }^{24} \mathrm{Mg}$ (valence $s d$)
 $$
\text { ground state }-\ln \lambda_{\mathrm{n}}
$$

USDB isoscalar pairing isovector pairing

Expt. \& Theo. Aspects of Neutron-Proton Pairing, Saclay, Sept 2023

${ }^{24} \mathrm{Mg}$ (valence $s d$)
 ground state $-\ln \lambda_{\mathrm{n}}$

San Diego State UNIVERSITY

Expt. \& Theo. Aspects of Neutron-Proton Pairing, Saclay, Sept 2023

${ }^{24} \mathrm{Mg}$ (valence $s d$)
 $$
\text { ground state }-\ln \lambda_{n}
$$

San Diego State UNIVERSITY

USDB isoscalar pairing isovector pairing

Expt. \& Theo. Aspects of Neutron-Proton Pairing, Saclay, Sept 2023

${ }^{24} \mathrm{Mg}$ (valence $s d$)
 $$
\text { ground state }-\ln \lambda_{n}
$$

San Diego State UNIVERSITY

USDB isoscalar pairing isovector pairing

Expt. \& Theo. Aspects of Neutron-Proton Pairing, Saclay, Sept 2023

${ }^{28}$ Si (valence $s d$)

$$
\text { ground state }-\ln \lambda_{\mathrm{n}}
$$

These have very similar entropies, but the spectra differ

Expt. \& Theo. Aspects of Neutron-Proton Pairing, Saclay, Sept 2023
${ }^{28} \mathrm{Si}$ (valence $s d$)
ground state $-\ln \lambda_{n}$
SAN Diego State UNIVERSITY

USDB (no mono)
random

These have very similar entropies, but some spectra differ

Expt. \& Theo. Aspects of Neutron-Proton Pairing, Saclay, Sept 2023

${ }^{28} \mathrm{Mg}$ (valence $s d$)
 ground state $-\ln \lambda_{n}$

random

Expt. \& Theo. Aspects of Neutron-Proton Pairing, Saclay, Sept 2023

${ }^{26} \mathrm{Al}$ (valence $s d$)

ground state $-\ln \lambda$
USDB USDB (no mono)
random

Expt. \& Theo. Aspects of Neutron-Proton Pairing, Saclay, Sept 2023

${ }^{27} \mathrm{Mg}$ (valence $s d$) ground state $-\ln \lambda_{n}$

Expt. \& Theo. Aspects of Neutron-Proton Pairing, Saclay, Sept 2023

Next steps

More $\mathrm{N}>\mathrm{Z}$, odd-odd, odd-A cases
fp shell cases
no-core shell model

Do the trends hold?
(Also: read the literature on entanglement spectra...)

Expt. \& Theo. Aspects of Neutron-Proton Pairing, Saclay, Sept 2023

Another approach

...which I was going to do on the airplane, before I switched tracks....

Another approach

...which I was going to do on the airplane, before I switched tracks....

The idea is to treat this as a partitioning into distinguishable sub spaces (which it isn't...)

Expt. \& Theo. Aspects of Neutron-Proton Pairing, Saclay, Sept 2023

Another approach

$$
\left|\Psi^{A}\right\rangle=\sum_{i, \alpha} c_{i, \alpha} \hat{a}_{i}^{\dagger} \otimes\left|\phi_{\alpha}^{A-a}\right\rangle
$$

$$
\left\langle\phi_{\beta}^{A-a}\right| \hat{a}_{j}\left|\Psi^{A}\right\rangle=\sum_{i, \alpha} c_{i, \alpha}\left\langle\phi_{\beta}^{A-a}\right| \hat{a}_{j} \hat{a}_{i}^{\dagger}\left|\phi_{\alpha}^{A-a}\right\rangle
$$

spectroscopic
amplitude

Another approach

$$
\left|\Psi^{A}\right\rangle=\sum_{i, \alpha} c_{i, \alpha} \hat{a}_{i}^{\dagger} \otimes\left|\phi_{\alpha}^{A-a}\right\rangle
$$

solve

$$
\left\langle\phi_{\beta}^{A-a}\right| \hat{a}_{j}\left|\Psi^{A}\right\rangle=\sum_{i, \alpha} c_{i, \alpha}\left\langle\phi_{\beta}^{A-a}\right| \hat{a}_{j} \hat{a}_{i}^{\dagger}\left|\phi_{\alpha}^{A-a}\right\rangle
$$

spectroscopic
amplitude
density matrix
I think this $c_{i, \alpha}$ will be normalized to $1 \ldots$

Another approach

$\left|\Psi^{A}\right\rangle=\sum_{i, \alpha} c_{i, \alpha} \hat{a}_{i}^{\dagger} \otimes\left|\phi_{\alpha}^{A-a}\right\rangle$ solve

Downside: need densities, spectroscopic amplitudes to all A-a body states....
$\left\langle\phi_{\beta}^{A-a}\right| \hat{a}_{j}\left|\Psi^{A}\right\rangle=\sum_{i, \alpha} c_{i, \alpha}\left\langle\phi_{\beta}^{A-a}\right| \hat{a}_{j} \hat{a}_{i}^{\dagger}\left|\phi_{\alpha}^{A-a}\right\rangle$
spectroscopic
amplitude
density matrix
I think this $c_{i, \alpha}$ will be normalized to $1 \ldots$

I hope to report on this next workshop!

Expt. \& Theo. Aspects of Neutron-Proton Pairing, Saclay, Sept 2023

Summary

The entanglement spectrum for a given a-body 'cluster', can give clues to which correlations are relevant in many-body systems (especially when contrasted against a 'null case' calculated with a randomly generated interaction).

We clearly see that like-particle pairs and 2 proton, 2 neutron correlations are important, while triplets are not.

The evidence on 1-proton, 1-neutron pairs is less strong. and finally....

Summary

Much work remains to be done!

ENTANGLEMENT!

Expt. \& Theo. Aspects of Neutron-Proton Pairing, Saclay, Sept 2023

