The Islands of Inversion from the Nilsson Perspective

ESNT-DPhN Seminar
September 8th, 2023

If I have seen further it is by standing on the shoulders of giants.

Ricardo A. Broglia 1939-2022

John P. Schiffer 1930-2023

Thank you
You are sorely missed!

Evolution of Shell Structure and Collectivity

Near the valley of β stability

A driving question in nuclear physics:
Is the shell-model description static across the entire chart of nuclides?

Approaching the
drip-lines

Protons

"Classic" magic numbers are generally correct only for stable and near stable isotopes Experimental studies of new exotic nuclei revealed that "Classic" magic numbers are generally correct only for stable and near stable isotopes

Changes in shell structure and collectivity, have provided insight on the important role played by the central, tensor, (and 3N) forces in these changes and its N/Z (Isospin) dependence
Role of weak binding and the continuum

9/7/2023, 6:42:32 AM

The Islands of Inversion, also known as the Inversion Islands, are a theoretical concept in physics and chemistry. They refer to a phenomenon that occurs in certain atomic nuclei, where the order of energy levels of the single-particle orbitals is inverted compared to what is normally expected.

In nuclear physics, the term "inversion" refers to the reversal of the normal order of energy levels. Normally, the energy levels of single-particle states increase with increasing energy, but in the case of the Islands of Inversion, this order is reversed, leading to unique and interesting nuclear properties.

The Islands of Inversion are typically observed in atomic nuclei with a high number of protons or neutrons, or both. In these nuclei, specific configurations of protons and neutrons result in the inversion of energy levels. This inversion can have a significant impact on the nuclear structure and behavior, leading to phenomena such as shape coexistence, enhanced collectivity, and exotic decay modes.

ChatGPT

The study of the Islands of Inversion is important for understanding the behavior of atomic nuclei and the limits of nuclear stability. It provides insights into the interplay between different nuclear forces and the emergence of new symmetries and structures.

It's worth noting that the Islands of Inversion are a theoretical concept and have not been observed in all atomic nuclei. However, experimental evidence from various isotopes suggests the existence of these islands, and ongoing research continues to explore and characterize this intriguing phenomenon.

The Islands of Inversion, also known as the Inversion Islands, are a theoretical concept in physics and chemistry. They refer to a phenomenon that occurs in certain atomic nuclei, where the order of energy levels of the single-particle orbitals is inverted compared to what is normally expected.

ChatGPT

In nuclear physics, the term "inversion" refers to the reversal of the normal order of energy levels. Normally, the energy levels of single-particle states increase
this orde

Evolution of shell structure in exotic nuclei

The Islai number configur levels. T
and behavior, leading to phenomena such as shape coexistence, ennanced
collectivity, and exotic decay modes.

Takaharu Otsuka, Alexandra Gade, Olivier Sorlin, Toshio Suzuki, and Yutaka Utsuno Rev. Mod. Phys. 92, 015002 - Published 27 March 2020
behavior of atomic nuclei and the limits of nuclear stability. It provides insights into the interplay between different nuclear forces and the emergence of new symmetries and structures.

It's worth noting that the Islands of Inversion are a theoretical concept and have not been observed in all atomic nuclei. However, experimental evidence from various isotopes suggests the existence of these islands, and ongoing research continues to explore and characterize this intriguing phenomenon.
$\mathrm{E}_{2}{ }^{+}$

keV	
$4.00 \mathrm{E}+3$	$3.00 \mathrm{E}+3$
$2.00 \mathrm{E}+3$	$1.80 \mathrm{E}+3$
$1.40 \mathrm{E}+3$	$1.20 \mathrm{E}+3$
$1.00 \mathrm{E}+3$	$8.00 \mathrm{E}+2$
$6.00 \mathrm{E}+2$	$4.00 \mathrm{E}+2$
$3.00 \mathrm{E}+2$	$2.00 \mathrm{E}+2$
$1.50 \mathrm{E}+2$	$1.00 \mathrm{E}+2$
$7.50 \mathrm{E}+1$	$5.00 \mathrm{E}+1$
$2.50 \mathrm{E}+1$	0.0
unknown	

$Z=8$

0. Sorlin, M.-G. Porquet / Progress in Particle and Nuclear Physics 61 (2008) 602-673

$V^{(r)}=V_{\text {Central }}+V_{\text {Tensor }}+V_{\text {SpinOrbit }}$

Evolution of Nuclear Shells due to the Tensor Force

Takaharu Otsuka, ${ }^{1,2,3, *}$ Toshio Suzuki, ${ }^{4}$ Rintaro Fujimoto, ${ }^{1}$ Hubert Grawe, ${ }^{5}$ and Yoshinori Akaishi ${ }^{6}$ ${ }^{1}$ Department of Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
${ }^{2}$ Center for Nuclear Suty University of Tokso Hongo, Bunkyo-ku, Tokyo 113-0033, Jopan Center for Nuclear Study, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
${ }^{3}$ RIKEN, Hirosawa, Wako-shi, Saitama 351-0198, Japan ${ }^{4}$ Department of Physics, Nihon University, Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan ${ }^{5}$ GSI, D-64291, Darmstadt, Germany
${ }^{6}$ KEK, Oh, Tsumba-shi loaraki 305-0801,

$$
\begin{aligned}
\Delta \operatorname{An}(j) & \left.=\frac{1}{2}\left\{V_{j, j^{\prime}}^{T=0}+V_{j, j^{\prime}}^{T}\right\}_{p} n_{j}^{\prime}\right) \\
V_{j, j^{\prime}}^{T} & =\frac{\sum_{J}(2 J+1)\left\langle j j^{\prime}\right| V\left|j j^{\prime}\right\rangle J T}{\sum_{J}(2 J+1)}
\end{aligned}
$$

Monopole Average

Migration of Effective Single-Particle Energies (ESPE)

$$
H=E s p+G P^{+} P+x Q \cdot Q
$$

A. Poves and J. Retamosa, Phys. Lett. B 184, 311 (1987).
E. K. Warburton, J. A. Becker, and B. A. Brown, Phys. Rev. C41, 1147 (1990).
$\mathrm{N}=20$ shell gap
Role of the $\pi d_{5 / 2}-v d_{3 / 2}$ interaction

$\Delta \ell=\Delta j=2$
 \rightarrow Quadrupole Correlations

Since much evidence has been obtained for the existence of deformed ground states

How about the deformed shell model ?

The Islands of Inversion from the Nilsson Perspective
A refresher on the Particle plus Rotor Model
Spectroscopic Factors in the Nilsson Strong Coupling Limit
N=20 Island of Inversion
Structure of ${ }^{25} \mathrm{~F}$ and ${ }^{29} \mathrm{~F}$
$\mathrm{N}=40$ Island of Inversion
Structure of ${ }^{63,65} \mathrm{Mn}$
How light can you go?
${ }^{7,8,9} \mathrm{He}$

Particle plus Rotor Model 101

$$
E(K, I)=E_{K}+A I(I+1)+B I^{2}(I+1)^{2}+\cdots
$$

Direct reactions

Direct transfer reactions continue to play major role in our understanding of the nuclear elementary modes of excitation, particularly in the characterization of the single particle degrees of freedom and their correlations.

(d,p) vacancies

$$
<A-1|a| A>
$$

(p,d) particles

Direct reactions

$$
\begin{aligned}
& d \sigma^{(-1)}\left(j ; I_{1} \rightarrow I_{2}\right)=\left(2 I_{1}+1\right)^{-1} \sum_{M_{1} M_{2} m} d \sigma^{(-1)}\left(j m ; I_{1} M_{1} \rightarrow I_{2} M_{2}\right) \\
& =(2 j+1)^{-1}\left(2 I_{1}+1\right)^{-1}\left\langle I_{1}\left\|a^{\dagger}(j)\right\| I_{2}\right\rangle^{2} d \sigma_{\mathrm{sp}}^{(-1)}(j) \\
& d \sigma_{\mathrm{sp}}^{(-1)}(j)=\sum_{m} d \sigma_{\mathrm{sp}}^{(-1)}(j m) \\
& \downarrow \mathscr{S} \begin{array}{c}
\text { Structure } \\
\mathscr{S}=\left(2 I_{2}+1\right)^{-1}\left\langle I_{2}\left\|a^{\dagger}(j)\right\| I_{1}\right\rangle^{2}
\end{array} \\
& \text { Reaction } \\
& \text { DWBA } \\
& \text { Eikonal } \\
& \text { DWIA }
\end{aligned}
$$

Macfarlane, M. H., and French, J. B. (1960), Rev. Mod. Phys. 32, 567.

(-1p) à la Nilsson

Nilsson Spectroscopic Factors

Single nucleon knockout

Nilsson

amplitudes
$\begin{aligned} S_{i, f}(j \ell, K) & \left.=\left(g\left\langle I_{i} j \Omega_{\nu} K_{i}\right| I_{f} K_{f}\right) C_{j}, \forall V_{\nu} \phi_{f}\left|\phi_{i}\right\rangle\right)^{2} \\ & =\theta_{i, f}(j \ell, K)^{2}\end{aligned}$
BCS
occupations

Core overlap

THE ONSET OF DEFORMATION AT THE $N=20$ NEUTRON SHELL CLOSURE FAR FROM STABILITY
A. POVES ${ }^{1}$ and J. RETAMOSA

Departamento de Fisica Teórica, C-XI, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain

The case of ${ }^{29} \mathrm{~F}$

PHYSICAL REVIEW C 95，041301（R）（2017）

Low－Z shore of the＂island of inversion＂and the reduced neutron magicity toward ${ }^{28} \mathrm{O}$

P．Doornenbal，${ }^{1, * *}$ H．Scheit，${ }^{1,2, \dagger}$ S．Takeuchi（武内聡），${ }^{1, \ddagger}$ Y．Utsuno（宇都野榱，${ }^{3}$ N．Aoi（青井考），${ }^{1,8} \mathrm{~K} . \operatorname{Li}$（李闊昂）${ }^{1,2}$ M．Matsushita（松下 昌史），${ }^{1,4,4}$ D．Steppenbeck，${ }^{1}$ H．Wang（王赫），${ }^{1,2}$ H．Baba（馬場秀忠），${ }^{1}$ E．Ideguchi（井手口 栄治），${ }^{5,5}$ N．Kobayashi（小林信之），${ }^{6,8}$ Y．Kondo（近藤洋介），${ }^{6}$ J．Lee（李曉菁），${ }^{1,9}$ S．Michimasa（道正 新一郎），${ }^{5}$
T．Motobayashi（本林透），${ }^{1}$ T．Otsuka（大塚考治），${ }^{5,7}$ H．Sakurai（櫻井博儀），${ }^{1}$ M．Takechi（武智麻耶），${ }^{1, \#}$
Y．Togano（栂野 泰宏），${ }^{1, \ddagger}$ and K．Yoneda（米田健一郎）${ }^{1}$
${ }^{1}$ RIKEN Nishina Center，Wako，Saitama 351－0198，Japan
${ }^{2}$ Peking University，Beijing 100871，People＇s Republic of China
${ }^{3}$ Advanced Science Research Center，Japan Atomic Energy Agency，Tokai，Ibaraki 319－1195，Japan ${ }^{4}$ Department of Physics，Rikkyo University，Toshima，Tokyo 172－8501，Japan
${ }^{5}$ Center for Nuclear Study，University of Tokyo，RIKEN Campus，Wako，Saitama 351－0198，Japan
${ }^{6}$ Department of Physics，Tokyo Institute of Technology，Meguro，Tokyo 152－8551，Japa
${ }^{7}$ Department of Physics，University of Tokyo，Bunkyo，Tokyo 113－0033，Japan
（Received 11 February 2015；revised manuscript received 20 February 2017；published 13 April 2017）

The two odd－even fluorine isotopes ${ }^{27,29} \mathrm{~F}$ were studied via in－beam γ－ray spectroscopy at the RIKEN Radioactive Isotope Beam Factory．A secondary beam of ${ }^{30} \mathrm{Ne}$ was used to induce one－proton and one－proton－ two－neutron removal reactions on carbon and polyethylene targets at midtarget energies of $228 \mathrm{MeV} / u$ ．Excited states were observed at $915(12) \mathrm{keV}$ for ${ }^{27} \mathrm{~F}$ and at $1080(18) \mathrm{keV}$ for ${ }^{29} \mathrm{~F}$ ．Both were assigned a $1 / 2_{1}^{+}$spin and parity．The low transition energy for ${ }^{29} \mathrm{~F}$ largely disagrees with shell model predictions restricted to the $s d$ model space．Calculations using effective interactions that include the neutron $p f$ shell indicate that the $N=20$ gap is quenched for ${ }^{29} \mathrm{~F}$ ，thus extending the＂island of inversion＂to isotopes with proton number $Z=9$ ．Variations of the $N=20$ gap further reveal a strong correlation to the $1 / 2_{1}^{+}$level energy in ${ }^{29} \mathrm{~F}$ and suggest a persistent reduced neutron gap for ${ }^{28} \mathrm{O}$ ．

Nilsson levels

$\Delta \mathrm{E}_{\mathrm{K}} \sim \varepsilon_{2} \mathrm{~h} \omega_{0} \sim 1 \mathrm{MeV}$ $\mathbf{H}_{\mathrm{c}}{ }^{\sim} \mathbf{j} . \omega_{\mathrm{rot}} \approx \mathbf{3} \mathbf{~ M e v}$ $\mathrm{H}_{\mathrm{C}} / \Delta \mathrm{E}_{\mathrm{K}} \sim 3>1$
 \downarrow
 Decoupled band?

Structure of ${ }^{29} \mathrm{~F}$: Geometry

A.O. Macchiavelli, H. L. Crawford, et al. Physics Letters B 775 (2017) 160-162

Structure of ${ }^{29} \mathrm{~F}$: Geometry

State	Energy $[\mathrm{MeV}]$	$\langle R\rangle$	$E_{\text {rot }}$ $[\mathrm{MeV}]$	$\left\langle I_{z}\right\rangle$	$\langle\vec{I} \cdot \vec{j}\rangle /\|I\|$	$\langle\vec{R} \cdot \vec{j}\rangle /\|R\|$
$\mathbf{5 / \mathbf { 2 } ^ { + }}$	0	0.53	0.34	0.11	2.78	-0.30
$1 / 2^{+}$	1.08	1.46	2.00	0.5	1.47	-2.14
$3 / 2^{+}$	2.2	2.01	2.54	-1.12	1.58	-2.18
$\mathbf{9 / 2}^{+}$	2.6	2.18	2.91	0.04	2.65	1.76
$7 / 2^{+}$	3.2	2.09	2.71	0.60	2.27	0.12

A.O. Macchiavelli, H. L. Crawford, et al. Physics Letters B 775 (2017) 160-162

Structure of ${ }^{29} \mathrm{~F}$: PRM Solution

NP1712-RIBF164 (H.Crawford, Coulomb excitation of ${ }^{29}$ F)

Structure of ${ }^{29} \mathrm{~F}$: Decoupled Band

$$
|I, \alpha\rangle=\sum_{\Omega_{p}=1 / 2}^{5 / 2} C_{I \Omega_{p}}^{\alpha}\left|I, \Omega_{p}\right\rangle
$$

Full sd PRM calculation

$$
C_{I \Omega}^{\alpha} \approx d_{\alpha, \Omega}^{j}(\pi / 2)
$$

Pure decoupled $d_{5 / 2}$ band

Structure of ${ }^{25} \mathrm{~F}$ and its effective ${ }^{24} \mathrm{O}$ core

PHYSICAL REVIEW LETTERS 124, 212502 (2020)

How Different is the Core of ${ }^{25} \mathrm{~F}$ from ${ }^{24} \mathrm{O}_{\text {g.s. }}$?
T. L. Tang $\odot,{ }^{1,2, *}$ T. Uesaka $\odot,{ }^{2}$ S. Kawase $\odot,{ }^{1, \dagger}$ D. Beaumel, ${ }^{3}$ M. Dozono, ${ }^{2}$ T. Fujii, ${ }^{1}$ N. Fukuda, ${ }^{2}$ T. Fukunaga, ${ }^{4}$ A. Galindo-Uribarri, ${ }^{5}$ S. H. Hwang, ${ }^{6,{ }^{*}}$ N. Inabe, ${ }^{2}$ D. Kameda, ${ }^{2}$ T. Kawahara, ${ }^{7}$ W. Kim, ${ }^{6}$ K. Kisamori, ${ }^{1}$ M. Kobayashi, ${ }^{1}$ T. Kubo, ${ }^{2}$ Y. Kubota, ${ }^{1,8}$ K. Kusaka, ${ }^{2}$ C. S. Lee, ${ }^{1}$ Y. Maeda, ${ }^{8}$ H. Matsubara ${ }^{2},{ }^{2, \|}$ S. Michimasa, ${ }^{1}$ H. Miya, ${ }^{1}$ T. Noro, ${ }^{4}$
A. Obertelli, ${ }^{2,9,8}$ K. Ogata $\odot,^{10,11}$ S. Ota, ${ }^{1}$ E. Padilla-Rodal $\odot,{ }^{12}$ S. Sakaguchi $\odot,{ }^{4}$ H. Sakai, ${ }^{2}$ M. Sasano, ${ }^{2}$ S. Shimoura $\odot,{ }^{1}$ S.
S. Stepanyan, ${ }^{6}$ H. Suzuki, ${ }^{2}$ M. Takaki, ${ }^{1}$ H. Takeda, ${ }^{2}$ H. Tokieda, ${ }^{1}$ T. Wakasa, ${ }^{4}$ T. Wakui, ${ }^{13,}{ }^{13,}$ K. Yako, ${ }^{1}$ Y. Yanagisawa, ${ }^{2}$ J. Yasuda, ${ }^{4}$ R. Yokoyama, ${ }^{1}$ K. Yoshida, ${ }^{2}$ K. Yoshida, ${ }^{10,{ }^{* *}}$ and J. Zenihiro ${ }^{2}$

The structure of a neutron-rich ${ }^{25} \mathrm{~F}$ nucleus is investigated by a quasifree $(p, 2 p)$ knockout reaction at 270 A MeV in inverse kinematics. The sum of spectroscopic factors of $\pi 0 \mathrm{~d}_{5 / 2}$ orbital is found to be 1.0 ± 0.3. However, the spectroscopic factor with residual ${ }^{24} \mathrm{O}$ nucleus being in the ground state is found to be only 0.36 ± 0.13, while those in the excited state is 0.65 ± 0.25. The result shows that the ${ }^{24} \mathrm{O}$ core of ${ }^{25} \mathrm{~F}$ nucleus significantly differs from a free ${ }^{24} \mathrm{O}$ nucleus, and the core consists of $\sim 35 \%{ }^{24} \mathrm{O}_{\text {g.s. }}$. and $\sim 65 \%$ excited ${ }^{24} \mathrm{O}$. The result may infer that the addition of the $0 d_{5 / 2}$ proton considerably changes neutron structure in ${ }^{25} \mathrm{~F}$ from that in ${ }^{24} \mathrm{O}$, which could be a possible mechanism responsible for the oxygen dripline anomaly.

Physics Letters B 672 (2009) 17-21

	Contents lists available at ScienceDirect Physics Letters B www.elsevier.com/locate/physletb	

Evidence for a doubly magic ${ }^{24} \mathrm{O}$

C.R. Hoffman ${ }^{\text {a,* }}$, T. Baumann ${ }^{\text {b }}$, D. Bazin ${ }^{\text {b }}$, J. Brown ${ }^{\text {c }}$, G. Christian ${ }^{\text {b,d }}$, D.H. Denby ${ }^{\text {e }}$, P.A. DeYoung ${ }^{\text {e }}$, J.E. Finck ${ }^{\text {f }}$, N. Frank ${ }^{\text {b,d, }, 1}$, J. Hinnefeld ${ }^{\text {g }}$, S. Mosby ${ }^{\text {h }}$, W.A. Peters ${ }^{\text {b,d,2 }}$, W.F. Rogers ${ }^{\text {h }}$, A. Schiller ${ }^{\text {b,3 }}$, A. Spyrou ${ }^{\text {b }}$, M.J. Scott ${ }^{{ }^{f} \text {, }}$ S.L. Tabor ${ }^{\text {a }}$, M. Thoennessen ${ }^{\text {b,d }}$, P. Voss ${ }^{\text {f }}$

One-Neutron Removal Measurement Reveals ${ }^{24} \mathrm{O}$ as a New Doubly Magic Nucleus
R. Kanungo, ${ }^{1, *}$ C. Nociforo, ${ }^{2}$ A. Prochazka, ${ }^{2,3}$ T. Aumann, ${ }^{2}$ D. Boutin, ${ }^{3}$ D. Cortina-Gil, ${ }^{4}$ B. Davids, ${ }^{5}$ M. Diakaki, ${ }^{6}$
F. Farinon, ${ }^{2,3}$ H. Geissel, ${ }^{2}$ R. Gernhäuser, ${ }^{7}$ J. Gerl, ${ }^{2}$ R. Janik, ${ }^{8}$ B. Jonson, ${ }^{9}$ B. Kindler, ${ }^{2}$ R. Knöbel, ${ }^{2,3}$ R. Krücken, ${ }^{7}$
M. Lantz, ${ }^{9}$ H. Lenske, ${ }^{3}$ Y. Litvinov, ${ }^{2}$ B. Lommel, ${ }^{2}$ K. Mahata, ${ }^{2}$ P. Maierbeck, ${ }^{7}$ A. Musumarra, ${ }^{10,11}$ T. Nilsson, ${ }^{9}$ T. Otsuka, ${ }^{12}$
C. Perro, ${ }^{1}$ C. Scheidenberger, ${ }^{2}$ B. Sitar, ${ }^{8}$ P. Strmen, ${ }^{8}$ B. Sun, ${ }^{2}$ I. Szarka, ${ }^{8}$ I. Tanihata, ${ }^{13}$ Y. Utsuno, ${ }^{14}$

$$
\text { H. Weick, }{ }^{2} \text { and M. Winkler }{ }^{2}
$$

PRL 109, 022501 (2012)
PHYSICAL REVIEW LETTERS

$N=16$ Spherical Shell Closure in ${ }^{24} \mathrm{O}$

K. Tshoo, ${ }^{1, *}$ Y. Satou, ${ }^{1}$ H. Bhang, ${ }^{1}$ S. Choi, ${ }^{1}$ T. Nakamura, ${ }^{2}$ Y. Kondo, ${ }^{2}$ S. Deguchi, ${ }^{2}$ Y. Kawada, ${ }^{2}$ N. Kobayashi, ${ }^{2}$ Y. Nakayama, ${ }^{2}$ K. N. Tanaka, ${ }^{2}$ N. Tanaka, ${ }^{2}$ N. Aoi, ${ }^{3}$ M. Ishihara, ${ }^{3}$ T. Motobayashi, ${ }^{3}$ H. Otsu, ${ }^{3}$ H. Sakurai, ${ }^{3}$ S. Takeuchi, ${ }^{3}$ Y. Togano, ${ }^{3}$ K. Yoneda, ${ }^{3}$ Z. H. Li, ${ }^{3}$ F. Delaunay, ${ }^{4}$ J. Gibelin, ${ }^{4}$ F. M. Marqués, ${ }^{4}$ N. A. Orr, ${ }^{4}$ T. Honda, ${ }^{5}$ M. Matsushita, ${ }^{5}$ T. Kobayashi, ${ }^{6}$ Y. Miyashita, ${ }^{7}$ T. Sumikama, ${ }^{7}$ K. Yoshinaga, ${ }^{7}$ S. Shimoura, ${ }^{8}$ D. Sohler, ${ }^{9}$ T. Zheng, ${ }^{10}$ and Z. X. Cao ${ }^{10}$

NSCL
 MoNA
 26F $85 \mathrm{MeV} / \mathrm{A}$

GSI FRS

${ }^{24} \mathrm{O}$ at $920 \mathrm{MeV} / \mathrm{A}$

RIKEN

${ }^{24} \mathrm{O}\left(\mathrm{p}, \mathrm{p}{ }^{\prime}\right)$

Structure of ${ }^{25} \mathrm{~F}$ and its effective ${ }^{24} \mathrm{O}$ core

Channel	Mean $[\mathrm{MeV}]$	Width $[\mathrm{MeV}]$	$\sigma_{\text {exp }}[\mu \mathrm{b}]$	$\sigma_{\text {th }}[\mu \mathrm{b}]$	J_{th}^{π}	$S_{\text {exp }}$	$S_{\text {th }}($ USDB $)$	$S_{\mathrm{th}}(\mathrm{SFO})$	$S_{\mathrm{th}}($ SPDF-MU $)$
$\left.{ }^{25} \mathrm{~F},{ }^{24} \mathrm{O}\right)$	$-0.5(1.1)$	$4.8(1.3)$	$53(18)$	$149(24)$	$5 / 2^{+}$	$0.36(13)$	1.01	0.90	0.95
$\left.{ }^{25} \mathrm{~F},{ }^{23} \mathrm{O}\right)$	$6.5(1.4)$	$6.3(9)$	$81(26)$	$125(26)$	$5 / 2^{+}$	$0.65(25)$	0.01	0.07	0.05
$\left({ }^{25} \mathrm{~F},{ }^{22} \mathrm{O}\right)$	$12.7(6)$	$7.6(6)$	$274(71)$	$80(24)$	$1 / 2^{-}$	$3.43(1.4)$		2.19	

The $0 d_{5 / 2}$ proton knockout from ${ }^{25} \mathrm{~F}$ populates the ${ }^{24} \mathrm{O}$ ground state with a smaller probability than the ${ }^{24} \mathrm{O}$ excited states. This result indicates that the oxygen core of ${ }^{25} \mathrm{~F}$ is considerably different from ${ }^{24} \mathrm{O}_{\mathrm{gs}}$ and has a larger overlap with the excited states of ${ }^{24} \mathrm{O}$. The change in the neutron-shell structure due to the $0 \mathrm{~d}_{5 / 2}$ proton may be responsible for the small overlap between ${ }^{25} \mathrm{~F}$ and ${ }^{24} \mathrm{O} \mathrm{gs}$

A comparison with the shell model calculations indicates that the USDB, SFO, and SFPD-MU interactions are insufficient to reproduce the present results. A stronger tensor force or other mechanism such as the 3 N force effects, or both, might be needed to explain the experimental results. More experimental and theoretical studies are necessary to clarify the mechanism for the change in the core of neutron-rich fluorine from the ground state of oxygen isotopes.

How Different is the Core of ${ }^{25} \mathrm{~F}$ from ${ }^{24} \mathrm{O}_{\text {g.s. }}$?

T.L. Tang $\odot,{ }^{1,2, *}$ T. Uesaka $\oplus,{ }^{2}$ S. Kawase $\odot,{ }^{1, \dagger}$ D. Beaumel,,${ }^{3}$ M. Dozono, ${ }^{2}$ T. Fujii, ${ }^{1}$ N. Fukuda, ${ }^{2}$ T. Fukunaga, ${ }^{4}$ A. Galindo-Uribarri, ${ }^{5}$ S. H. Hwang, ${ }^{\text {6.* }}$ N. Inabe, ${ }^{2}$ D. Kameda, ${ }^{2}$ T. Kawahara, ${ }^{7}$ W. Kim, ${ }^{6}$ K. Kisamori, ${ }^{1}$ M. Kobayashi, ${ }^{1}$ T. Kubo, ${ }^{2}$ Y. Kubota, ${ }^{1,8}$ K. Kusaka, ${ }^{2}$ C. S. Lee, ${ }^{1}{ }^{1}$ Y. Maeda, ${ }^{8}$ H. Matsubara ${ }^{2}{ }^{2, \| l}$ S. Michimasa, ${ }^{1}$ H. Miya, ${ }^{1}$ T. Noro, ${ }^{4}$ A. Obertelli, ${ }^{2,9,8}$ K. Ogata $\odot,{ }^{10,11}$ S. Ota, ${ }^{1}$ E. Padilla-Rodal $\odot{ }^{12}$ S. Sakaguchi $\odot,{ }^{4}$ H. Sakai, ${ }^{2}$ M. Sasano, ${ }^{2}$ S. Shimoura $\odot,{ }^{1}$ S. S. Stepanyan, ${ }^{6}$ H. Suzuki, ${ }^{2}$ M. Takaki, ${ }^{1}$ H. Takeda, ${ }^{2}$ H. Tokieda, ${ }^{1}$ T. Wakasa, ${ }^{4}$ T. Wakui, ${ }^{13,4}$ K. Yako, ${ }^{1}$ Y. Yanagisawa, ${ }^{1}$

$$
\text { J. Yasuda, }{ }^{4} \text { R. Yokoyama, }{ }^{1} \text { K. Yoshida, }{ }^{2} \text { K. Yoshida, }{ }^{10}{ }^{10, * *} \text { and J. Zenihiro }{ }^{2}
$$

The structure of a neutron-rich ${ }^{25} \mathrm{~F}$ nucleus is investigated by a quasifree $(p, 2 p)$ knockout reaction at 270 A MeV in inverse kinematics. The sum of spectroscopic factors of $\pi 0 \mathrm{~d}_{5 / 2}$ orbital is found to be 1.0 ± 0.3. However, the spectroscopic factor with residual ${ }^{24} \mathrm{O}$ nucleus being in the ground state is found to be only 0.36 ± 0.13, while those in the excited state is 0.65 ± 0.25. The result shows that the ${ }^{24} \mathrm{O}$ core of ${ }^{25} \mathrm{~F}$ nucleus significantly differs from a free ${ }^{24} \mathrm{O}$ nucleus, and the core consists of $\sim 35 \%{ }^{24} \mathrm{O}_{\mathrm{g} \text {..s. }}$. and $\sim 65 \%$ excited ${ }^{24} \mathrm{O}$. The result may infer that the addition of the $0 d_{5 / 2}$ proton considerably changes neutron structure in ${ }^{25} \mathrm{~F}$ from that in ${ }^{24} \mathrm{O}$, which could be a possible mechanism responsible for the oxygen dripline anomaly.

Channel	Mean $[\mathrm{MeV}]$	Width $[\mathrm{MeV}]$	$\sigma_{\text {exp }}[\mu \mathrm{b}]$	$\sigma_{\text {th }}[\mu \mathrm{b}]$	$J_{\text {th }}^{\pi}$	$S_{\text {exp }}$	$S_{\text {th }}(\mathrm{USDB})$	$S_{\text {th }}(\mathrm{SFO})$	$S_{\text {th }}($ SPDF-MU $)$
$\left.{ }^{25} \mathrm{~F},{ }^{24} \mathrm{O}\right)$	$-0.5(1.1)$	$4.8(1.3)$	$53(18)$	$149(24)$	$5 / 2^{+}$	$0.36(13)$	1.01	0.90	0.95
$\left.{ }^{25} \mathrm{~F},{ }^{23} \mathrm{O}\right)$	$6.5(1.4)$	$6.3(9)$	$81(26)$	$125(26)$	$5 / 2^{+}$	$0.65(25)$	0.01	0.07	0.05
$\left({ }^{25} \mathrm{~F},{ }^{22} \mathrm{O}\right)$	$12.7(6)$	$7.6(6)$	$274(71)$	$80(24)$	$1 / 2^{-}$	$3.43(1.4)$		2.19	

Core of ${ }^{25} \mathrm{~F}$ studied by the ${ }^{25} \mathrm{~F}(-p)$ proton-removal reaction

H. L. Crawford ©, ${ }^{1, *}$ M. D. Jones,,${ }^{1,2}$ A. O. Macchiavelli, ${ }^{1,3}$ P. Fallon, ${ }^{1}$ D. Bazin $\odot,{ }^{4}$ P. C. Bender $\odot,{ }^{4, \dagger}$ B. A. Brown $\odot,{ }^{4,5}$
C. M. Campbell, ${ }^{1}$ R. M. Clark, ${ }^{1}$ M. Cromaz, ${ }^{1}$ B. Elman, ${ }^{4,5}$ A. Gade, ${ }^{4,5}$ J. D. Holt, ${ }^{6}$ R. V. F. Janssens, ${ }^{2}$ I. Y. Lee $\oplus,{ }^{1}$
B. Longfellow, ${ }^{4,5,}$ S. Paschalis ${ }^{1}{ }^{,}$M. Petri@, A. L. Richard $\odot,{ }^{4,+}$ M. Salathe, J. A. Tostevin ${ }^{1}{ }^{8}$ and D. Weisshaar \odot^{4}
${ }^{1}$ Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
${ }^{2}$ Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27559-3255, USA and Triangle Universities Nuclear Laboratory, Duke University, Durham, North Carolina 27708-0308, USA
${ }^{3}$ Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
${ }^{4}$ National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
${ }^{5}$ Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
${ }^{6}$ TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2 A3
${ }^{7}$ Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom
${ }^{8}$ Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom

The ${ }^{9} \mathrm{Be}\left({ }^{25} \mathrm{~F}\left(5 / 2^{+}\right),{ }^{24} \mathrm{O}\right) \mathrm{X}$ proton-removal reaction was studied at the NSCL using the S 800 spectrometer. The experimental spectroscopic factor for the ground-state to ground-state transition indicates a substantial depletion of the proton $d_{5 / 2}$ strength compared to shell-model expectations, similar to the findings of an inverse-kinematics ($p, 2 p$) measurement performed at RIBF. The ${ }^{25} \mathrm{~F}$ to ${ }^{24} \mathrm{O}$ ground-states overlap is considerably less than anticipated if the core nucleons behaved as rigid, doubly-magic ${ }^{24} \mathrm{O}$ within ${ }^{25} \mathrm{~F}$. We interpret the new results within the framework of the Particle-Vibration Coupling (PVC) model, of a $d_{5 / 2}$ proton coupled to a quadrupole phonon of an effective core. This approach provides a good description of the experimental data, requiring an effective ${ }^{24} \mathrm{O}^{*}$ core with a phonon energy of $\hbar \omega_{2}=3.2 \mathrm{MeV}$ and a $B(E 2) \approx 2.7 \mathrm{~W} . \mathrm{u}$. - softer and more collective than a bare ${ }^{24} \mathrm{O}$. Both the Nilsson deformed mean field and the PVC models appear to capture the properties of the effective core of ${ }^{25} \mathrm{~F}$, suggesting that the additional proton polarizes ${ }^{24} \mathrm{O}$ in such a way that it becomes either slightly deformed or a quadrupole vibrator.

Proton Knockout at NSCL

${ }^{20} \mathrm{Ne}$	${ }^{21} \mathrm{Ne}$	${ }^{22} \mathrm{Ne}$	${ }^{23} \mathrm{Ne}$	${ }^{24} \mathrm{Ne}$	${ }^{25} \mathrm{Ne}$	${ }^{26} \mathrm{Ne}$	${ }^{27} \mathrm{Ne}$
${ }^{19} \mathrm{~F}$	${ }^{20} \mathrm{~F}$	${ }^{21} \mathrm{~F}$	${ }^{22} \mathrm{~F}$	${ }^{23} \mathrm{~F}$	${ }^{24} \mathrm{~F}$	${ }^{25} \mathrm{~F}$	${ }^{26} \mathrm{~F}$
${ }^{18} \mathrm{O}$	${ }^{19} \mathrm{O}$	${ }^{20} \mathrm{O}$	${ }^{21} \mathrm{O}$	${ }^{22} \mathrm{O}$	${ }^{23} \mathrm{O}$	${ }^{24} \mathrm{O}$	${ }^{25} \mathrm{O}$
${ }^{17} \mathrm{~N}$	${ }^{18} \mathrm{~N}$	${ }^{19} \mathrm{~N}$	${ }^{20} \mathrm{~N}$	${ }^{21} \mathrm{~N}$	${ }^{22} \mathrm{~N}$	${ }^{23} \mathrm{~N}$	${ }^{24} \mathrm{~N}$

S800

spectrograph
4 quads at $58^{\circ}, 8$ quads at 90°

Core of ${ }^{25} \mathrm{~F}$ in the rotational model

A. O. Macchiavelli®, R. M. Clark, H. L. Crawford, P. Fallon, I. Y. Lee®, C. Morse, C. M. Campbell,
M. Cromaz, and C. Santamaria ${ }^{\circ}$

Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

${ }^{25} \mathrm{~F}$ in the PRM

The effective ${ }^{24} \mathrm{O}$ core in ${ }^{25} \mathrm{~F}$ can be interpreted as a slightly deformed rotor with:

$$
E_{2}{ }^{+}(\text {core }) \approx 3.2 \mathrm{MeV} \text { and } \varepsilon_{2} \approx 0.15,
$$

Zs. Vajta et al., Phys. Rev. C 89, 054323 (2014).

${ }^{25} \mathrm{~F}$ in the PRM

Furthermore, in ${ }^{26} \mathrm{~F} *$ the 1^{+}ground and 4^{+}isomeric states can be associated with the antiparallel and parallel couplings of the odd neutron in the $d_{3 / 2}$ Nilsson multiplet to the structure of ${ }^{25} \mathrm{~F}$.

The former, favored by the Gallagher-Moszkowski rule gives 1^{+}as the lowest state and the latter a 4^{+}as the bandhead of a doubly decoupled band.

Zs. Vajta et al., Phys. Rev. C 89, 054323 (2014).

[^0]
Spectroscopic factors

$$
\mathrm{PRM} \longmapsto \psi_{I}=\sum_{K} \mathcal{A}_{K}|I K\rangle . \quad S_{i, f}(j \ell)=\left(\sum_{K} \mathcal{A}_{K} \theta_{i, f}(j \ell, K)\right)^{2},
$$

[^1]
A first look at ${ }^{28}$ F

Extending the Southern Shore of the Island of Inversion to ${ }^{28} \mathrm{~F}$

A. Revel, ${ }^{1,2}$ O. Sorlin, ${ }^{1}$ F. M. Marqués©, ${ }^{2}$ Y. Kondo, ${ }^{3}$ J. Kahlbow, ${ }^{4,5}$ T. Nakamura, ${ }^{3}$ N. A. Orr, ${ }^{2}$ F. Nowacki, ${ }^{6,7}$
J. A. Tostevin, ${ }^{8}$ C. X. Yuan, ${ }^{9}$ N. L. Achouri, ${ }^{2}$ H. Al Falou, ${ }^{10}$ L. Atar, ${ }^{4}$ T. Aumann, ${ }^{4,11}$ H. Baba, ${ }^{5}$ K. Boretzky, ${ }^{11}$ C. Caesar, ${ }^{4,11}$
D. Calvet, ${ }^{12}$ H. Chae, ${ }^{13}$ N. Chiga, ${ }^{5}$ A. Corsi, ${ }^{12}$ H. L. Crawford, ${ }^{14}$ F. Delaunay, ${ }^{2}$ A. Delbart, ${ }^{12}$ Q. Deshayes, ${ }^{2}$ Z. Dombrádi, ${ }^{15}$
C. A. Douma, ${ }^{16}$ Z. Elekes, ${ }^{15}$ P. Fallon, ${ }^{14}$ I. Gašparić, ${ }^{17,5}$ J.-M. Gheller, ${ }^{12}$ J. Gibelin, ${ }^{2}$ A. Gillibert, ${ }^{12}$ M. N. Harakeh, ${ }^{11,16}$
W. He, ${ }^{5}$ A. Hirayama, ${ }^{3}$ C. R. Hoffman, ${ }^{18}$ M. Holl, ${ }^{11}$ A. Horvat, ${ }^{11}$ Á. Horváth, ${ }^{19}$ J. W. Hwang, ${ }^{20}$ T. Isobe, ${ }^{5}$
N. Kalantar-Nayestanaki, ${ }^{16}$ S. Kawase, ${ }^{21}$ S. Kim, ${ }^{20}$ K. Kisamori, ${ }^{5}$ T. Kobayashi, ${ }^{22}$ D. Körper, ${ }^{11}$ S. Koyama, ${ }^{23}$ I. Kuti, ${ }^{15}$
V. Lapoux, ${ }^{12}$ S. Lindberg, ${ }^{24}$ S. Masuoka, ${ }^{25}$ J. Mayer, ${ }^{26}$ K. Miki, ${ }^{27}$ T. Murakami, ${ }^{28}$ M. Najafi, ${ }^{16}$ K. Nakano, ${ }^{21}$
N. Nakatsuka, ${ }^{28}$ T. Nilsson, ${ }^{24}$ A. Obertelli, ${ }^{12}$ F. de Oliveira Santos, ${ }^{1}$ H. Otsu, ${ }^{5}$ T. Ozaki, ${ }^{3}$ V. Panin, ${ }^{5}$ S. Paschalis, ${ }^{4}$ D. Rossi, ${ }^{4}$
A. T. Saito, ${ }^{3}$ T. Saito, ${ }^{23}$ M. Sasano, ${ }^{5}$ H. Sato, ${ }^{5}$ Y. Satou, ${ }^{20}$ H. Scheit, ${ }^{4}$ F. Schindler, ${ }^{4}$ P. Schrock, ${ }^{25}$ M. Shikata, ${ }^{3}$ Y. Shimizu,
H. Simon, ${ }^{11}$ D. Sohler, ${ }^{15}$ L. Stuhl, ${ }^{5}$ S. Takeuchi, ${ }^{3}$ M. Tanaka, ${ }^{29}$ M. Thoennessen, ${ }^{27}$ H. Törnqvist, ${ }^{4}$ Y. Togano, ${ }^{3}$ T. Tomai, ${ }^{3}$
J. Tscheuschner, ${ }^{4}$ J. Tsubota, ${ }^{3}$ T. Uesaka, ${ }^{5}$ Z. Yang, ${ }^{5}$ M. Yasuda, ${ }^{3}$ and K. Yoneda ${ }^{5}$

(SAMURAI21 collaboration)

Detailed spectroscopy of the neutron-unbound nucleus ${ }^{28} \mathrm{~F}$ has been performed for the first time following proton/neutron removal from ${ }^{29} \mathrm{Ne} /{ }^{29} \mathrm{~F}$ beams at energies around $230 \mathrm{MeV} /$ nucleon. The invariant-mass spectra were reconstructed for both the ${ }^{27} \mathrm{~F}^{(*)}+n$ and ${ }^{26} \mathrm{~F}^{(*)}+2 n$ coincidences and revealed a series of well-defined resonances. A near-threshold state was observed in both reactions and is identified as the ${ }^{28} \mathrm{~F}$ ground state, with $S_{n}\left({ }^{28} \mathrm{~F}\right)=-199(6) \mathrm{keV}$, while analysis of the $2 n$ decay channel allowed a considerably improved $S_{n}\left({ }^{27} \mathrm{~F}\right)=1620(60) \mathrm{keV}$ to be deduced. Comparison with shell-model predictions and eikonal-model reaction calculations have allowed snin-naritv assignments to be pronosed for some of the lower-lying levels of ${ }^{28} \mathrm{~F}$. Importantly, in the case of the ground state, the reconstructed ${ }^{27} \mathrm{~F}+n$ momentum distribution following neutron removal from ${ }^{29} \mathrm{~F}$ indicates that it arises mainly from the $1 p_{3 / 2}$ neutron intruder configuration. This demonstrates that the island of inversion around $N=20$ includes ${ }^{28} \mathrm{~F}$, and most probably ${ }^{29} \mathrm{~F}$, and suggests that ${ }^{28} \mathrm{O}$ is not doubly magic.

A first look at ${ }^{28} \mathrm{~F}$

Angular momentum structure

A. Molinari, et al. Nucl. Phys. A239, 45 (1975)
UNIVERSAL np FORCE

Summary

The low-lying structure of ${ }^{25,29} \mathrm{~F}$ can be understood in terms of the rotation-aligned coupling limit of the PRM. Coriolis coupling on the $d_{5 / 2}$ proton Nilsson multiplet gives rise to a decoupled band with a $5 / 2^{+}$ bandhead.

Calculated proton spectroscopic factors for the ${ }^{25} F\left(5 / 2^{+}\right)(-1 p){ }^{24} \mathrm{O}$ reaction are in agreement with the experimental data. The observed fragmentation of the $d_{5 / 2}$ strength is due to both deformation and a core overlap.

The Nilsson plus PRM picture suggests that the extra proton with a dominant component in the downsloping [220] $1 / 2$ level polarizes ${ }^{24,28} \mathrm{O}$ and stabilizes its dynamic deformation. Thus, the effective core in ${ }^{25} \mathrm{~F}$ $\left({ }^{29} \mathrm{~F}\right)$ can be interpreted as a slightly deformed rotor with $E 2+($ core $) \approx 3.2 \mathrm{MeV}(2.5 \mathrm{MeV})$ and $\varepsilon_{2} \approx 0.15$, compared to the real doubly magic ${ }^{24} \mathrm{O}\left({ }^{28} \mathrm{O}\right)$ with $E 2+\approx 4.7 \mathrm{MeV}$ (??) and weak vibrational quadrupole collectivity.

Electromagnetic observables for the three lowest experimental levels, obtained in the PRM, suggest that Coulomb excitation experiments will shed further light on the validity of our interpretation.

Two-qp plus rotor model calculations of ${ }^{28,30} \mathrm{~F}$ are in progress.

PHYSICAL REVIEW C 82, 054301 (2010)

Island of inversion around ${ }^{64} \mathrm{Cr}$

S. M. Lenzi, ${ }^{1}$ F. Nowacki, ${ }^{2}$ A. Poves, ${ }^{3}$ and K. Sieja ${ }^{2, *}$
${ }^{1}$ Dipartimento di Fisica dell'Università and INFN, Sezione di Padova, I-35131 Padova, Italy
${ }^{2}$ IPHC, IN2P3-CNRS et Université de Strasbourg, F-67037 Strasbourg, France
${ }^{3}$ Departamento de Física Teórica e IFT-UAM/CSIC, Universidad Autónoma de Madrid, E-28049 Madrid, Spain

Quadrupole Collectivity in Neutron-Rich $\mathbf{F e}$ and $\mathbf{C r}$ Isotopes

H. L. Crawford, ${ }^{1}$ R. M. Clark, ${ }^{1}$ P. Fallon, ${ }^{1}$ A. O. Macchiavelli, ${ }^{1}$ T. Baugher, ${ }^{2,3}$ D. Bazin, ${ }^{2}$ C. W. Beausang, ${ }^{4}$ J. S. Berryman, ${ }^{2}$ D. L. Bleuel, ${ }^{5}$ C. M. Campbell, ${ }^{1}$ M. Cromaz, ${ }^{1}$ G. de Angelis, ${ }^{6}$ A. Gade, ${ }^{2,3}$ R. O. Hughes, ${ }^{4}$ I. Y. Lee, ${ }^{1}$
S. M. Lenzi, ${ }^{7}$ F. Nowacki, ${ }^{8}$ S. Paschalis, ${ }^{1}$ M. Petri, ${ }^{1}$ A. Poves, ${ }^{9}$ A. Ratkiewicz, ${ }^{2,3}$ T. J. Ross, ${ }^{4}$ E. Sahin, ${ }^{6}$ D. Weisshaar, ${ }^{2}$
K. Wimmer, ${ }^{2,10}$ and R. Winkler ${ }^{2}$

The cases of ${ }^{63,65} \mathrm{Mn}$

Physics Letters B 784 (2018) 392-396

Spectroscopy of ${ }_{25}^{65,67} \mathrm{Mn}$: Strong coupling in the $N=40$ "island of inversion"
X.Y. Liu ${ }^{\text {a,b }}$, Z. Liu ${ }^{\mathrm{a}, *}$, B. Ding ${ }^{\mathrm{a}, *}$, P. Doornenbal ${ }^{\mathrm{c}}$, A. Obertellic ${ }^{\mathrm{c}, \mathrm{d}, \mathrm{e}}$, S.M. Lenzi P.M. Walker ${ }^{\text {g }}$, L.X. Chung ${ }^{11}$, B.D. Linh ${ }^{17}$, G. Authelet ${ }^{\text {d }}$, H. Baba ${ }^{c}$, D. Calvet ${ }^{\text {d }}$, F. Château ${ }^{\text {d }}$ A. Corsi ${ }^{\text {d }}$, A. Delbart ${ }^{d}$, J.-M. Gheller ${ }^{\text {d }}$, A. Gillibert ${ }^{d}$, T. Isobe ${ }^{\text {c }}$, V. Lapoux ${ }^{\text {d }}$, M. Matsushita ${ }^{1}$, S. Momiyama ${ }^{\text {C.J. }}$, T. Motobayashi ${ }^{\text {c }}$, M. Niikura ${ }^{\mathrm{j}}$, F. Nowacki ${ }^{\mathrm{k}}$, H. Otsu ${ }^{\mathrm{c}}$, C. Péron ${ }^{\text {d }}$ A. Peyaud ${ }^{\text {d }}$, E.C. Pollacco ${ }^{\text {d }}$, J.-Y. Roussé ${ }^{\mathrm{d}}$, H. Sakurai ${ }^{\text {c.j. }}$, M. Sasano ${ }^{\text {c }}$, Y. Shiga ${ }^{\text {C, }, \text {, }}$, S. Takeuchic ${ }^{\text {c }}$, R. Taniuchic ${ }^{\text {c, }}$, T. Uesaka ${ }^{\text {c }}$, H. Wang ${ }^{\text {c }}$, K. Yoneda ${ }^{\text {c }}$, Y.H. Lam ${ }^{\text {d }}$, T.H. Huang ${ }^{\text {a }}$, M.D. Sun ${ }^{\mathrm{a}, \mathrm{b}}$, W.Q. Zhang ${ }^{\text {a,b }}$, H.Y. Lu ${ }^{\mathrm{a}, \mathrm{b}}$, D.S. Hou ${ }^{\mathrm{a}, \mathrm{b}}$, F. Browne ${ }^{\text {m }}$, Zs. Dombradi ${ }^{\text {n }}$,
S. Franchoo ${ }^{\circ}$, F. Giacoppo ${ }^{\text {P }}$, A. Gottardo ${ }^{\circ}$, K. Hadynska-Klek ${ }^{\text {P }}$, Z. Korkulu ${ }^{\text {n }}$, S. Koyama ${ }^{\text {C., }}$

C. Shand ${ }^{\text {B }}$ P-A. Söderström ${ }^{\text {C }}$, G.L. Stefan ${ }^{\circ}$, D. Steppenbeck ${ }^{1}$ T. Sumikama ${ }^{\text {s }}$, D. Suzuki ${ }^{\circ}$

Zs. Vajta ${ }^{\text {n }}$, V. Werner ${ }^{\text {e }}$, J. Wu ${ }^{\text {c,t }}, Z$ Z. Xu ${ }^{q}$, X.H. Zhou ${ }^{\text {a }}$, Y.H. Zhang ${ }^{\mathrm{a}}$, H.S. Xu ${ }^{\text {a }}$, F.S. Zhang ${ }^{\text {u, }}$

DETAILS

Particle Rotor Model

Core properties from Migdal Analysis of even-even nuclei $E_{2+}, B(E 2)$, and pairing gaps suggests $\varepsilon_{2}=0.25$

Leading Order Fits of ${ }^{65} \mathrm{Mn}$ Energies

$$
E(K, I)=E_{K}+A I(I+1)+B I^{2}(I+1)^{2}+\cdots
$$

A small staggering term A_{5} is determined from the fit the data

$$
\Delta E_{\mathrm{rot}}=(-1)^{I+K} A_{2 K} \frac{(I+K)!}{(I-K)!}
$$

\qquad $\frac{5}{2}^{-}$
[312]5/2

${ }^{65} \mathrm{Mn}$

${ }^{63} \mathrm{Mn} \rightarrow{ }^{62} \mathrm{Cr}$: Spectroscopic factors in the strong coupling limit

Merci 1!

Review

Weakly bound Borromean structures of the exotic ${ }^{6,8} \mathrm{He}$ nuclei through direct reactions on proton

[^2]

Hello...
I feel completely inadequate here, would you please send the [IN]Security Team for help?

	TRIUMF's IRIS
provides a glimpse of	
deformation in	

physicsworld
NUCLEAR PHYSICS RESEARCH UPDATE
Helium-8 nucleus has unexpected rugby-ball shape 12 Dec 2021

physicsworld

NUCLEAR PHYSICS RESEARCH UPDATE
Ice Hockey puck
Helium-8 nucleus has unexpected matryall shape 12 Dec 2021

Physics Letters B 822 (2021) 136710

	Contents lists available at ScienceDirect Physics Letters B	

Proton inelastic scattering reveals deformation in ${ }^{8} \mathrm{He}$
M. Holl ${ }^{\text {a,b }}$, R. Kanungo ${ }^{\text {a,b, }, ~}$, Z.H. Sun ${ }^{\text {c,d }}$, G. Hagen ${ }^{\mathrm{c}, \mathrm{d}}$, J.A. Lay ${ }^{\mathrm{e}, \mathrm{f}}$, A.M. Moro ${ }^{\mathrm{e}, \mathrm{f}}$, P. Navrátil ${ }^{\text {b }}$,
T. Papenbrock ${ }^{\text {c,d }}$, M. Alcorta ${ }^{\text {b }}$, D. Connolly ${ }^{\text {b }}$, B. Davids ${ }^{\text {b }}$, A. Diaz Varela ${ }^{\text {g }}$, M. Gennari ${ }^{\text {b }}$,
G. Hackman ${ }^{\text {b }}$, J. Henderson ${ }^{\text {b }}$, S. Ishimoto ${ }^{\text {h }}$, A.I. Kilic ${ }^{\text {g }}$, R. Krücken ${ }^{\text {b }}$, A. Lennarz ${ }^{\text {b, }}$, J. Liang ${ }^{\text {i }}$,
J. Measures ${ }^{\mathrm{j}}$, W. Mittig ${ }^{\mathrm{k}, 1}$, O. Paetkau ${ }^{\mathrm{b}}$, A. Psaltis ${ }^{\mathrm{i}}$, S. Quaglioni ${ }^{\mathrm{m}}$, J.S. Randhawa ${ }^{\mathrm{a}}$,
J. Smallcombe ${ }^{\text {b }}$, I.J. Thompson ${ }^{\text {m, M. Vorabbi }}{ }^{\text {b,n }}$, M. Williams ${ }^{\text {b,o }}$

Proton inelastic scattering of ${ }^{8} \mathrm{He}$ at $8.25 \mathrm{MeV} / \mathrm{A}$, carried out at TRIUMF

Analysis of the measured differential cross section using a phenomenological collective excitation form factor and microscopic coupled reaction channels framework, consistently yields a quadrupole deformation $\beta_{2}=0.40(3)$, consistent with no-core shell model predictions.

WikipediA
The Free Encyclopedia

The BM Phenomenon

Frequency illusion

From Wikipedia, the free encyclopedia

Frequency illusion, also known as the Baader-Meinhof phenomenon or frequency bias, is a cognitive bias in which, after noticing something for the first time, there is a tendency to notice it more often, leading someone to believe that it has an increased frequency of occurrence. ${ }^{[1][2][3]}$ It occurs when increased awareness of something creates the illusion that it is appearing more often. ${ }^{[4]}$ Put plainly, the frequency illusion occurs when "a concept or thing you just found out about suddenly seems to pop up everywhere."[5]

With a little grain of salt ...

Here we study the structure of ${ }^{7,8,9} \mathrm{He}$ in the framework of the Nilsson and Particle-Rotor Models
S. G. Nilsson, Mat. Fys. Medd. Dan. Vid. Selsk. 29, no. 16 (1955).
S. G. Nilsson and I. Ragnarsson, Shapes and Shells in Nuclear Structure, Cambridge University Press, 1995

Structure of unbound neutron-rich ${ }^{9} \mathrm{He}$ studied using single-neutron transfer

T. Al Kalanee, ${ }^{1,2}$ J. Gibelin,,${ }^{1,2, *}$ P. Roussel-Chomaz, ${ }^{2}$ N. Keeley, ${ }^{3}$ D. Beaumel, ${ }^{4}$ Y. Blumenfeld, ${ }^{4}$ B. Fernández-Domínguez, ${ }^{2}$ C. Force, ${ }^{2}$ L. Gaudefroy, ${ }^{2}$ A. Gillibert, ${ }^{5}$ J. Guillot, ${ }^{4}$ H. Iwasaki, ${ }^{4}$ S. Krupko, ${ }^{6}$ V. Lapoux, ${ }^{5}$ W. Mittig,,${ }^{2}$ X. Mougeot, ${ }^{5}$ L. Nalpas, ${ }^{5}$
E. Pollacco, ${ }^{5}$ K. Rusek, ${ }^{3,7}$ T. Roger, ${ }^{2}$ H. Savajols, ${ }^{2}$ N. de Séréville, ${ }^{4}$ S. Sidorchuk, ${ }^{6}$ D. Suzuki, ${ }^{4}$ I. Strojek, ${ }^{3}$ and N. A. Orr ${ }^{1}$ ${ }^{1}$ LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, F-14050 CAEN Cedex, France
${ }^{2}$ GANIL, CEA/DSM-CNRS/IN2P3, BP55027, F-14076 Caen Cedex 5, France
${ }^{3}$ National Centre for Nuclear Research, ul. Andrzeja Sottana 7, 05-400 Otwock, Poland ${ }^{4}$ IPN Orsay, IN2P3-CNRS, Université Paris Sud, F-91406 Orsay, France ${ }^{5}$ CEA-Saclay, DSM/IRFU SPhN, F-91191 Gif-sur-Yvette Cedex, France ${ }^{6}$ Flerov Laboratory of Nuclear Reactions, JINR, Dubna, RU-141980 Russia ${ }^{7}$ Heavy Ion Laboratory, University of Warsaw, ul. Pasteura 5A, PL-02-093 Warsaw, Poland

The ${ }^{8} \mathrm{He}(d, p)$ reaction was studied in inverse kinematics at 15.4 A MeV using the MUST2 Si-CsI array in order to shed light on the level structure of ${ }^{9} \mathrm{He}$. The well known ${ }^{16} \mathrm{O}(d, p){ }^{17} \mathrm{O}$ reaction, performed here in reverse kinematics, was used as a test to validate the experimental methods. The ${ }^{9} \mathrm{He}$ missing mass spectrum was deduced from the kinetic energies and emission angles of the recoiling protons. Several structures were observed above the neutron-emission threshold and the angular distributions were used to deduce the multipolarity of the transitions. This work confirms that the ground state of ${ }^{9} \mathrm{He}$ is located very close to the neutron threshold of ${ }^{8} \mathrm{He}$ and supports the occurrence of parity inversion in ${ }^{9} \mathrm{He}$.

${ }^{9} \mathrm{He}$

T. AL KALANEE et al.

FIG. 5. Summary of all experimental results for ${ }^{9} \mathrm{He}$, up to 5 MeV excitation energy. Solid lines represent states with well defined resonance. Dashed lines or hashed areas represent low-lying structures described by virtual s-wave states (see text for details).

Structure of the exotic ${ }^{9} \mathbf{H e}$ nucleus from the no-core shell model with continuum

Matteo Vorabbi,* Angelo Calci, and Petr Navrátil ${ }^{\dagger}$
TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada

Michael K. G. Kruse and Sofia Quaglioni
Lawrence Livermore National Laboratory, P.O. Box 808, L-414, Livermore, California 94551, USA

Guillaume Hupin

Institut de Physique Nucléaire, CNRS/IN2P3, Université Paris-Sud, Université Paris-Saclay, F-91406, Orsay, France

Our analysis identified two resonances corresponding to spin-parity states of $1 / 2^{-}$and $3 / 2^{-}$respectively. The former is identified as the ground state of ${ }^{9} \mathrm{He}$, while the latter is built on the 2^{+}state of ${ }^{8} \mathrm{He}$ and represents the first excited state of ${ }^{9} \mathrm{He}$. In particular, we did not find any resonance corresponding to a $1 / 2^{+}$state; according to our calculations ${ }^{9} \mathrm{He}$ breaks the parity inversion observed in ${ }^{11} \mathrm{Be}$ and in ${ }^{10} \mathrm{Li}$.

THE ${ }^{8} \mathrm{HE}$ CORE

$$
\begin{aligned}
& \mathscr{I}_{\text {Migdal }}=\mathscr{I}_{\text {rigid }}\left(\frac{1}{1+\mathscr{X}^{2}}\right)^{3 / 2}=\mathscr{I}_{\text {rigid }} \phi(\mathscr{X}) \\
& \frac{\mathscr{I}}{\mathscr{I}_{\text {rigid }}}=\frac{N}{A} \phi\left(\mathscr{X}_{n}\right)+\frac{Z}{A} \phi\left(\mathscr{X}_{p}\right)
\end{aligned} \quad \mathscr{X}=\frac{2 \Delta}{\hbar \omega_{0} \epsilon_{2}}
$$

Moment of Inertia of a rigid ellipsoid $\quad \mathscr{I}_{\text {rigid }}=\frac{2}{3} A M<r^{2}>\frac{\left(1+(c / a)^{2}\right)}{(c / a)^{2 / 3}}$

Nilsson Levels

Particle Rotor Model wavefunctions \square Strong coupling limit

Spectroscopic Factors

Spectroscopic Factors

T. Al Kalanee, et al. , Phys. Rev. C88, 034301 (2013)

${ }^{8} \mathbf{H e}(d, p){ }^{9} \mathbf{H e}$

$\mathbf{I}_{\mathbf{f}}$	Experiment	Oblate	Prolate
$1 / 2^{-}$	$0.06(0.1)^{*}$	0.5	0.8
$1 / 2^{+}$	$0.13(0.2)^{*}$	0.35	0.65
$5 / 2^{+}$	$<0.05(0.08)^{*}$	0.2	0.1

* Corrected by quenching

Spectroscopic Factors
In a more general approach (shape coexistence)
$\left.\right|^{8} \mathrm{He}>=\mathrm{A}|O>+\mathrm{B}| \mathrm{P}>$
$\left|{ }^{9} \mathrm{He}>_{1 / 2-}=\mathrm{a}[101]_{1 / 2} \mathrm{x}\right| \mathrm{O}>+\mathrm{b}[101]_{1 / 2} \mathrm{x} \mid P>$
$\left|{ }^{9} \mathrm{He}>_{1 / 2+}=\mathrm{a}^{\prime}[220]_{1 / 2} \mathrm{x}\right| O>+\mathrm{b}^{\prime}[220]_{1 / 2} \mathrm{x} \mid P>$
$\left.\right|^{7} \mathrm{He}>_{3 / 2}=\mathrm{a}^{\prime \prime}[110]_{1 / 2} \mathrm{x}\left|O>+\mathrm{b}^{\prime \prime}[101]_{3 / 2} \mathrm{x}\right| P>$
When comparing with the data, consistent solution(s) are obtained

Spectroscopic Factors
$\left.\right|^{8} \mathrm{He}>\sim 0.87|O\rangle+0.5 \mid P>$
$\left.\left|{ }^{9} \mathrm{He}>_{1 / 2-} \sim 0.29[101]_{1 / 2} x\right| O\right\rangle+0.96[101]_{1 / 2} x \mid P>$
$\left|{ }^{9} \mathrm{He}>_{1 / 2+} \sim 0.05[220]_{1 / 2} \mathrm{x}\right| O>+0.999[220]_{1 / 2} \mathrm{x} \mid P>$
$\left.\right|^{7} \mathrm{He}>_{3 / 2-} \sim 1[110]_{1 / 2} x|O\rangle+0[101]_{3 / 2} x|P\rangle$

The appearance of quadrupole deformation and rotational motion in light nuclei is well established and has been extensively discussed in the literature
A. Bohr and B. R. Mottelson, Mat. Fys. Medd. Dan. Vid. Selsk. 27, no. 16 (1953)
J. P. Elliott, Proc. R. Soc. A 245128 (1958) I

Ingemar Ragnarsson, et al., Phys. Scr. 24215 (1981)
For example, and relevant to this work, are the Be isotopes. The strong α clustering in ${ }^{8} \mathrm{Be}$ naturally suggests that deformation degrees of freedom play a role in the structure of these nuclei
W. Von Oertzen, M. Freer, and Y. Kanada-Enyo, Physics Reports 432, 43 (2006)

The sudden drop of the $\mathrm{E}\left(2^{+}\right)$energy in ${ }^{12} \mathrm{Be}$ relative to the neighboring even-even isotopes and the change of the ground state of ${ }^{11} \mathrm{Be}$ from the expected $1 / 2^{-}$to the observed positive parity $1 / 2^{+}$state, support this conclusion. Energy levels and available electromagnetic and single-nucleon transfer reactions data on ${ }^{11} \mathrm{Be}$ and ${ }^{12}$ Be can be explained in terms of single-particle motion in a deformed potential
I. Hamamoto and S. Shimoura J. Phys. G: Nucl. Part. Phys. 34, 2715 (2007)
A.O.Macchiavelli, H.L.Crawford, P.Fallon, et al. Physical Review C97, 011302(R), (2018)
A. O. Macchiavelli, H. L. Crawford , R. M. Clark, et al. Phys. Rev. C 103, 034307 (2021)

Summary

Inspired by the recent results of Holl et al. showing strong evidence for a deformed ${ }^{8} \mathrm{He}$ nucleus, we have studied the structure of the odd- $\mathrm{A}^{7} \mathrm{He}$ and ${ }^{9} \mathrm{He}$ isotopes in the rotational model

Comparison of the Migdal moment of inertia at $\varepsilon_{2} \approx 0.38$ is in good agreement to that derived from the experimental 2^{+}energy at both prolate and oblate deformations

The Nilsson levels arising from the p and sd spherical shells appear to provide a simple explanation of the low-lying structure of these nuclei as originating from strongly coupled rotational bands built on the: [101] 3/2, [101] 1/2, and [220] $1 / 2$ neutron orbits.

Spectroscopic factors for the ${ }^{8} \mathrm{He}(\mathrm{p}, \mathrm{d})^{7} \mathrm{He}$ and ${ }^{8} \mathrm{He}(\mathrm{d}, \mathrm{p})^{9} \mathrm{He}$ reactions suggest the presence of shape coexistence.

Revisiting (the analysis of) these reactions, in light of the above, will be interest

Merci 2 !

[^0]: * A. Lepailleur et al., Phys. Rev. Lett. 110, 082502 (2013)

[^1]: Following: T. Takemasa, M. Sakagami, and M. Sano, Phys. Rev. Lett. 29, 133 (1979). T. Takemasa, Comput. Phys. Commun. 36, 79 (1985).

[^2]: Valérie Lapoux ${ }^{\text {a }}$ and Nicolas Alamanos
 CEA, Centre de Saclay, IRFU, Service de Physique Nucléaire, F-91191 Gif-sur-Yvette, France

