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We mapped out possible expt. trails of neutron-proton pairing....
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Some talks were directly on the trail of neutron-proton pairing....
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2n transfer reactions: (t,p) & (p,t)
deuteron transfer reactions: (*He,p) and (p,>He)
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Some talks were
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Some talks were directly on the trail of neutron-proton pairing....
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..some were adjacent to the neutron proton pairs, often through clusters

C. Petrache: clusters in heavy nuclei
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..some were adjacent to the neutron proton pairs, often through clusters
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..some were adjacent to the neutron proton pairs, often through clusters

A. Serban: improved a-scattering through improved
imaginary part of optical potential
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A key idea is that neutron-proton pairs were often in disquise
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g After isospin projection,
pairs (especially np-pairs)
manifest as quartets!
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A key idea is that neutron-proton pairs were often in disquise
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So much of our work was hunting for alpha and alpha-like clusters
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Hence we had clusters of talks on clusters....
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T=1 pairs stronger than T=0 pairs

Many of these followed the
theme of projection to get
clusters
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Finally, other talks were more ... ‘abstract’
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Any good workshop
adds more questions
than it answers
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the right
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model models condensates + projection



Are we using
the right
tools?

(non-interacting shell model)
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Are we
looking in the
right places?
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Could something
block the
‘fingerprint’ we're
looking for?




Could something
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Or could some
structures be
disguised as
something else?



We're still waiting to see if
neutron-pairing plays a strong role in
nuclear physics....

or is just some fantastical story we tell




