Experimental and theoretical aspects of neutron-proton pairing Workshop Summary

Experimental and theoretical aspects of neutron-proton pairing Workshop Summary

We heard talks both experimental.....

...and theoretical

"You WANT PROOF? PLLL GINE YOU PROOF!"

We mapped out possible expt. trails of neutron-proton pairing....

We mapped out possible expt. trails of neutron-proton pairing....

We mapped out possible expt. trails of neutron-proton pairing....

We mapped out possible expt. trails of neutron-proton pairing....

Some talks were directly on the trail of neutron-proton pairing....

$2 n$ transfer reactions: $(t, p) \&(p, t)$ deuteron transfer reactions: $\left({ }^{3} \mathrm{He}, \mathrm{p}\right)$ and ($\mathrm{p},{ }^{3} \mathrm{He}$)

Some talks were directly on the trail of neutron-proton pairing....

2 n transfer reactions: $(\mathrm{t}, \mathrm{p}) \&(\mathrm{p}, \mathrm{t})$ deuteron transfer reactions: $\left({ }^{3} \mathrm{He}, \mathrm{p}\right)$ and ($\mathrm{p},{ }^{3} \mathrm{He}$)

Some talks were directly on the trail of neutron-proton pairing....

2 n transfer reactions: $(\mathrm{t}, \mathrm{p}) \&(\mathrm{p}, \mathrm{t})$ deuteron transfer reactions: $\left({ }^{3} \mathrm{He}, \mathrm{p}\right)$ and $\left(\mathrm{p},{ }^{3} \mathrm{He}\right)$

Some talks were directly on the trail of neutron-proton pairing....

$2 n$ transfer reactions: $(t, p) \&(p, t)$ deuteron transfer reactions: $\left({ }^{3} \mathrm{He}, \mathrm{p}\right)$ and $\left(\mathrm{p},{ }^{3} \mathrm{He}\right)$

Some talks were directly on the trail of neutron-proton pairing....

Some talks were directly on the trail of neutron-proton pairing....

Some talks were directly on the trail of neutron-proton pairing....

A prediction
...some were adjacent to the neutron proton pairs, often through clusters

C. Petrache: clusters in heavy nuclei

E1's too large to be explained by S.M., need alpha clusters

...some were adjacent to the neutron proton pairs, often through clusters

...some were adjacent to the neutron proton pairs, often through clusters

A. Serban: improved α-scattering through improved imaginary part of optical potential

A key idea is that neutron-proton pairs were often in disguise

A key idea is that neutron-proton pairs were often in disguise

$\bar{Q}_{1}^{+}=2 \Gamma_{1}^{+} \Gamma_{-1}^{+}-\left(\Gamma_{0}^{+}\right)^{2}$,

After isospin projection, pairs (especially np-pairs) manifest as quartets!

A key idea is that neutron-proton pairs were often in disguise

$\bar{Q}_{1}^{+}=2 \Gamma_{1}^{+} \Gamma_{-1}^{+}-\left(\Gamma_{0}^{+}\right)^{2}$.

After isospin projection, pairs (especially np-pairs) manifest as quartets!

A key idea is that neutron-proton pairs were often in disguise

A key idea is that neutron-proton pairs were often in disguise

So much of our work was hunting for alpha and alpha-like clusters

So much of our work was hunting for alpha and alpha-like clusters

Hence we had clusters of talks on clusters.....

Hence we had clusters of talks on clusters....

Hence we had clusters of talks on clusters.....

$\mathrm{T}=1$ pairs stronger than $\mathrm{T}=0$ pairs

Many of these followed the theme of projection to get clusters

Hence we had clusters of talks on clusters.....

Hence we had clusters of talks on clusters.....

${ }^{28} \mathrm{Si}$

$0[20,8,8]$

Finally, other talks were more ... 'abstract'

Finally, other talks were more ... 'abstract'

