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Microscopic models of nuclei

Energy Density Functional Ab Initio methods
Phenomenological interaction ~ From nucleons to nuclei Derived consistently with QCD
— Inspired by DFT Prediction of macroscopic properties from - Adjusted on small systems
— Adjusted in nuclei interacting nucleons - Systematic expansion
Reasonable nunpasiaalaact— . — utational cost

@ Large domain 4 Presentation focused on particular Ab /nitio method ount of 3-body @

From structure| Objective : solve A-body Schrédinger equation to given accuracy ed mass range

Projected Generator Coordinate Method Perturbation Theory

Not systematica ] ) ) ) improvable

_ Limited error { FOCUs on formalism and first implementation imation » @
Tailored for me| Parallels with EDF whenever possible on

- Difficulties fOF SPectrc T et = sity

Ground-state Reactions

.. cross sections, ...
________ masses, radii,
'O‘l density profile, ...
Q0 -
NNy Y Excitation spectra
: O s' Decay modes
energies, transition probabilities, o )
R response function to electroweak lifetime, yields, ...
probes, ...



Y
Progress of ab initio / in medias res methods

Ab initio methods
1) A structure-less nucleons as degrees of freedom '
2) Interaction mediated by pions and contact terms (e.g. Weinberg PC) Steady progress in the last decades
3) Solve A-body Schrodinger equation to relevant accuracy”

* controlled and improvable way

Light nuclei
. 1990° Exponential
Quasi-exact methods (3 scaling

Closed shells
2000’s Polynomial

Expansion methods scaling
Single-reference

Proton number Z (up to 118)

M Stable
E _:;nmir I]::::‘ aluation 2020 Singly open-She"s 201 o,s POIynom|a|
W Energy density functional (Gogny DIM) Symmetry-breaking Sca“ng

S G PJA 52, 202 (2016) M u |ti-|’eference

S. Goriely etal. E
M. Wan L, Chin. Phys. C 45, 030003 (2021)
¢ Commumcations )

Neutron number N (up to 258)

Doubly open-shells 2020-2 Mixed /
] Polynomial
Courtesy of B. Bally Valence space Scaling
3
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Nuclear Applications

(VAP)-HFB (no symmetry) Stavros Bofos Chiral ab initio
FAM-QRPA 1 Valence space interactions
BMBPT IresneJ Gogny D1S/D1M

PGCM (+ PT) Skyrme

GSCGF Gogny 3b (Da Costa)

@ | - Several methods, Several interactions, One tool
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e )
Single and Multi-Reference expansion methods &

Schrodinger equation
[H,R] = 0 gereq

Nucleon interaction Correlated wave-function
1-2-3-... body H||W9) = EU|lPU) Al parameters

| (@) reference state eigenstate of H,

Partitioning P = |0@ONDO|
Q=1-7
Unperturbed problem Residual interaction
« Easy » H = H0|+| H1 Treated approximatively
dWy = —9(H, — E®) ' gH,|0©
Formal RS [ = —0(H, )_0H:[0®)

|0@) = —0(H, — E®) " 0H]0®)
o) = ..

w) = ) 1e®)
k

Systematic expansion

Open questions

- Choice of reference state
- Choice of partitioning

Perturbation Theory

E©@ = (0@ |H,|0)
E® = (0®|H,|0©)
E@ = (0|H,|0W)
E® = ...

Optimal strategy ?

@ ESNT Workshop— Mikael Frosini

Single reference symmetry conserving PT in closed shells

Spherical Hartree Fock o(N*) 2

S,.D ij

[(P|H,|P")? Hgp

— @=_y =
0(9) = |sHF) B = LB —E© ZE“+Eb—Ei—Ef
Canonical Partitioning
Hy = EO[o@) @]+ ) | Elo/@]
! Strictly positive diagonal H,
— Single reference symmetry breaking PT in open shells
Degenerate unperturbed state
No expansion possible
OO
21/11/2023 8



e )
Single and Multi-Reference expansion methods &

[H.R] = 0 Schrodinger equation

Nucleon interaction Correlated wave-function
1-2-3-... body H||W9) = EU|lPU) Al parameters

| () reference state

Partitioning P = 0O
9Q=1-7
Unperturbed problem Residual interaction
« Easy » H = H0|+| H1 Treated approximatively
ey = _o(H — EO)* (0)
Formal RS %) = —0(H = E')  0H,|e'®)

|0®) = —(H - E(o))‘IQH—1|@(1))
|o®) = ...

E©@ = (0@ |H,|0)

|P) = E |0k EW = (0@ |H,|0©)
E@ = (0@|H,|0W)
E® =

Perturbation Theory

Systematic expansion

Open questions

- Choice of reference state
- Choice of partitioning

Optimal strategy ?

@ ESNT Workshop— Mikael Frosini

— Single reference symmetry conserving PT in closed shells
Spherical Hartree Fock 0(N*)

|(<I>|H1|<I> >|2
0(©) = |sHF) FO =Y o ZE(
1

Canonical Partitioning
SD,

Hy = EO[o@) @]+ ) | Elo/@]
1

10)) refe

Strictly positive diagonal H,

Symmetry conserving
minimum

— Single reference symmetry breaking PT in open ghells order par
Symmetry breaking HF Bogoliubov 0(N*) p=qe'
b)  HY(p)
|0®)) = |dHFB) ) = |l |
- ‘(D SB expansion

Quasi-particle denominators
) 1 Contamination to all orders :

— 2

[ Hy, R 1#0 Restoration of symmetries? 6

Symmetry breaking
minimum

Canonical SB Partitioning

[HOJ R] * 0;

— Multi reference symmetry conserving PT in open shels

Symmetry conserving multi-reference state

S i (0))
|0©@) = Z |D;) Choice Ref State? !
i Choice of basis?
Non canonical SB Partitioning] Non diagonal H, { = [®(0))
21/11/2023 9
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PGCM + Perturbation Theory

Frosini et al. (2022)
Projected Generator Coordinate Method p,; ct 4. (2(024)

See A. Roux presentation

.

. ~ Constrained mean-field
Symmetry breaking
|[®(q1)) |D(q,)) |P(qn))
n - . Projection
P/ NZICD(ql)) pJ NZlcb(QZ)) pJ Nzlq)(Qn)> Rotation
Shape mixing
J™NZ | (q)) Vibration

Variational HWG
Low dimensional

Z ng’fua = &1(q) Z|Ngqf,f(q)
q q

Hamiltonian kernel

Norm kernel

Symmetry breaking

Shape oscillations / rotations accounting for mpmh effects i

State-specific Partitioning

Baranger Hamiltonian

Br = ) logyest]
o ® Ho = 7’u"1F nen®i + QiFrendi
Qu=1-5 [Hop,R] =0
Basis of 9?

@ ESNT Workshop— Mikael Frosini

PGCM-PT(2) equation

Analytic inversion not possible in principle

@“b=¥mﬂr%wnﬂmhm@>

Need for convenient representation of Q space
Projected excited HFB Q! (q)) =

.
M%Ezzdem>
I

q
Approximation: Truncation to singles and doubles

QP°|®!(q))

Non orthonormal basis

Matrix approximation of Hy — E©

»

Vector representation of H;Q|0)

Mipiq = (Q (p)lH — E(0)|Q](q))

@ hi (p) = (Q'®|H,10©)

Mlp]q a] (q)

Remarks at this stage

Strong static / collective correlations captured by PGCM reference
Weak / dynamical correlations captured in perturbation

Versatile but expansive symmetry conserving expansion method
O(N*) PGCM with large prefactor

O(N®) PT denominator matrix construction and inversion
Applicable to all systems

Multiple redundant copies of Hilbert space - need special care
Following discussion on numerical aspects 10
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2- Numerical aspects
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N

Circumventing the problem of three-body interaction

Ab initio Hamiltonian

H =T+ V|4 VNNV 4.
Similar to other interactions \. Neglected for now

Essential for predictivity of the theory

Generalization to arbitrary densities

1. Apply same contractions with arbitrary « well chosen » p
2. Discard pure three-body terms
3. Convert back to single particle basis

F ® \M-scheme {1 True Hamiltonian (no spurisities BMF) — 1 JNNN p chosen to be symmetry conserving
102} ® J-scheme ] 0= 3y p-p-p Applications:
= +° jT'S%f,’eme i Memory bottleneck (O(N®) vs O(N%)) @ 77 LN pp Small error with reasonable p
S pof & 7 Runtime bottleneck ~ 2! - Very close to standard NO2B
g V=vV+ViN.p - True Hamiltonian (e.g. for PGCM)
§10_2 e, . =13 Cost increase in deformed calculation
too large to be handled
107 _ R-Rothetal. 2014 4 gayera| solutions envisioned Connection with EDF?
0 5 10 ESmaX15 20 25 - Compression via tensor factorisation

- In medium interactions
NO2B Approximation beyond mean-field

Beyond mean-field, calculations almost never include exact three-body

1 1
:H:pcb = HNOZB [pq)] — qu) +§VNN .pfbpq) +§VNNN .pq)pfbpq)
+VNN + VNNN p
+M”
Only convoluted « effective » three body treated beyond MF
- Source of problems in deformed calculations

Could this idea be adapted to Gogny-like interactions?
- Atleast in PGCM, freeze density-dependant term once and for al

Probably needed trick for 3-body Gogny (cf. Philippe Dacosta’s
presentation)

Conversely, could p be obtained from EDF calculation for ab Init‘/1'<?3
applications



W\ )
Construction of linear system &

Constructing the linear system
9 y Using Thouless theorem

SD
_ o pl
2., 2, Miniad! @ = ~Hi @) (®(p)|B'OR(8)B! |/ ()) = (B(p)|B'0B)|® (g; 6))
0O, — o 0 = (@) |[B'0BJe? |0 @)N@@)|@! (4;6))
hi(p) = (QPIH Q) = (@ (p)IP7H; [0%) - (2-body) = (@) |B"2 0B} |0 ()} @) | ¥ (g; )
Nipjq = (Q’I((P))m](CI)) :(0§¢I((p3|P qu)]l(q» © (0-body) Total cost O(ngcm MNproj  N° + Moo * Nproj - N?®) (less) Impractical
Mip;q = (V'P|Hy — EQ|Q/@) = (&' (p)|(Hy — EP)P?| D/ (q)) NB- huge prefactor (1000) to account for antisymmetry
(3-body)

Naive implementation Large linear system

Construct each |®') by permutations on U, V columns Antisymmetry : only to be solved for strictly increasing |, J
Cost of each matrix element 0(N3) Axial + parity symmetry: | and J with good parity and K=0
Total cost 0(n2ay, - yyoj - N3 - N8) Impractical Very large linear system ~ 500000 configurations in Neon20, 7 shells

Slater Condon rules in quantum chemistry
Burton et al. (2022) How can we solve such a large system?

E ESNT Workshop— Mikael Frosini 21/11/2023 14



Solution of linear system Ma = —h,

Direct methods for the solution of the symmetric linear system

Direct solutions of the system rely on various matrix decompositions
Ideally, one would like to use symmetric eigendecomposition M = VTV
- Easy separation between range and kernel

- Costly in large dimensions

An alternative could be rank revealing QR M = QR

- Cheaper but less precise

Intermediate : rank-revealing QLP M = QLP L = (é 8)

__J
10—2 W—
= % :‘
S 10 2ONe
. 10—10 M: N eigenvalues
IR x Wy « M eigenvalues
10° 10' 10°
k

@ ESNT Workshop— Mikael Frosini
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W\ ~
Solution of linear system Ma = —h,

Direct methods for the solution of the symmetric linear system = 9
)]
Direct solutions of the system rely on various matrix decompositions = e TR S S A s
Ideally, one would like to use symmetric eigendecomposition M = VTV 2 8
- Easy separation between range and kernel g:
- Costly in large dimensions ° S 20Ng
An alternative could be rank revealing QR M = QR S — M-ICO
- Cheaper but less precise L= (Z 0) > — NMN-ICO
Intermediate : rank-revealing QLP M = QLP 0 0 § 6 === Exact
- - - - - - - 2'5

Switching to indirect methods in « realistic » space

2.0
Solving the system in Krylov space {X, MX, M%X,---}
MINRES-QLP [Choil1] 3 15
- Improvement of MINRES to for better handling of matrix kernel =,
- Only requires matrix-vector product o 1.0
- Strongly depends on problem preconditionning i
Very large linear system '
High redundancies | - Intruder state problem o_oO T 0 a5
- Non orthogonal projected excitations HGratioh
- Non orthogonal HFB states

- Negative M eigenvalues

@ ESNT Workshop— Mikael Frosini 21/11/2023 16



Solution of linear system Ma = —h,

(o]

Direct methods for the solution of the symmetric linear system %
: " =

Direct solutions of the system rely on various matrix decompositions : 8
Ideally, one would like to use symmetric eigendecomposition M = VTV o
- Easy separation between range and kernel g
- Costly in large dimensions ()

An alternative could be rank revealing QR M = QR g (4
- Cheaper but less precise i 0 =
Intermediate : rank-revealing QLP M = QLP L= (0 0) o

'S 6

Switching to indirect methods in « realistic » space 05

Solving the system in Krylov space {X, MX, M?X,---}
MINRES-QLP [Choi11] 2.0
- Improvement of MINRES to for better handling of matrix kernel

- Only requires matrix-vector product %' 15
- Strongly depends on problem preconditionning s '
Very large linear system Ly
High redundancies Intruder state problem 0o

- Non orthogonal projected excitations

- Non orthogonal HFB states (M + iyN)a = —hy

- Negative H, eigenvalues o

. M —yN\ ay _(—hy
g Complex shift method (—yN —M)(b) _< 0 )

— y=0 — y=5
— y=1 — y=10
— . = EXACT

Trade instabilities for bias

= Contamination

=> In principle : cancelling in spectra
= Under control in practice

20 40 60
lteration



Numerical setting 2 v"?‘?“?‘

Validating PGCM-PT against FCI | ¢ -4 ho=20Mev N\

» N3LO NN interaction [Hiither et al 2020]
>\, = 1.88 fin-1

~180 Ground state energy
- +
185 Static correlations from j* breaking H
- 13 MeV -190 24
~190 Static correlationc via PGCM 0+
. . 1
: - 5 MeV from projection
15| |~ BHF | --— [PGCM - 10% underbound S
§ —— PHF  ---- PGCM-PT(2} Dynamical correlations via PGCM-PT(2) @
% ~200 % dHF - 1,7% error, slightly overshooting FCI E-;_zoo
= % dMBPT(2) Deformed SR MBPT(2,3) o
£ _505 % dMBPT(3) - Underbound %
2 - Missing projection !
£ k=
=210 * E
, , : { 1 ; Spectroscopy of 2*,4" states @ -210 —
—-215 FCl
. PHFB strongly dependent on deformation —_—
- Not well converged —
_235 PHFB-PT(2) flattens the curve —
0.20 0.25 0.30 0.35 0.40 0.45 - Empirical sign of onvergence -220
B2 - Validation of theory PGCM PGCM-PT(2)  FCI
PGCM-PT(2) on top of PGCM
- Large 25MeV cancellations e

- Validation of numerics

g ESNT Workshop— Mikael Frosini Need physics beyond 2p2h / axial symmetry 21/11/2023
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W\ )
IM-SRG evolved interactions and // with EDF

Hergert et al. (2016)
Unitary evolution of Hamiltonian

s =0MeV1 s =10 MeV~1 s =20 MeV1 s =

2p2h HF  2p2h HF  2p2h HF  2p2h

HF
o | B [l - [l

h I. h h

Strong coupling Partial decoupling Effective decoupling Loss of unitarity
Missing correlations at HF - Reshuffling of correlations - HF is now true ground state

2p2h

Standard Single Reference IMSRG

g Nuclear collective behaviors 14/06/2023 21
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N\
IM-SRG evolved interactions and // with EDF

Unitary evolution of Hamiltonian

) it Gl el <

s = 0 MeV1 s =10 MeV~1 s =20 MeV1 s =00

0+ "2p2h" O+ ||2p2h|| O+ "2p2h" "2p2h"
. ;o -
. I. - . . o
Strong coupling Partial decoupling Partial decoupling Loss of unitarity
- Missing dynamical correlations - Reshuffling of correlations - PGCM nevel fully decoupled

- Dynamical correlations still missing
- Crancking and / or PGCM-PT

Multi Reference IMSRG for open-shells
Replace HF by 07 PGCM

g Nuclear collective behaviors What happens to excited states? 14/06/2023 22



N\
IM-SRG evolved interactions and // with EDF

Unitary evolution of Hamiltonian

s =0MeV1 s =10 MeV~1 s =20 MeV1 s =

0+ "2p2h" o+ "2p2h" o+ "2p2h" 0+ "2p2h"

o o 0

Last comments on MR-IMSRG

1. Only partial decoupling of the reference state unlike the HF case
- Missing dynamical correlations
- EDF-like Hamiltonian where (P)HFB is closer to experiment

2. No guarantees about excited states

|- Most likely not as decoupled as the 0% reference state

- Expected dilatation of spectra (

e

e



PGCM-PT(2) with evolved interactions

-—
N
o

Binding energy [MeV]
|

-150

0

ZONe

sHF

dHFB
PGCM
PGCM-PT2

= @ »r D

6.3 ( A
32 (. 6.7(
el 200 ]
10 20
S[a.u.]

Numerical setting
»e .« =6 hw=20MeV
»EM 2,8/2,0 interaction
> A, = 1.88 fm-1

Reshuffling of correlations

- Much lower mean-field . — PGCM ~-— PGCM-PT2
- Increase of static correlations
PGCM-PT(2) dynamical correlations 6 -l
- Strong decrease due to reshuffling T -TTT
- Not vanishing (approximate decoupling) 5 v ar
- Higher order effects (PGCM-PT(3))? S 4+
> 4 1 1
Effect on excited states §
- Dilatation of rotational spectrum — 3
- Similar to EDF case e
- Difficult to capture with PGCM* <
2 — X |os 2¢
Correction in perturbation 2 mmmm T | '
-  PGCM-PT(2) contracts back spectra 1
- Still not scale inependent
- Higher order? 0107 0; 07
- Richer PGCM? 570 5710 =20
Ab initio Exp EDF
Duguet et al (2023)
* shown recently to be possible with cranking
24
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W yd Ve V4 V4 V4 4
Conclusion

Envisioned improvements for PGCM-PT(2)

Today : semi-realistic calculations , 4emax e s 10 15
- Need to extend to larger bases T
. o [ .

- Need to break more symmetries 0t SMEETERY/ e PHEBETIES
) —— BMBPT(3)

Main limitation comes from 0 (ng.,mny,;N®) complexity g 102 — P

Possible ways out > {1

- Modified partitioning (recover diagonal H, and O(N5)) £ 10° A

- Natural basis (reduce N) 5 :

- Tensor factorization (data compression) g 10

- Improve PGCM to reduce n ., = i

Extensions to be formalized Lo-s ¥

- Generic observables (transitions) w0t 102 10°
- Non yrast states

E ESNT Workshop 14/06/2023 26



.?.? i V4 V4 V4 V4 g

Conclusion
Envisioned improvements for PGCM-PT(2) Connection with EDF
Today : semi-realistic calculations
- Need to extend to larger bases Calculations with evolved interactions close to EDF
- Need to break more symmetries - 3-body captured via in medium interaction
- Correlations reshuffled from dynamical to static
Main limitation comes from 0 (ng.,mnyo;N®) complexity - Dilatation of spectra (special case of g.s.)

Possible ways out _
- Modified partitioning (recover diagonal H, and O(N°)) Raising several questions:

- Natural basis (reduce N) - Dynamical correlations in EDF?

- Tensor factorization (data compression) - Bypassing MR-IMSRG?

- Improve PGCM to reduce ngqp, - Better interplay EDF / ab initio?
Extensions to be formalized Duguet et al (2023)

- Generic observables (transitions)
- Non yrast states

E ESNT Workshop 14/06/2023 27
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