Rooting the EDF method into the ab initio framework

Nuclear energy density functional method: going beyond the minefield ESNT Workshop, November 20-24, Saclay, France

KU LEUVEN

Thomas DUGUET
DPhN, CEA-Saclay, France IKS, KU Leuven, Belgium

Contents

© Ab initio expansion many-body methods
© Comparison of ab initio and EDF workflows
© Anchoring EDF methodology into ab initio methods
© Perspectives

Contents

© Ab initio expansion many-body methods
© Comparison of ab initio and EDF workflows
© Anchoring EDF methodology into ab initio methods
© Perspectives

Ab initio endeavor

Can nuclear systems be described

1) From nucleons and their interactions (right balance between reductionism/emergence?)
2) Rooted in QCD (sound connection to underlying EFT?)
3) Systematically (complete phenomenology?)
4) Accurately enough (relevant to experimental uncertainty?)

Currently best realized by chiral effective field theory (χ EFT) in A-body sector

Systematic expansion of H
$H=T+V_{\mathrm{LO}}+V_{\mathrm{NLO}}+V_{\mathrm{N}^{2} \mathrm{LO}}+\ldots$

$$
H\left|\Psi_{n}^{A}\right\rangle=\mathrm{E}_{n}^{A}\left|\Psi_{n}^{A}\right\rangle
$$

Global philosophy

Expansion many-body methods

$$
\begin{gathered}
H\left|\Psi_{k}^{\sigma}\right\rangle=E_{k}^{\tilde{\sigma}}\left|\Psi_{k}^{\sigma}\right\rangle \text { with } \sigma \equiv J M \Pi N Z \equiv \tilde{\sigma} M \\
{[H, R(\theta)]=0 \text { with } G_{H} \equiv\left\{R(\theta), \theta \in \mathcal{D}_{G_{H}}\right\}}
\end{gathered} \underbrace{\substack{\text { One-body Hilbert space } \\
\mathcal{H}(1) \\
\operatorname{dim} \mathcal{H}(1) \equiv n_{\operatorname{dim}}}}_{\text {"The curse of dimensionality" }} \underbrace{}_{\begin{array}{c}
\text { A-body Hilbert space } \\
\mathcal{H}_{\mathrm{A}}=\mathcal{H}(1) \otimes \ldots \otimes \mathcal{H}(\mathrm{A}) \\
\operatorname{dim} \mathcal{H}(\mathrm{A}) \equiv n_{\text {dim }}^{\mathrm{A}}
\end{array}}
$$

Ground-state ab initio nuclear chart... then

```
Quasi-exact methods (>1990)
Examples: No core shell-model (NCSM)
Green's function monte carlo (GFMC)
```


Expansion many-body methods

$H\left\|\Psi_{k}^{\sigma}\right\rangle=E_{k}^{\tilde{\sigma}}\left\|\Psi_{k}^{\sigma}\right\rangle$ with $\sigma \equiv J M \Pi N Z \equiv \tilde{\sigma} M$	One-body Hilbert space	A-body Hilbert space
$[H, R(\theta)]=0$ with $G_{H} \equiv\left\{R(\theta), \theta \in \mathcal{D}_{G_{H}}\right\}$	$\mathcal{H}(1)$	= $\mathcal{H}(1) \otimes \ldots \otimes \mathcal{H}(\mathrm{A})$
	$\operatorname{dim} \mathcal{H}(1) \equiv n_{\text {dim }}$	$\operatorname{dim} \mathcal{H}(\mathrm{A}) \equiv n_{\mathrm{dim}}^{\mathrm{A}}$
Expansion many-body methods		curse of dimen

Hamiltonian partitioning Unperturbed state

Expansion many-body methods

$$
\begin{aligned}
& H\left|\Psi_{k}^{\sigma}\right\rangle=E_{k}^{\tilde{\sigma}}\left|\Psi_{k}^{\sigma}\right\rangle \text { with } \sigma \equiv J M \Pi N Z \equiv \tilde{\sigma} M \\
& {[H, R(\theta)]=0 \text { with } G_{H} \equiv\left\{R(\theta), \theta \in \mathcal{D}_{G_{H}}\right\}}
\end{aligned}
$$

One-body Hilbert space
$\mathcal{H}(1)$

$\operatorname{dim} \mathcal{H}(1) \equiv n_{\mathrm{dim}}$$\quad$| A-body Hilbert space |
| :---: |
| $\mathcal{H}_{\mathrm{A}}=\mathcal{H}(1) \otimes \ldots \otimes \mathcal{H}(\mathrm{A})$ |
| $\operatorname{dim} \mathcal{H}(\mathrm{A}) \equiv n_{\mathrm{dim}}^{\mathrm{A}}$ |

Expansion many-body methods

Expansion many-body methods

$H\left|\Psi_{k}^{\sigma}\right\rangle=E_{k}^{\tilde{\sigma}}\left|\Psi_{k}^{\sigma}\right\rangle$ with $\sigma \equiv J M \Pi N Z \equiv \tilde{\sigma} M$
$[H, R(\theta)]=0$ with $G_{H} \equiv\left\{R(\theta), \theta \in \mathcal{D}_{G_{H}}\right\}$
One-body Hilbert space
$\mathcal{H}(1)$

$\operatorname{dim} \mathcal{H}(1) \equiv n_{\text {dim }}$$\quad$| A-body Hilbert space |
| :---: |
| $\mathcal{H}_{\mathrm{A}}=\mathcal{H}(1) \otimes \ldots \otimes \mathcal{H}(\mathrm{A})$ |
| $\operatorname{dim} \mathcal{H}(\mathrm{A}) \equiv n_{\mathrm{dim}}^{\mathrm{A}}$ |

Expansion many-body methods

Hamiltonian partitioning Unperturbed state

$$
H=H_{0}+H_{1}-\begin{gathered}
\text { «E Easy " } \\
\text { to solve }
\end{gathered} \rightarrow H_{0}\left|\Theta_{k}^{(0)}\right\rangle=E_{k}^{(0)}\left|\Theta_{k}^{(0)}\right\rangle
$$

Hilbert-space partitioning

$$
\mathcal{P}_{k}+Q_{k} \equiv 1-\left\{\begin{array}{lc}
\mathcal{P}_{k} \equiv\left|\Theta_{k}^{(0)}\right\rangle\left\langle\Theta_{k}^{(0)}\right| & \text { 1-dimensional P space }\left|\Theta_{k}^{(0)}\right\rangle=\mathcal{P}_{k}\left|\Psi_{k}^{\sigma}\right\rangle \\
Q_{k} \equiv 1-\mathcal{P}_{k}=\sum_{\mu \neq k}\left|\Theta_{\mu}^{(0)}\right\rangle\left\langle\Theta_{\mu}^{(0)}\right| & \begin{array}{c}
\text { Basis not necessarily known } \\
\text { SR expansions: known } \\
\text { MR PGCM-PT : not known } \\
\text { Frosini et al. (2023) }
\end{array}
\end{array}\right.
$$

Expansion many-body methods

$$
\begin{gathered}
H\left|\Psi_{k}^{\sigma}\right\rangle=E_{k}^{\tilde{\sigma}}\left|\Psi_{k}^{\sigma}\right\rangle \text { with } \sigma \equiv J M \Pi N Z \equiv \tilde{\sigma} M \\
{[H, R(\theta)]=0 \text { with } G_{H} \equiv\left\{R(\theta), \theta \in \mathcal{D}_{G_{H}}\right\}}
\end{gathered} \begin{gathered}
\text { One-body Hilbert space } \\
\mathcal{H}(1) \\
\operatorname{dim} \mathcal{H}(1) \equiv n_{\operatorname{dim}}
\end{gathered} \quad \begin{gathered}
\text { A-body Hilbert space } \\
\mathcal{H}_{\mathrm{A}}=\mathcal{H}(1) \otimes \ldots \otimes \mathcal{H}(\mathrm{A}) \\
\operatorname{dim} \mathcal{H}(\mathrm{A}) \equiv n_{\operatorname{dim}}^{\mathrm{A}}
\end{gathered}
$$

Expansion many-body methods

Expansion many-body methods

$H\left|\Psi_{k}^{\sigma}\right\rangle=E_{k}^{\tilde{\sigma}}\left|\Psi_{k}^{\sigma}\right\rangle$ with $\sigma \equiv J M \Pi N Z \equiv \tilde{\sigma} M$
$[H, R(\theta)]=0$ with $G_{H} \equiv\left\{R(\theta), \theta \in \mathcal{D}_{G_{H}}\right\}$
One-body Hilbert space
$\mathcal{H}(1)$

$\operatorname{dim} \mathcal{H}(1) \equiv n_{\operatorname{dim}}$$\quad$| A-body Hilbert space |
| :---: |
| $\mathcal{H}_{\mathrm{A}}=\mathcal{H}(1) \otimes \ldots \otimes \mathcal{H}(\mathrm{A})$ |
| $\operatorname{dim} \mathcal{H}(\mathrm{A}) \equiv n_{\mathrm{dim}}^{\mathrm{A}}$ |

Expansion many-body methods

Hamiltonian partitioning
Unperturbed state
Fully correlated state

$$
H=H_{0}+H_{1}-\begin{gathered}
\text { "Easy" } \\
\text { to solve }
\end{gathered} \rightarrow H_{0}\left|\Theta_{k}^{(0)}\right\rangle=E_{k}^{(0)}\left|\Theta_{k}^{(0)}\right\rangle \rightarrow \begin{gathered}
\text { Expansion } \\
\text { series }
\end{gathered} \rightarrow\left|\Psi_{k}^{\sigma}\right\rangle=\begin{gathered}
\text { Wave operator }
\end{gathered}
$$

Wave-operator expansion nature

$\Omega_{k} \equiv \sum_{q=0}^{q_{\max }} c_{q} H_{1}^{q} \quad$ Perturbative
$\Omega_{k} \equiv \sum_{q=0}^{9_{\max }} f_{q}\left(H_{1}\right) \quad$ Non-perturbative

- Tuncated expansion $=\mathbf{n d i m}^{\text {d }}$ cost \rightarrow Systematically improvable
- Become quickly expansive as q λ
\rightarrow Typically $\mathbf{q}_{\text {max }} \leq 3$
with
$\left|\Theta_{k}^{(q)}\right\rangle=\sum_{\mu \neq k}^{\text {subset }(q)} \underbrace{C_{k \mu}^{(q)}}_{\text {When }}\left|\Theta_{\mu}^{(0)}\right\rangle$
When basis of Q-space known
Coefficients calculated at $\mathrm{n}_{\text {dim }}{ }^{\mathrm{p}}$ cost

Ground-state ab initio nuclear chart... then

```
    Quasi-exact methods (>1990)
Examples: No core shell-model (NCSM) Green's function monte carlo (GFMC)
```


SC expansion methods for closed-shell (>2010)

$\begin{array}{ll}\text { Examples: } & \begin{array}{l}\text { Spherical many-body perturbation theory (sMBPT) } \\ \\ \\ \\ \\ \\ \\ \\ \\ \text { Spherical coupled cluster (sCC) } \\ \text { Spherical Dyson self consistent Green's function (sDSCGF) } \\ \end{array}\end{array}$

SB expansion methods for open-shell (>2013)

Examples: Deformed Bogoliubov many-body perturbation theory (dBMBPT) Deformed Bogoliubov coupled cluster (dBCC) Deformed Gorkov self-consistent Green's function (dGSCGF) Deformed Bogoliubov in-medium similarity renormalization group (dBIMSRG)

Scaling: $\quad O\left(A^{n}\right) \rightarrow$ CPU scalable (but memory limitations arise)

Hybrid methods for open shell (>2015)
Examples: Valence-space in-medium similarity renormalization group (VS-IMSRG) Multi-configuration perturbation theory (MCPT)
Scaling: $\quad O\left(A^{n}\right)+O(A!) \rightarrow$ CPU not scalable

SC expansion methods for open shell (>2022)

Examples: Projected Bogoliubov coupled cluster theory (PBCC)
Projected generator coordinate method perturbation theory (PGCM-PT)
Scaling: $\quad O\left(A^{n}\right) \rightarrow$ CPU scalable (but higher scaling)
Data taken from.
M. Wang et al., Chin. Phys. C 45, 030003 (2021)
S. Goriely et al., EPJA 52, 202 (2016)
H. Hergert (private communications)

Ground-state ab initio nuclear chart... now!

Expansion many-body methods

$$
\begin{aligned}
& H\left|\Psi_{k}^{\sigma}\right\rangle=E_{k}^{\tilde{\sigma}}\left|\Psi_{k}^{\sigma}\right\rangle \text { with } \sigma \equiv J M \Pi N Z \equiv \tilde{\sigma} M \\
& {[H, R(\theta)]=0 \text { with } G_{H} \equiv\left\{R(\theta), \theta \in \mathcal{D}_{G_{H}}\right\}}
\end{aligned}
$$

One-body Hilbert space
$\mathcal{H}(1)$

$\operatorname{dim} \mathcal{H}(1) \equiv n_{\operatorname{dim}}$$\quad$| A-body Hilbert space |
| :---: |
| $\mathcal{H}_{\mathrm{A}}=\mathcal{H}(1) \otimes \ldots \otimes \mathcal{H}(\mathrm{A})$ |
| $\operatorname{dim} \mathcal{H}(\mathrm{A}) \equiv n_{\mathrm{dim}}^{\mathrm{A}}$ |

Expansion many-body methods

Hamiltonian partitioning
Unperturbed state

Wave-operator expansion cost

CPU (naive) scaling
Mild scaling with A Bally, Bender (2021)

$q_{\max }$	$(\mathrm{B}) \mathrm{MBPT}$	$(\mathrm{B}) \mathrm{CC}$	(B)IMSRG	PGCM-PT		
1	$O\left(n_{\operatorname{dim}}^{4}\right)$	$O\left(n_{\operatorname{dim}}^{4}\right)$	$O\left(n_{\operatorname{dim}}^{4}\right)$	$O\left(n_{\text {proj }} n_{\mathrm{gcn}}^{2} n_{\operatorname{dim}}^{4}\right)$		
2	$O\left(n_{\operatorname{dim}}^{5}\right)$	$O\left(n_{\text {dim }}^{6}\right)$	$O\left(n_{\text {dim }}^{6}\right)$	$O\left(n_{\text {proj }} n_{\mathrm{gcn}}^{2} n_{\text {dim }}^{8}\right)$	\quad	Impact of unperturbed state nature
:---						
3						

Expansion many-body methods

$$
\left.\begin{array}{c}
H\left|\Psi_{k}^{\sigma}\right\rangle=E_{k}^{\tilde{\sigma}}\left|\Psi_{k}^{\sigma}\right\rangle \text { with } \sigma \equiv J M \Pi N Z \equiv \tilde{\sigma} M \\
{[H, R(\theta)]=0 \text { with } G_{H} \equiv\left\{R(\theta), \theta \in \mathcal{D}_{G_{H}}\right\}}
\end{array} \begin{array}{c}
\text { One-body Hilbert space } \\
\mathcal{H}(1) \\
\operatorname{dim} \mathcal{H}(1) \equiv n_{\operatorname{dim}}
\end{array}\right\} \begin{gathered}
\text { A-body Hilbert space } \\
\mathcal{H}_{\mathrm{A}}=\mathcal{H}(1) \otimes \ldots \otimes \mathcal{H}(\mathrm{A}) \\
\operatorname{dim} \mathcal{H}(\mathrm{A}) \equiv n_{\operatorname{dim}}^{\mathrm{A}}
\end{gathered}
$$

Expansion many-body methods

| Hamiltonian partitioning | Unperturbed state |
| :--- | :--- | | Fully correlated state |
| :---: |
| Wave operator |

Wave-operator expansion cost
BMBPT(2)
Spherical \rightarrow Triaxial $\left(\mathrm{e}_{\max }=12\right)$
$\mathrm{e}_{\text {max }}=6 \rightarrow \mathrm{e}_{\text {max }}=12$

$$
e_{\max }=6 \rightarrow e_{\max }=12
$$

Breaking SU(2), e.g. sBMBPT \rightarrow Triax dBMBPT

Expansion many-body methods

$H\left|\Psi_{k}^{\sigma}\right\rangle=E_{k}^{\tilde{\sigma}}\left|\Psi_{k}^{\sigma}\right\rangle$ with $\sigma \equiv J M \Pi N Z \equiv \tilde{\sigma} M$
$[H, R(\theta)]=0$ with $G_{H} \equiv\left\{R(\theta), \theta \in \mathcal{D}_{G_{H}}\right\}$
One-body Hilbert space
$\mathcal{H}(1)$

$\operatorname{dim} \mathcal{H}(1) \equiv n_{\text {dim }}$$\quad$| A-body Hilbert space |
| :---: |
| $\mathcal{H}_{\mathrm{A}}=\mathcal{H}(1) \otimes \ldots \otimes \mathcal{H}(\mathrm{A})$ |
| $\operatorname{dim} \mathcal{H}(\mathrm{A}) \equiv n_{\mathrm{dim}}^{\mathrm{A}}$ |

Expansion many-body methods

Hamiltonian partitioning

Unperturbed state

Breaking SU(2), e.g. sBMBPT \rightarrow Triax dBMBPT

Wave-operator expansion cost

Eventually a memory bottleneck
3-body interaction requires $\mathbf{E}_{3 \text { max }}=\mathbf{3} \mathbf{e}_{\text {max }}$
-Recent major jump to $\mathrm{E}_{3 \text { max }}=28$
-Jump from spherical ${ }^{70} \mathrm{Ni}$ to ${ }^{208} \mathrm{~Pb}$ via e.g. sCC
...but not converged at $\mathrm{e}_{\max }=14$
2-body tensors in doubly open-shell require m-scheme
Ex: Nuclei A~70 converged with $\left(\mathrm{e}_{\max }=12, \mathrm{E}_{3 \max }=18\right)$
-Axial dBMBPT(2) indeed ok with $(12,18)$
-Triaxial dBMBPT(2) nearly impossible with $(8,14)$
sHO basis

$e_{\max }$	$n_{\text {dim }}$	$\tilde{n}_{\text {dim }}$
2	40	12
4	140	30
6	336	56
8	660	90
10	1140	132
12	1820	182

Techniques to alleviate $\mathbf{n d i m}^{p}$

-Similarity renormalization group transformation

$$
H(\lambda) \equiv U(\lambda) H U^{\dagger}(\lambda)\left(\text { to reduce } \mathrm{n}_{\mathrm{dim}}\right)
$$

\rightarrow A-independent pre-processing of H

- Tensor factorization (to reduce p)
\mathbf{m} scheme \mathbf{j} scheme Importance truncation (to reduce $\mathrm{n}_{\mathrm{dim}}$)
(B)MBPT natural orbital basis (to reduce $\mathrm{n}_{\mathrm{dim}}$)

Example: ab initio calculation of tin open-shell isotopes

Contents

© Ab initio expansion many-body methods
© Comparison of ab initio and EDF workflows
© Anchoring EDF methodology into ab initio methods
© Perspectives

Ab initio endeavor

Can nuclear systems be described

1) From nucleons and their interactions (right balance between reductionism/emergence?)
2) Rooted in QCD (sound connection to underlying EFT?)
3) Systematically (complete phenomenology?)
4) Accurately enough (relevant to experimental uncertainty?)

Currently best realized by chiral effective field theory (χ EFT) in A-body sector

Systematic expansion of H

$$
H=T+V_{\mathrm{LO}}+V_{\mathrm{NLO}}+V_{\mathrm{N}^{2} \mathrm{LO}}+\ldots
$$

$H\left|\Psi_{n}^{A}\right\rangle=\mathrm{E}_{n}^{A}\left|\Psi_{n}^{A}\right\rangle$
Systematic many-body expansion
$\left|\Psi_{k}^{\mathrm{A}}\right\rangle=\Omega\left|\Theta_{k}^{(0)}\right\rangle=\left|\Theta_{k}^{(0)}\right\rangle+\left|\Theta_{k}^{(1)}\right\rangle+\left|\Theta_{k}^{(2)}\right\rangle+\ldots$
Approximate solution systematically improvable towards well-defined limit

[^0]
Ab initio versus EDF

Ab initio roadmap

Ab initio $\quad H \equiv T+V+W$

$$
H(\lambda) \equiv U(\lambda) H U^{\dagger}(\lambda)=T+V(\lambda)+W(\lambda)+\boldsymbol{Q}
$$

$$
H \equiv \bar{h}^{(0)}[\rho]+\bar{h}^{(1)}[\rho]+\bar{h}^{(2)} \rho \mid+\bar{h}[\rho]
$$

Symmetry-conserving one-body density matrix of auxiliary, e.g. sHFB, state
dHFB state \rightarrow start for symmetry-breaking SR expansion PGCM state \rightarrow start for symmetry-conserving MR expansion

Unperturbed state including static correlations
\rightarrow Mean-field-like cost
(truncated) expansion including dynamical correlations
\rightarrow Polynomial cost (potentially high)

Frosini et al. (2023)
$\square] \quad \begin{aligned} & \rightarrow \text { Doable for PGCM P-space for the first time } \\ & \rightarrow \text { At second order in perturbation theory (PGCM-PT(2)) }\end{aligned}$

EDF roadmap

EDF

Functional " generator»
\rightarrow Zero cost

$$
H^{\mathrm{gen}} \equiv T+\sum_{i} c_{i} V_{i}^{\mathrm{gen}}+\sum_{j} c_{j} W_{j}^{\mathrm{gen}}
$$

dHFB state \rightarrow symmetry-breaking SR EDF realization PGCM state \rightarrow symmetry-conserving MR EDF realization Hopefully exact
Unperturbed state including static correlations
\rightarrow Mean-field-like cost

Explicitly handles quickly varying static correlations
Implicitly mocks up slowly varying dynamical correlations

Ab initio versus EDF

EDF

$$
H^{\mathrm{gen}} \equiv T+\sum_{i} c_{i} V_{i}^{\mathrm{gen}}+\sum_{j} c_{j} W_{j}^{\mathrm{gen}}
$$

Obviously not the same
$\left|\Theta_{k}^{(0)}\right\rangle$ bymininimizing $\left(E_{k}^{\sigma}\right)=\left\langle\Theta_{k}^{(0)} H^{\mathrm{gen}} \Theta_{k}^{(0)}\right\rangle$
Dependence of $-H_{\left|\Theta_{k}^{(0)}\right\rangle}^{\text {eff }} \widehat{\text { on P-space character }}$
Option 1: SR EDF realization = potentially exact

$$
\overparen{E_{k}^{\sigma}} \equiv \frac{\left\langle\Theta_{k}^{(0)}\right| H\left|\Psi_{k}^{\sigma}\right\rangle}{\left\langle\Theta_{k}^{(0)} \mid \Psi_{k}^{\sigma}\right\rangle}=\langle\Theta_{k}^{(0)} \underbrace{}_{\left.H_{\left.\Theta_{k}^{(0)}\right\rangle}^{H \Omega_{k}} \Theta_{k}^{(0)}\right\rangle=\sum_{q=0}^{\infty}\left\langle\Theta_{k}^{(0)}\right| H f_{k}^{(q)}\left(H_{1}\right)\left|\Theta_{k}^{(0)}\right\rangle}
$$

$\rightarrow H_{\mathrm{SR}}^{\text {gen }}=H_{\mathrm{MR}}^{\text {gen }}$ has no formal justification
\rightarrow Not only fit but also formal content
Option 2: SR EDF realization = approximation to MR one

$$
\rightarrow H^{\mathrm{gen}} \equiv H_{\mathrm{MR}}^{\mathrm{gen}} \text { is the only relevant object }
$$

Time for EDF practitioners to clarify this long-running story!

Contents

© Ab initio expansion many-body methods
© Comparison of ab initio and EDF workflows
© Anchoring EDF methodology into ab initio methods
© Perspectives

Concretely anchoring EDF into the ab initio EFT

Option 1: use ab initio results as pseudo-data to constrain parameters of pre-defined empirical ansatz of $H^{\text {gen }}$

- Infinite-matter equation of state at the SR level Chabanat et al. (1997), ..., Marino et al. (2021)
- Finite-nuclei binding energies at the SR level Salvioni et al. (2020)
\rightarrow If performed at SR level cannot be then employed at MR level
$\rightarrow \mathrm{Ab}$ initio predictions must be accurate enough (some differential quantities such as $\mathrm{S}_{2 \mathrm{n}} \mathrm{OK}$ today)
\rightarrow Ansatz for $H^{\text {gen }}$ must be rich/flexible enough (to model A-dependent dynamical correlations): probably not today
Option 2: use ab initio expansion method to derive educated analytical form of $H^{\text {gen }}$
$-\operatorname{MBPT}(2)$ in INM at SR level $H_{\mathrm{SR}}^{\mathrm{eff}} \approx\left(H+H R H_{1}\right)_{\left|\Phi_{\mathrm{INM}}\right\rangle} \quad$ Moghrabi et al. (2010)
- Many-body-based in low-density INM at SR level $H_{\mathrm{SR}}^{\mathrm{eff}} \approx(H \Omega)_{\left|\Phi_{\text {ldinM }}\right\rangle}$ Yang et al. (2016), ..., Burrello et al. (2021)
- DME in finite nuclei at SR level $H_{\mathrm{SR}}^{\mathrm{eff}} \approx\left(H_{\mathrm{DME}}+\Delta H^{\mathrm{gen}}\right)_{|\Phi\rangle} \quad$ Stoitsov et al. (2010), ..., Zurek et al. (2023)

See Talk by L. Zurek on Wednesday

$-\operatorname{MBPT}(2)$ in finite nuclei at MR level $H_{\mathrm{MR}}^{\mathrm{eff}} \approx\left(H+H R H_{1}\right)_{\left|\Theta_{k}^{\sigma}\right\rangle} \quad$ Duguet et al. (2023)

Connecting MR-EDF to ab initio in ${ }^{20} \mathrm{Ne}$

```
PGCM-PT(2)
    H = N
    H}->\textrm{H}[\rho]\mathrm{ via rank-reduction method
MR-EDF
    | Hen}=\mathrm{ DD-PC1
```

```
Numerical setting
```

Duguet et al. (2023)
Ground-state energy
\rightarrow sHFB \rightarrow dHFB \rightarrow PGCM very different in absolute
\rightarrow Sequence rather consistent however
\rightarrow PGCM $\sim 45 \mathrm{MeV}$ unbound with H vs ok with $H^{\text {gen }}$
-PGCM-PT(2) good via 42 MeV dynamical correlations
\rightarrow PGCM ok with $H_{\mathrm{MR}}^{\mathrm{eff}} \approx\left(H+H R H_{1}\right)_{\left.\Theta_{k}^{\sigma}\right\rangle}$

Rotational excitations

- PGCM and PGCM-PT(2) spectra identical
$\rightarrow J^{\pi}=0^{+}, 2^{+}$and 4^{+}shifted down by same 42 MeV
- PGCM/PGCM-PT(2) close to Exp. and MR-EDF

Intermediate conclusions

- $H_{\mathrm{MR}}^{\mathrm{eff}} \approx\left(H+H_{8} R H_{1}\right)_{\left.\Theta_{k}^{\sigma}\right\rangle}$ good candidate for $H_{\mathrm{MR}}^{\text {gen }}$

- Expensive $n_{\text {dim }}^{8}$ dynamical correlations (key to BE)
-Can one reduce the cost/obtain alternate $H_{\mathrm{MR}}^{\mathrm{eff}}$?

Many-body expansion methods and pre-processing

Ab initio versus EDF

Connecting MR-EDF to ab initio in ${ }^{20} \mathrm{Ne}$

Pre-processing H via MR-IMSRG with respect to the PGCM state $H(s) \equiv U(s) H U^{\dagger}(s)$
Duguet et al. (2023)
(1) Initial condition $H(0) \equiv H \approx h^{(0)}+h^{(1)}+h^{(2)}$
(2) Flow equation $\frac{d H(s)}{d s}=[\eta(s), H(s)]$

Generator parameterizes the unitary transformation
 -Chosen to (quasi) decouple PGCM state from complementary Q space
 - Reshuffles dynamical correlations into H(s)

Normal ordering with respect to PGCM state
Kutzelnigg-Mukherjee generalized Wick Theorem
Normal-ordered (NO) two-body approximation
Truncated up to 2-body NO operators = MR-IMSR(2)
-Unitarity violation as flow parameter s grows

- $\mathrm{n}_{\mathrm{dim}}{ }^{6}$ cost

Hergert et al. (2016), ..., Yao et al. (2020)

Ground-state energy

- sHF reference point drastically lowered (45 MeV)
- Static correlations slightly enhanced ($15 \mathrm{MeV} \rightarrow 18 \mathrm{MeV}$)
- Dynamical PT correlations drastically reduced ($\mathbf{4 2} \mathbf{~ M e V ~} \boldsymbol{\rightarrow} \mathbf{2 ~ M e V}$)
\rightarrow Remaining not entirely negligible ($\sim 1.5 \%$)
- Hierarchy of correlations with H (" ∞ ") consistent with MR-EDF

Ground-state rotational band

- PGCM spectrum slightly spread by MR-IMSRG pre-processing
- PT effects on spectra consistently increased
\rightarrow Effect of dynamical correlations on spectrum non negligible

Conclusions

- H (" ∞ ") ideal candidate for $H_{\mathrm{MR}}^{\text {gen }}$
- Must further reduce coupling to Q space

Contents

© Ab initio expansion many-body methods
© Comparison of ab initio and EDF workflows
© Anchoring EDF methodology into ab initio methods
© Perspectives

Connecting MR-EDF to ab initio

(1) $H_{\mathrm{MR}}^{\mathrm{eff}} \approx\left(H+H R H_{1}\right)_{\left.\Theta_{k}^{\sigma}\right\rangle}$

- Very expensive $\mathrm{n}_{\text {dim }}{ }^{8}$
- Not a simple form

Duguet et al. (2023)
(2) $H_{\mathrm{MR}}^{\mathrm{eff}} \approx H\left("{ }^{\prime}{ }^{\prime \prime}\right) \equiv h^{(0)}\left("{ }^{\prime \prime}\right)+\frac{1}{(1!)^{2}} \sum_{\substack{a_{1} \\ b_{1}}} h_{b_{1}}^{a_{1}}\left(" \infty^{\prime \prime}\right) A_{b_{1}}^{a_{1}}+\frac{1}{(2!)^{2}} \sum_{\substack{a_{1} a_{2} \\ b_{1} b_{2}}} h_{b_{1} b_{2}}^{a_{1} a_{2}}(" \infty>") A_{b_{1} b_{2}}^{a_{1} a_{2}}+\ldots$

- Expensive $\mathrm{n}_{\text {dim }}{ }^{6}$
- Straight Hamiltonian with same phenomenology (i.e. mean-field) EDF practitioners are used to
- Numerical access to 0-, 1- and 2-body ME $\left\{h^{(0)}(" \infty "), h_{b_{1}}^{a_{1}}\left(" \infty\right.\right.$ "), $\left.h_{b_{1} b_{2}}^{a_{1} a_{2}}(" \infty ")\right\}$

Implicit (numerical) functionals of irreducible density matrices of PGCM state

Potential research projects

- Improve decoupling for excited states: richer PGCM and Ensemble NO
- Build ab initio-rooted MR-EDF generator $H^{\text {gen }}$
\rightarrow Generate ME of $H_{\mathrm{MR}}^{\mathrm{eff}} \approx H\left("{ }^{\prime}>\right)$ in selected set of nuclei
\rightarrow Empirically investigate A-dependence of ME
\rightarrow Test ansatz for $H^{\text {gen }}$ with appropriate density dependences
\rightarrow Can this know-how eventually help to build a proper EFT for $\boldsymbol{H}^{\text {gen }}$?

Method	HFB	PGCM	PGCM-PT(2)	MR-IMSRG(2\|3)	FCI
Runtime	$O\left(n_{\text {dim }}^{4}\right)$	$O\left(n_{\text {proj }} n_{\mathrm{gcn}}^{2} n_{\text {dim }}^{4}\right)$	$O\left(n_{\text {proj }} n_{\mathrm{gcn}}^{2}\left(n_{\text {dim }}^{8}\right)\right.$	$O\left(n_{\text {dim }}^{619}\right)$	$O\left(n_{\text {dim }}^{\mathrm{A}}\right)$
Storage	$O\left(n_{\text {dim }}^{4}\right)$	$O\left(n_{\text {dim }}^{4}\right)$	$O\left(n_{\mathrm{gcm}}^{2} n_{\mathrm{dim}}^{8}\right)$	$O\left(n_{\text {dim }}^{40}\right)$	$O\left(n_{\operatorname{dim}}^{\mathrm{A}}\right)$

Looking forward to ab initio PGCM-related projects

CALCULATIONS

Numericaloptimization
\rightarrow Algorithmic improvements
\rightarrow Importance selections
\rightarrow Natural basis
\rightarrow Tensor factorization
Non-yrast states
\rightarrow Orthogonalization
Individualexcitations
\rightarrow Extended PGCM ansatz

AB INITIO-BASEDEDF

[Duguet et al. EPJA 2023]
$H(s)+P G C M \lll>R-E D F$
Cancel PTCorrections

$$
\rightarrow \text { Ensemble MR-IMSRG evolution }
$$

\rightarrow Enriched PGCM ansatz
Abinitio rooted MR-EDF
\rightarrow Empirical Hgen << » H (s)?
\rightarrow Invent EFT for H (s) ?

Spectroscopy from PGCM
Octupole vibration $\left({ }^{16} \mathrm{O}+\alpha \leftrightarrow{ }^{12} \mathrm{C}+2 \alpha\right)$ at 7.2 MeV
[Beaujeault-Taudière, et al., PRC 2023]
[Frosini et al., unpublished]

Excellent first account with H (0)

\rightarrow Low-lying states
\rightarrow Giant resonances
QRPA $=$ harmonic limitof GCM Jancovici, Schiff (1964)
$\rightarrow \mathrm{FT} \quad \mathrm{triaxial}$ QRPA (QFAM) with NN+3N
Giant resonances with PQRPA
\rightarrow Development of <P»QRPA See Talk by A. Porro on Thursday
\rightarrow Development pf PQRPA Federschmidt, Ring (1985)
Statistical uncertaintiesfrom H
\rightarrow Development of PGCM-EC See Talk by A. Roux on Friday

Collaborators on ab initio many-body methods/calculations

B. Bally J.-P. Ebran M. Frosini
A. Porro
A. Roux
A. Scalesi
V. Somà
G. Stellin

H. Hergert

KU LEUVEN

P. Demol

A.Tichai
P. Arthuis
R. Roth

UNIVERSITY OF
SURREY
C. Barbieri

Universidad Autónoma
de Madrid
T. R. Rodriguez
J. M. Yao

The «ab initio» theoretical scheme

2) Truncate at working order $k \rightarrow$ Systematic uncertainty (1)
3) Adjust Low Energy Couplings \rightarrow Statistical uncertainty (2)

Chiral effective field theory = interactions expansion

2N Force
3N Force
4N Force

$$
\begin{gathered}
H_{\mathrm{LO}} \equiv T+V_{\mathrm{LO}}^{2 \mathrm{~N}} \\
H_{\mathrm{NLO}} \equiv T+V_{\mathrm{NLO}}^{2 \mathrm{~N}} \\
H_{\mathrm{N}^{2} \mathrm{LO}} \equiv T+V_{\mathrm{N}^{2} \mathrm{LO}}^{2 \mathrm{~N}}+V_{\mathrm{N}^{2} \mathrm{LO}}^{3 \mathrm{~N}} \\
H_{\mathrm{N}^{3} \mathrm{LO}} \equiv T+V_{\mathrm{N}^{3} \mathrm{LO}}^{2 \mathrm{~N}}+V_{\mathrm{N}^{3} \mathrm{LO}}^{3 \mathrm{~N}}+V_{\mathrm{N}^{3} \mathrm{LO}}^{4 \mathrm{~N}} \\
\vdots \\
H_{\mathrm{N}^{k} \mathrm{LO}} \equiv T+V_{\mathrm{N}^{k} \mathrm{LO}}^{2 \mathrm{~N}}+V_{\mathrm{N}^{k} \mathrm{LO}}^{3 \mathrm{~N}}+\ldots
\end{gathered}
$$

Major challenges

- Can k-body, $\mathrm{k}>3$, be omitted in $\mathrm{A} \gg 3$?
- ${ }^{3 / 4}$ LO 2 N for high precision; 3N? 4N?
- More profound issues...

The «ab initio» theoretical scheme

Chiral EFT = low-energy realization of QCD

Manifestation of chiral symmetry breaking at low energy

∞ \# operators compatible with symmetries of QCD

1) Organize according to expected importance = Power Counting
2) Truncate at working order $k \rightarrow$ Systematic uncertainty (1)
3) Adjust Low Energy Couplings \rightarrow Statistical uncertainty (2)

4) Solve A-body Schrödinger Equation

$$
H_{\mathrm{N}^{k} \mathrm{LO}}\left|\Psi_{n}^{\mathrm{A}}\right\rangle=E_{n}^{\mathrm{A}}\left|\Psi_{n}^{\mathrm{A}}\right\rangle
$$

Quickly impossible to do exactly \rightarrow Systematic error (3)

What accuracy can be reached?

- How does this evolve with $\mathrm{A}=\mathrm{N}+\mathrm{Z}$?
-All types of nuclei equivalent?

Similarity renormalization group transformation of H

- Need very large $\mathrm{n}_{\text {dim }}\left(\mathrm{e}_{\max }\right)$ due to hard core of $\mathrm{V}^{\mathbf{2 N}} \rightarrow$ large ME between low and high basis states
\rightarrow Unitary Similarity Renormalization Group (SRG) transformation of H to tame it down

$$
\text { Relative momentum basis of } \mathscr{F}_{2}
$$

Systematic uncertainties

Truncated χ EFT Hamiltonian expansion = Error (1)
$H=T+\sqrt{V_{\mathrm{LO}}+V_{\mathrm{NLO}}+V_{\mathrm{N}^{2} \mathrm{LO}}}+\mathbb{}$
Order-by-order estimate [Binder et al. 2018] BE and radii at N^{3} LO: 5-6\% up to A~80

Truncated A-body expansion = Error (5)
$\left|\Psi_{k}^{\mathrm{A}}\right\rangle=\Omega\left|\Theta_{k}^{(0)}\right\rangle=\left|\Theta_{k}^{(0)}\right\rangle+\left|\Theta_{k}^{(1)}\right\rangle+\left|\Theta_{k}^{(2)}\right\rangle+\Theta$

Work-horse methods = ~3\% Top-tier methods < 1\%

Truncated basis expansion = Error (3)

Statistical uncertainties

Propagating parameter uncertainties of $\mathbf{H}=$ Error (2) + Global Sensitivity Analysis

$$
\mathrm{N} \text { simulations }=\text { expensive }
$$

$$
H \equiv H\left(\left\{\lambda_{i}\right\}\right) \quad \stackrel{\text { fit }}{\substack{\text { N sets }}} \begin{gathered}
\lambda_{i}=\bar{\lambda}_{i}+\delta \bar{\lambda}_{i} \pm 5 \% \\
\left.\Psi_{n}^{A}\right\rangle=\mathrm{E}_{n}^{A}\left|\Psi_{n}^{A}\right\rangle
\end{gathered} \begin{gathered}
\text { Simulations }=20 \mathrm{y} \text { of CPU } \\
\text { i } \\
\text { Emulations }=1 \mathrm{~h} \text { on a laptop }
\end{gathered}
$$

1114112 samples
© Emulator based on the Eigenvector Continuation (EC) method
Frame et al. (2018)
Duguet et al. (2023)

1) Solve $H\left|\Psi_{n}^{A}\right\rangle=\mathrm{E}_{n}^{A}\left|\Psi_{n}^{A}\right\rangle$ for a small set (few 100s) of parameter values = moderate
2) Diagonalize the huge number of $H\left(\left\{\lambda_{i}+\delta \lambda_{i}\right\}\right)$ in small basis generated in 1$)$ = cheap
\rightarrow Implementation of a PGCM-EC emulator
A-body observables Energy (MeV) with
statistical uncertainties $\times 10^{4}$

See Talk by A. Roux on Friday

O Rule of the game
Evaluating any source of error = repeating several/many/very many times the ab initio calculation

- Enormous increase of the cost

Reducing systematic error $=$ going to next order or larger $\mathrm{n}_{\text {dim }}$
© Huge increase of the cost

Some ab initio frontiers

SPECTROSCOPY

- Single -particle excitations
- Collective
- Clustering

Tetrahedral ground state intrinsic density
[Frosini et al., 2023]
$1 / 3^{-}$vibration $\left({ }^{16} \mathrm{O}+\alpha \leftrightarrow{ }^{12} \mathrm{C}+2 \alpha\right)$ at 7.2 MeV

- Systematic

UNCERTAINTIES
Hamiltonian
$H=T+V_{\mathrm{LO}}+V_{\mathrm{NLO}}+V_{\mathrm{N}^{2} \mathrm{LO}}+\boldsymbol{\theta}$
$\mathrm{A}-\mathrm{body}$ solution
$\left|\Psi_{k}^{\mathrm{A}}\right\rangle=\Omega\left|\Theta_{k}^{(0)}\right\rangle=\left|\Theta_{k}^{(0)}\right\rangle+\left|\Theta_{k}^{(1)}\right\rangle+\left|\Theta_{k}^{(2)}\right\rangle+$ (Q)
OPEN -SHELL

- Novel many-body methods
- Memory\&CPU $\boldsymbol{\lambda}: \tilde{N}^{p} \rightarrow \mathbf{N a}^{q}(\tilde{\mathbf{N}} \ll \mathbf{N})$

MASS

- Memory\&CPU $\boldsymbol{\lambda}$: N^{p} with $\mathrm{N} \boldsymbol{\lambda}$
- Importance An forces?

HAMILTONIAN
Basis representation
$H\left|\Psi_{k}^{\mathrm{A}}\right\rangle=E_{k}^{\mathrm{A}}\left|\Psi_{k}^{\mathrm{A}}\right\rangle$
$\left|\Theta_{k}^{(n)}\right\rangle=\sum_{p=0}^{@} A_{p k}^{(n)}\left|\Phi_{p}\right\rangle$

- Statistical
$H \equiv H\left(\left\{\lambda_{i}\right\}\right)$ fit $\lambda_{i}=\bar{\lambda}_{i}+\Delta \bar{\lambda}_{i}$
ACCURACY
- Algebra cost $\boldsymbol{\lambda}$

Difficult manually

- Numerical cost $\boldsymbol{\lambda}$

Memory\&CPU: $N^{p} \rightarrow N^{q}(q>p)$

- $S=0 / S \neq 0$ interactions
- Power counting
- Currents
- Light nuclei
- Fit

REACTIONS

[^0]: 1) Is the ab initio EFT scheme the right way to go when futher increasing A?
 2) Should one formulate another EFT anchored into the ab initio EFT?
 3) Can the EDF method as we know it (but revisited) be a good candidate?
