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Outline
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▪ Experimental data [1] reveal at low energies an anomalous large angle scattering (ALAS) -

strong enhancement of the cross section at backward angles - in the elastic alpha scattering 

on light N=Z nuclei.

▪ These data cannot be reasonably explained in the standard approach of alpha scattering 

based on an optical potential model.

▪ Several studies [2] indicate that ALAS is related to the alpha-like correlations in N=Z nuclei.

Motivation
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[1] G. Gaul et al., Nucl. Phys. A137 (1969) 177.

[2] N. C. Schmeing, Nucl. Phys. A142 (1970) 449.

Thus, these intriguing observations represent a promising premise for further exploration.



Partial wave analysis employing 
global optical potential models
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▪ Solve numerically the radial Schrödinger equation:

for an alpha particle in an effective potential of the form:

▪ Expand the wavefunction as a distorted wave:

▪ Luckily, the scattering amplitude depends only on the phase shifts:

Partial wave expansion of the scattering amplitude

5

phase shifts
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(Global) OPM:

X.-W. Su and Y.-L. Han [4].

Custom DWBA code

Solve numerically radial 

Schrödinger eq. employing the

RADIAL Fortran subroutine package [3]

Phase shifts Differential cross section (dxs)

DWBA angular distributions for α elastic scattering on nuclei

[3] F. Salvat, J. M. Fernandez-Varea, Comp. Phys. Comm. 240, 165-177 (2019).

[4] X.-W. Su, and Y.-L. Han, Int. J. Mod. Phys. E, vol. 24, no. 12 (2015).

DWBA = distorted wave Born approximation



Experimental data vs. DWBA angular distributions
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▪ Anomalous large angle scattering is more accentuated for N=Z nuclei as highlighted in Ref. [1] (shown on the left). 
▪ Running the custom DWBA code using the OPM of Ref. [4], the effect is also visible (plots on the right).
▪ The OPM does not reproduce well the backward scattering region!
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[4] X.-W. Su, and Y.-L. Han, Int. J. Mod. Phys. E, vol. 24, no. 12 (2015).

[1] G. Gaul et al., Nucl. Phys. A137 (1969) 177.



Beyond OPM:
Folding model potential
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Study case: α - 40Ca elastic scattering 
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Experimental data vs. DWBA predictions
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At low energies of the α
particles on 40Ca, the 

experimental data show the 
anomalous large angle 

scattering.

Based on OPM, the feature is 
not resolved.

Folding model potential
analysis.



Single folding potential
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[5] G. R. Satchler, and W. G. Love, Phys. Rep. 55 (1979) 183-254

Target 
nuclear 
density

α - nucleon 
potential



1st ingredient: α – nucleon potential
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Density independent α – nucleon potential:

[6] F. E. Bertrand et al., Phys. Rev. C22 (1980) 1832

Parameters fitted only for 141.7 MeV α particles on 40Ca!



2nd ingredient: target nuclear density
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40Ca nuclear density based on 3 parameter Fermi (3pF) model:

[7] H. de Vries et al., Atom. Data Nucl. Data Tabl. 36 (1987) 495-536



α – 40Ca interaction potential
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Obtained by
numerical integration

PRELIMINARY 
RESULTS!

𝑟C = 1.3 fm



α – 40Ca interaction potential – RMF density 
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40Ca nuclear density calculated in RMF approach
(provided by Luis Heitz, PhD

student at University Paris-Saclay).

Shallower depths of both real and imaginary 
parts of the folding potential are obtained.

PRELIMINARY 
RESULTS!



DWBA angular distribution for 141.7 MeV α on 40Ca 
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First step:
using the folding model 

potential we reproduce a 
differential cross section 
comparable to the one 
calculated in the OPM 

framework.

PRELIMINARY 
RESULTS!



29 MeV α on 40Ca 
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Interaction potential:

Real part: folding potential

where, [8] A.M. Bernstein, and W.A. Seidler, Phys. Lett. B34 (1971) 569-571.

Imaginary part: Wood-Saxon terms

Parameters fitted only for 29 MeV α
particles on 40Ca!

[9] A.M. Kobos et al., Nucl. Phys. A425 (1984) 205-232. 

PRELIMINARY 
RESULTS!



29 MeV α on 40Ca - interaction potential 
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3pF density RMF density

▪ Imaginary part: both the shape and the depth are different when using Wood-Saxon forms;
▪ Real part: different depths when using different density parametrizations.

PRELIMINARY 
RESULTS!



29 MeV α on 40Ca – angular distribution
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▪ Using the folding model 
potential for the real 
part and Wood-Saxon
forms for the imaginary 
part of the potential we 
start to enhance the 
backward scattering.

▪ The shape of the 
differential cross section 
is sensitive to different 
density approximations. 

PRELIMINARY 
RESULTS!



Next steps and open questions
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▪ Use the density generated by RMF+QCM calculations including the effect of pn
pairing, expected to increase the clusterisation and, eventually, the differential cross 
section in the backscattering region.

Is there a more suitable α - nucleon interaction?

- including an energy dependence such that we 
can probe more energies of the α particles;

- valid for various target nuclei.

Maybe a double folding 
procedure could give more 

accurate interaction potentials?

Should only the real part of the 
potential be folded, while for the 

imaginary part to use Wood-
Saxon terms fitted on available 

experimental data?



Thank you for your attention!
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