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Peaks at nearly 2x and 3x the energy of the main ISGQR peak!

Isoscalar giant quadrupole resonance in 40Ca
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Configuration mixing models have been used for decades in nuclear structure studies.

 Configuration-mixing EDF models
 Generator coordinate method for nuclear structure

         the generator coordinate method (GCM) or 
 Usually referred to as

         the multi-reference energy density functional (MR-EDF) theory 

 The idea is to account for quantum fluctuations that are disregarded by the mean-field approach 

 Most applications use Skyrme, Gogny, or relativistic EDFs
 With or without symmetry restoration prior to the mixing

 Based on the mean-field approximation and the Hill-Wheeler-Griffin’s theory from 1950s

 The reference states are typically obtained by constrained HF+BCS or HFB calculations

Symmetry-restored potential energy surfaces of 144Ba obtained with a Gogny EDF

R. Bernard, L. Robledo, T. R. Rodriguez, Phys. Rev. C 93, 061302(R) (2016) .
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 Configuration-mixing EDF models
 Generator coordinate method for nuclear structure

 Starting from a mixed state, one ends up solving the HWG equation

GCM spectra of 144Ba

Collective w.f. of 144Ba

R. Bernard et al, PRC C 93, 061302(R) (2016) .

 However, many formal and occasionally practical issues persist 
(i.e., the minefield) 

M. Bender, N. Schunck, J.-P. Ebran and Th. Duguet, Chapter 3 in 
“Energy Density Functional Methods for Atomic Nuclei” (2019) 

 This provides an access to various spectroscopic properties 

 The framework has been extensively applied in numerous studies 
and thoroughly reviewed in articles and texbooks

 Excitation spectra for different spins/parities
 Collective w.f., used to calculate expectation values of observables

Theory                                     Exp.
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A popular extension for nuclear dynamics is the time-dependent GCM (TDGCM).

N. Schunck and D. Regnier, PPNP 47, 103963 (2022). 

 Based on the same HWG theory, applied to nuclear reactions in the 80s
 Nuclear dynamics is described in terms of several collective coordinates

 Motivated by the separation in time-scales (single-particle vs collective)
 Considers a reduced Hilbert space spanned by collective coordinates (deformations, pairing, etc.)
 Accounts for quantum fluctuations by mixing many time-independent basis states

 One ends up solving the time-dependent HWG equation

 Usually combined with the GOA, yielding a Schrödinger-like 
equation for the collective wave function

 Configuration-mixing EDF models
 Time-dependent generator coordinate method for nuclear dynamics

2D Potential Energy Surface of 240Pu
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 Configuration-mixing EDF models
 Time-dependent generator coordinate method for nuclear dynamics

 In the past decade, TDGCM has been widely applied to fission
W. Younes, D. Gogny, and J. F. Berger, “A Microscopic Theory of Fission Dynamics 
Based on the Generator Coordinate Method”, Lecture Notes in Physics (2019).
D. Regnier and M. Verriere, “The Time-Dependent Generator Coordinate Method 
in Nuclear Physics”, Front. Phys., Vol. 8 (2020).

 It provides an excellent description of some observables 
(e.g., preneutron yields)

From asymmetric to symmetric                
    fission in fermium isotopes

D. Regnier et al., PRC 99, 024661 (2019). 

 However, some major issues remain:
✗ Very large bases of time-independent states are needed
✗ There is no dissipation mechanism like in TDDFT 

(qp excitations could be added, but not trivial)
✗ For fission, the scission line is not uniquely defined
✗ PES are often discontinuous in the reduced Hilbert space

Mixing of time-dependent, non-adiabatic configurations could account for some of these issues.
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 Configuration-mixing EDF models
 Mixing of time-dependent configurations

 More generally, both the mixing functions and the basis states can be made time-dependent

 Theoretical foundations of such a framework were laid out in the 1980s 

 A few years ago, a couple of toy-model calculations were reported

P. G. Reinhard, R. Y. Cusson, K. Goeke, Nucl. Phys. A 398, 141 (1983).
P. G. Reinhard and K. Goeke, Rep. Prog. Phys. 50, 1 (1987).

D. Regnier and D. Lacroix, Phys. Rev. C 99, 064615 (2019).
N. Hasegawa, K. Hagino, Y. Tanimura, Phys. Lett. B 808, 135693 (2020).

Mixing of TDHF trajectoriesApr2023 PM, David Regnier, Denis Lacroix, Phys. Rev. C 108, 014620 (2023).
B. Li, D. Vretenar, T. Nikšić et al., Phys. Rev. C 108, 014321 (2023). 

Sep2023 B. Li, D. Vretenar, T. Nikšić et al., arXiv:2309.12564 [nucl-th] (2023).

Oct2023 PM, David Regnier, Denis Lacroix, arXiv:2310.20557 [nucl-th] (2023).

 During 2023 a significant progress is made, first applications in real nuclei

Mixing of TDHF+BCS trajectories

Numerical and technical details

In principle encompasses both the dissipation 
and quantum fluctuation aspects od dynamics 
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 Starting point is a linear combination of time-dependent many-body states

 Depending on the application, there is a freedom in choosing:
 Generating coordinates

 Magnitude/phase of the order parameter for symmetry breaking
 Relative position/momentum for collisions
 Boost magnitude for oscillations

 Generating states
 Many-body level: Slater determinants/U(1)-breaking vacua
 Single-particle level: from an ansatz or microscopic (schematic interaction or EDF)

 Variational procedure
 Different variants of the time-dependent variational principle
 Variational parameters

 ...

 Multiconfigurational TDDFT model
 Properties of the many-body ansatz
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 We apply the time-dependent variational principle on a set of mixing functions

 These mixing functions satisfy the following properties:
1) They are differentiable in time.
2) They lead to a many-body state that is normalized in time.
3) They are associated to non-zero eigenvalues of the norm kernel (to ensure bijection).

 The action to be minimized reads:

Dirac-Frenkel variational principle

Condition 2)

Condition 3)

(and not also on the basis states; consequences are discussed later)

 Multiconfigurational TDDFT model
 Time-dependent variational principle
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 By minimizing the action, we obtain the equation for the collective wave function

 Various kernels are transformed to the corresponding collective operators

Hamiltonian kernel Derivative kernel Collective operators

 The expectation value of any observable is calculated as

 Basis states are propagated independently, following the corresponding equations

8

 Multiconfigurational TDDFT model
 Equations of motion

 In the current implementation, it is the nuclear Hartree-Fock equation
 Simplifies the problem, but neglects the feedback of mixing on individual trajectories
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 Without pairing, the norm kernel is a simple determinant of single-particle overlaps

9

 Multiconfigurational TDDFT model
 Evaluation of kernels

 The “Hamiltonian” kernel is evaluated through the GWT + density prescription
 The inverted norm kernel is calculated by removing the vanishing norm eigenvalues

 Kernels with explicit time derivatives are calculated in the finite differences scheme

 The time-derivative kernel then reads

 Time derivative of N1/2 is the solution of the Sylvester equation
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 The equation for g can be solved using a time-propagation method of choice
 The “direct” method feasible for smaller bases

 Multiconfigurational TDDFT model
 Resolving the equations of motion

 Common alternatives: Runge-Kutta (RK), Crank-Nicolson, ...

10

 TDHF equation is resolved using the RK4 scheme

We developed a new TDDFT code and an MC-TDDFT solver on top of it.
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 Nuclear dYnaMics on Finite Elements (NYMFE)

 Uses modern C++ standard

 Space discretization with the finite element method

 Benchmarked against HFBTHO and Sky3D

Illustration: Simulation in a finite elements box

 Simulation in a box, Skyrme interactions

 Will be made publicly available, eventually

 Multiconfigurational TDDFT model
 The NYMFE computer program

MFEM: Scalable Finite Element 
        Discretization Library

 The main author is David Regnier (CEA, DAM)

11

 Static and dynamic DFT/EDF solver, MC solver on top 
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 ISGQR multiphonons in 40Ca
 Giant resonances as collective nuclear excitations

 Collective response to an external perturbation is a common feature of quantum many-body 
systems (phonons in solids, plasmons in electronic gases)

 In nuclei, giant resonances have been studies for many decades

     Textbook illustration of giant resonances      A typical signature of giant resonances

 Giant resonances correspond to small-amplitude, (nearly-) harmonic oscillations

     The question is - are there higher excitation quanta (multiphonons)?
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 ISGQR multiphonons in 40Ca
 Multiphonons in nuclei

 2nd phonon observed in multiple nuclei

A scheme of a (hypothetical) multiphonon spectrum

Do collective multiphonon excitations exist in nuclei?
If yes, are they harmonic?

There are decades of excellent research on the topic!

Experiment:

 Multiphonons – higher quanta of the main GR excitation

 3nd phonon possibly observed in two cases
Schmidt et al., IVGDR in 136Xe (1993) (?)
Fallot et al., ISGQR in 40Ca (2006)

Theory:

 In principle, a requantized theory is needed

Very recently: Ab initio calculations (A. Porro)

 Many models on the market, usually an ad hoc 
introduction of phonon d.o.f.
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 ISGQR multiphonons in 40Ca
 Calculation parameters

 Some calculation parameters:
 L = 24 fm box, regular mesh of 14 cells, FE basis od 3rd ord. poly.
 SLy4d Skyrme EDF (common choice for dynamical studies)
 Basis states correspond to the HF g.s. with different q20 boosts

                   We can compare predictions of the quasi-classical TDDFT and the quantum MC-TDDFT.

 We consider a simple case of quantum configuration mixing:

 Δt = 5 × 10-4 zs step for time propagation
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 ISGQR multiphonons in 40Ca
 Nuclear response to quadrupole perturbation

 Quadrupole response for MC-TDDFT is more complex and exhibits multiple frequencies
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 ISGQR multiphonons in 40Ca
 Nuclear response to quadrupole perturbation

 Quadrupole response for MC-TDDFT is more complex and exhibits multiple frequencies
 Quadrupole fluctuations are larger and also exhibit multiple frequencies
 Frequency (energy) spectrum can be extracted through Fourier analysis
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 ISGQR multiphonons in 40Ca
 Energy spectrum
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 TDDFT yields a single peak (all trajectories are equivalent)
 MC-TDDFT yields multiple peaks

 The 1st peak is split (but we do not aim to describe all the fine details of fragmentation)
 The 2nd and 3rd peak appear at 2x and 3x the energy and reflect this splitting
 There is no 4th peak
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 ISGQR multiphonons in 40Ca
 Robustness of results
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 We consider two sets of basis states (BS) and two sets of initial conditions (IC) 
        BS1 – Different boost magnitudes         BS2 – The same boost, different points along the trajectory

         IC1  – f1(0) = 1, f2(0) = f3(0) = 0                        IC2 – Diagonalization of the initial collective Hamiltonian

The appearance of peaks and their energies are robust w.r.t. this choice (but amplitudes vary).

BS1-IC2

BS2-IC1 BS2-IC2
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 ISGQR multiphonons in 40Ca
 Comparison with experiment

Energy spectrum is in excellent agreement with experiment and nearly harmonic (~2%).
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Scarpaci et al. (1997)
Youngblood et al. (2001)
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Harmonic Limit

Excitations of the main peak:
E2ph = 35.7 (0.5) MeV
E1ph = 18.1 (0.2) MeV

E3ph = 53.6 (0.7) MeV
(not full theoretical uncertainties)
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 Several technical remarks
 Treatment of linear dependencies in the basis

 In a recent publication, we addressed numerical and technical details of the model
PM, David Regnier, Denis Lacroix, “Multiconfigurational time-dependent density functional theory for atomic nuclei: 
Technical and numerical aspects”, arXiv:2310.20557 [nucl-th] (2023).

 Like in static GCM, there is an issue of linear dependencies in the basis set
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 Small norm eigenvalues carry little physical content but induce numerical noise through N-1/2

 Consequently, they are removed from the basis, analogously to the static case
 Caution: removing too large eigenvalues removes a part of physical information
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 Several technical remarks
 A somewhat unexpected mine: Energy conservation

 In TDDFT, the energy is guaranteed to be conserved throughout time evolution
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Energy of the MC-TDDFT state (left) and motivation revised (right)

 However, the energy is not conserved on the multiconfigurational level

 Variations will depend on the particular application (here ~1.5 MeV)
 This appears to be a consequence of not being fully variational
 Including the effect of configuration mixing on individual trajectories may be necessary
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 Several technical remarks
 A somewhat unexpected mine: Energy conservation

 In fact, the MC-TDDFT energy is bound by the eigenvalues of the collective Hamiltonian

 All energy components contribute to the total variation
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 Several technical remarks
 Stepping into the minefield: Density-dependent prescription

 Certain components of an EDF are density dependent

 These terms are not uniquely defined on a multi-configurational level
 We can use the average density prescription... but which one?

Average Density 1

Average Density 2

The two prescriptions are real and good in the q = q’ limit, but not equivalent.

  We can, at best, try to assess an impact of this choice on predictions of the model.

 A Skyrme component proportional to ρα (α = 1/6 for SLy4d)
 Coulomb exchange (α = 4/3)
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 Several technical remarks
 Stepping into the minefield: Density-dependent prescription
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 Overall dynamics (|g|2) is largely unaffected, except for a moderate shift in phase for large t
 Energy variation is comparable, with a similar shift in phase

 Energy spectrum is robust: all peaks are shifted by less than 0.1 MeV

 Quadrupole moment is identical up to t = 0.75zs, afterwards moderate variations
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1. MC-TDDFT is an advanced and versatile model of nuclear dynamics.

 Includes both the dissipation and quantum fluctuation aspects
 In principle, applicable to nuclear vibrations, collisions, fission, and more

2. This year, the model was for the first time applied in nuclei, using EDFs.

 We considered a simple quantum mixing model for quadrupole vibrations in 40Ca

“Quantum fluctuations induce collective multiphonons in finite Fermi liquids”
PM, David Regnier, Denis Lacroix, Phys. Rev. C 108, 014620 (2023).

“MC-TDDFT theory for atomic nuclei: Technical and numerical aspects”, 
PM, David Regnier, Denis Lacroix, arXiv:2310.20557 [nucl-th] (2023).

 The model predicts multiphonon ISGQR excitations without any a priori assumptions
 Excitation spectrum is in an excellent agreement with experimental data

3. The model and its extensions will soon be applicable to other systems and phenomena.

 Time dependence is embedded in both the basis states and the mixing function

 Inclusion of pairing and code optimization/parallelization
 Fully variational approach by treating basis states as variational parameters
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