Experimental and theoretical aspects of neutron-proton pairing

Workshop Summary

Experimental and theoretical aspects of neutron-proton pairing

We heard talks both experimental.....

"The trouble is, professor, you see the Erlenmeyer flask half empty and I see it half full."

...and theoretical

"Zat

P)4-FR

"YOU WANT PROOF? I'LL GIVE YOU PROOF!"

We mapped out possible expt. trails of neutron-proton pairing....

We mapped out possible expt. trails of neutron-proton pairing....

Binding

We mapped out possible expt. trails of neutron-proton pairing....

Binding

2n transfer reactions: (t,p) & (p,t) deuteron transfer reactions: (³He,p) and (p,³He)

2n transfer reactions: (t,p) & (p,t) deuteron transfer reactions: (³He,p) and (p,³He)

2n transfer reactions: (t,p) & (p,t) deuteron transfer reactions: (³He,p) and (p,³He)

2n transfer reactions: (t,p) & (p,t) deuteron transfer reactions: (³He,p) and (p,³He)

	<i>σ</i> (0+,T=1) (μb)	<i>σ</i> (1+,T=0) (μb)	Ratio
	⁵⁶ Ni(p, ³ H	[e) ⁵⁴ Co	
this work	$109 \stackrel{stat}{\pm} 5 \stackrel{sys}{\pm} 10$	$17 \begin{array}{c} {}^{stat}_{\pm}7 \begin{array}{c} {}^{sys}_{\pm}2 \end{array}$	6.3 ^{+3.1}
SP	73	19	3.8
GXPF1	136	21	6.4
	⁵² Fe(p, ³ H	e) ⁵⁰ Mn	
this work	$145 \stackrel{stat}{\pm} 12 \stackrel{sys}{\pm} 15$	$16^{+29}_{-16} \stackrel{sys}{\pm} 2$	$9.1^{+\infty}_{-3.7}$
SP	69	16	$9.1^{+\infty}_{-3.7}$ 4.3
GXPF1	257	17	15.1

н.

n-n p-p

n-p

...some were adjacent to the neutron proton pairs, often through clusters

C. Petrache: clusters in heavy nuclei

E1's too large to be explained by S.M., need alpha clusters

...some were adjacent to the neutron proton pairs, often through clusters

...some were adjacent to the neutron proton pairs, often through clusters

A. Serban: improved α -scattering through improved imaginary part of optical potential

 $\bar{Q}_1^+ = 2\Gamma_1^+\Gamma_{-1}^+ - (\Gamma_0^+)^2$

After isospin projection, pairs (especially np-pairs) manifest as quartets!

 $\bar{Q}_1^+ = 2\Gamma_1^+\Gamma_{-1}^+ - (\Gamma_0^+)^2$

After isospin projection, pairs (especially np-pairs) manifest as quartets!

quartet model

quartet model

Occupation probabilities

So much of our work was hunting for alpha and alpha-like clusters

So much of our work was hunting for alpha and alpha-like clusters

T=1 pairs stronger than T=0 pairs

Many of these followed the theme of projection to get clusters

Finally, other talks were more ... 'abstract'

Finally, other talks were more ... 'abstract'

shutterstock

We're still waiting to see if neutron-pairing plays a strong role in nuclear physics....

or is just some fantastical story we tell

