

Ab Initio Projected Generator Coordinate Method + Perturbation Theory

ESNT Workshop, Tuesday 21st 2023

Microscopic models of nuclei

Energy Density Functional
Ab Initio methods

Phenomenological interaction

- Inspired by DFT
- Adjusted in nuclei

From nucleons to nuclei
Prediction of macroscopic properties from
interacting nucleons

Derived consistently with QCD

- Adjusted on small systems
- Systematic expansion

Reasonable numprinalant

Large domain \& Presentation focused on particular Ab Initio method From structure Objective : solve A-body Schrödinger equation to given accuracy Projected Generator Coordinate Method Perturbation Theory
Not systematica

- Limited error Tailored for me Parallels with EDF whenever possible
- Difficulties for spectroscopy

Focus on formalism and first implementation
y improvable imation » ion

Excitation spectra
energies, transition probabilities, response function to electroweak probes, ...

Reactions cross sections, ...

Decay modes
lifetime, yields, ...

Progress of ab initio / in medias res methods

Ab initio methods

1) A structure-less nucleons as degrees of freedom
2) Interaction mediated by pions and contact terms (e.g. Weinberg PC)
3) Solve A-body Schrödinger equation to relevant accuracy*

* controlled and improvable way

Steady progress in the last decades

Neutron number N (up to 258)

\square Atomic mass evaluation 2020
 - Ab initio 2022
 Energy density functional (Gogny DIM)

Data taken from:
S. Goriely et $a l$. .
M. Wanget al., Chin. Phys. C 45, 030003 (2021)
H. Hergert (private communications)

Courtesy of B. Bally

Light nuclei	1990's	Exponential scaling
Quasi-exact methods	2000's	Polynomial scaling
Closed shells	2010's	Polynomial scaling
Expansion methods Single-reference	2020 -?	Mixed / Polynomial Scaling
Singly open-shells		3
Symmetry-breaking Multi-reference		
Doubly open-shells	Valence space Symmetry-breaking Multi-reference	

A word on PAN@CEA collaboration

+ Sophie Péru

 + David Régnier

Thomas Duguet
Vittorio Somà
Benjamin Bally
Andrea Porro (TU Darmstadt) Alberto Scalesi

Evaluated Data
PAN@CEA
Jean-Paul Ebran
Philippe Da Costa
Lars Zurek
Luis Gonzales-Miret

Antoine Roux

Several methods, Several interactions, One tool

Chiral ab initio

Valence space interactions Gogny D1S / D1M Skyrme Gogny 3b (Da Costa)
(VAP)-HFB (no symmetry) FAM-QRPA
BMBPT
PGCM (+ PT)
GSCGF

Fundamental research

+ Noël Dubray
+ Gilles Noguère

Outline

1. Formalism

Progress of ab initio / in medias res methods
Single and multi-reference expansion methods
Projected Generator Coordinate Method + Perturbation Theory

2. Numerical aspects of PGCM-PT

Circumventing the complexity of three body interactions
Calculation of matrix elements
Resolution of the linear system

3. Application with IM-SRG evolved interaction

Evolved interactions and parallel with EDF
Ground state energy calculations in closed shell nuclei
Spectroscopy in doubly open-shell Neon20

4. Conclusion

Outline

1. Formalism

Progress of ab initio / in medias res methods
Single and multi-reference expansion methods
Projected Generator Coordinate Method + Perturbation Theory

2. Numerical aspects of PGCM-PT

Circumventing the complexity of three body interactions
Calculation of matrix elements
Resolution of the linear system

3. Application with IM-SRG evolved interaction

Evolved interactions and parallel with EDF
Ground state energy calculations in closed shell nuclei
Spectroscopy in doubly open-shell Neon20

4. Conclusion

1 - Formalism

Single and Multi-Reference expansion methods

$$
[H, R]=0
$$

Nucleon interaction
Correlated wave-function
1-,2-,3-... body
$H\left|\left|\Psi^{\sigma}\right\rangle=E^{\sigma}\right|\left|\Psi^{\sigma}\right\rangle A!$ parameters

Partitioning 目	$\begin{aligned} & \left\|\Phi^{(0)}\right\rangle \text { reference state eigenstate of } H_{0} \\ & \mathcal{P} \equiv\left\|\Phi^{(0)}\right\rangle\left\langle\Phi^{(0)}\right\| \\ & 2 \equiv 1-\mathcal{P} \end{aligned}$
Unperturbed problem	Residual interaction
«Easy" $\quad H \equiv H_{0}\|+\| H_{1}$	Treated approximatively

$$
\begin{aligned}
& \begin{array}{l}
\text { Formal RS } \\
\text { Perturbation Theory }
\end{array} \quad \begin{array}{l}
\left|\Phi^{(1)}\right\rangle \equiv-Q\left(H_{0}-E^{(0)}\right)^{-1} Q H_{1}\left|\Theta^{(0)}\right\rangle \\
\left|\Phi^{(2)}\right\rangle \equiv-Q\left(H_{0}-E^{(0)}\right)^{-1} Q \overline{H_{1} \mid}\left|\Theta^{(1)}\right\rangle \\
\left|\Phi^{(k)}\right\rangle \equiv \ldots
\end{array} \\
& \qquad|\Psi\rangle \equiv \sum_{k} \left\lvert\, \Theta^{(k)\rangle} \begin{array}{l}
E^{(0)}=\left\langle\Theta^{(0)}\right| H_{0}\left|\Theta^{(0)}\right\rangle \\
E^{(1)}=\left\langle\Theta^{(0)}\right| H_{1}\left|\Theta^{(0)}\right\rangle \\
E^{(2)}=\left\langle\Theta^{(0)}\right| H_{1}\left|\Theta^{(1)}\right\rangle \\
E^{(k)}=\cdots
\end{array}\right.
\end{aligned}
$$

Systematic expansion

Open questions

Choice of reference state
Optimal strategy ?

Single reference symmetry conserving PT in closed shells

$$
\begin{aligned}
& \text { Spherical Hartree Fock } \mathrm{o}\left(N^{4}\right) \\
& \qquad\left|\Theta^{(0)}\right\rangle=|s H F\rangle \quad E^{(2)}=-\sum_{I}^{S, D} \frac{\left.\left|\langle\Phi| H_{1}\right| \Phi^{I}\right\rangle\left.\right|^{2}}{E^{I}-E^{(0)}}=-\sum \frac{\left|H_{a b}^{i j}\right|^{2}}{E^{a}+E^{b}-E^{i}-E^{j}}
\end{aligned}
$$

Canonical Partitioning
$H_{0} \equiv E^{(0)}\left|\Phi^{(0)}\right\rangle\left\langle\Phi^{(0)}\right|+\sum_{I}^{S, D, \cdots} \underbrace{}_{\text {Strictly } p \text { p }} E^{I}\left|\Phi^{I}\right\rangle\left\langle\Phi^{I}\right|$

Single reference symmetry breaking PT in open shells

Degenerate unperturbed state No expansion possible

Single and Multi-Reference expansion methods

$[H, R]=0$
 Schrödinger equation

Nucleon interaction
Correlated wave-function 1-,2-,3-... body $\left.H\left|\Psi^{\sigma}\right\rangle=E^{\sigma}| | \Psi^{\sigma}\right\rangle A!$ parameters

Partitioning 目?	$\left\|\Phi^{(0)}\right\rangle$ reference state $\mathcal{P} \equiv\left\|\Phi^{(0)}\right\rangle\left\langle\Phi^{(0)}\right\|$ $\mathcal{Q} \equiv 1-\mathcal{P}$
Unperturbed problem $\text { «Easy» } \quad H \equiv H_{0}\|+\| H_{1}$	Residual interaction Treated approximatively

Formal RS

Perturbation Theory

$$
\begin{aligned}
& \left|\Phi^{(1)}\right\rangle \equiv-Q\left(H-E^{(0)}\right)^{-1} Q H_{1}\left|\Theta^{(0)}\right\rangle \\
& \left|\Phi^{(2)}\right\rangle \equiv-Q\left(H-E^{(0)}\right)^{-1} Q \overline{H_{1}}\left|\Theta^{(1)}\right\rangle \\
& \left|\Phi^{(k)}\right\rangle \equiv \cdots
\end{aligned}
$$

$$
|\Psi\rangle \equiv \sum_{k}\left|\Theta^{(k)}\right\rangle \quad \begin{aligned}
& \left.E^{(0)}=\left\langle\Theta^{(0)}\right| H_{0}\left|\Theta^{(0)}\right\rangle\right\rangle \\
& \left.E^{(1)}=\left\langle\Theta^{(0)}\right| H_{1}\left|\Theta^{(0)}\right\rangle\right\rangle \\
& E^{(2)}=\left\langle\Theta^{(0)}\right| H_{1}\left|\Theta^{(1)}\right\rangle \\
& E^{(k)}=\cdots
\end{aligned}
$$

Systematic expansion

Open questions

Choice of reference state Choice of partitioning

Optimal strategy ?

Single reference symmetry conserving PT in closed shells

Spherical Hartree Fock $O\left(N^{4}\right)$

$$
\left|\Theta^{(0)}\right\rangle=|s H F\rangle
$$

$$
E^{(2)}=-\sum_{I}^{S, D} \frac{\left.\left|\langle\Phi| H_{1}\right| \Phi^{I}\right\rangle\left.\right|^{2}}{E^{I}-E^{(0)}}=-\sum \overline{E^{a}}
$$

Canonical Partitioning

$$
\left.H_{0} \equiv E^{(0)}\left|\Phi^{(0)}\right\rangle\left\langle\Phi^{(0)}\right|+\sum_{I}^{S, D, \cdots}\left|E^{I}\right| \Phi^{I}\right\rangle\left\langle\Phi^{I}\right| \quad\left|\Phi^{(0)}\right\rangle \text { refe }
$$

Strictly positive diagonal H_{0}
Single reference symmetry breaking PT in open shells Symmetry breaking HF Bogoliubov $O\left(N^{4}\right)$

$$
\begin{aligned}
& \text { Symmetry breaking } \\
& \text { minimum }
\end{aligned}
$$

minimum

Multi reference symmetry conserving PT in open shels

Symmetry conserving multi-reference state

$$
\left|\Theta^{(0)}\right\rangle=\sum_{i}\left|\Phi_{i}\right\rangle
$$

Non canonical SB Partitioning

$\left|\Phi_{h_{1} \ldots}^{p_{1} \ldots}(0)\right\rangle$
$\left[H_{0}, R\right]=0, \quad\left[H_{1}, R\right]=0$
$|\Phi(0)\rangle$

$$
\left[H_{0}, R\right]=0, \quad\left[H_{1}, R\right]=0
$$

$$
\begin{aligned}
& \left|\Theta^{(0)}\right\rangle=|d H F B\rangle \\
& \text { Canonical SB Partitioning } \\
& \text { SB expansion } \\
& \text { Quasi-particle denominators } \\
& \text { Contamination to all orders } \\
& {\left[H_{0}, R\right] \neq 0, \quad\left[H_{1}, R\right] \neq 0 \quad \equiv 1 \text { - Restoration of symmetries? }}
\end{aligned}
$$

PGCM + Perturbation Theory
 Frosini et al. (2022)

Projected Generator Coordinate Method

Porro et al. (2024)
See A. Roux presentation
Constrained mean-field
Symmetry breaking

Projection
Rotation

Shape mixing Vibration

Symmetry breaking minimum

State-specific Partitioning

$$
\begin{array}{cc}
\mathcal{P}_{\mu}^{\sigma} \equiv \sum_{K}\left|\Theta_{\mu}^{\sigma \mathrm{K}}\right\rangle\left\langle\Theta_{\mu}^{\sigma \mathrm{K}}\right| & H_{0} \equiv \mathcal{P}_{\mu}^{\sigma} \left\lvert\, \begin{array}{l}
F_{[|\Theta\rangle]} \mathcal{P}_{\mu}^{\sigma}+Q_{\mu}^{\sigma} F_{[|\Theta\rangle]} Q_{\mu}^{\sigma} \\
\mathcal{Q}_{\mu}^{\sigma} \equiv 1-\mathcal{P}_{\mu}^{\sigma}
\end{array}\right. \\
{\left[H_{0}, R\right]=0}
\end{array}
$$

PGCM-PT(2) equation

Analytic inversion not possible in principle

$$
\left|\Phi^{(1)}\right\rangle=-\overline{\mathcal{Q}\left(H_{0}-E^{(0)}\right)^{-1}} \mathcal{Q} H_{1}\left|\Theta^{(0)}\right\rangle
$$

Need for convenient representation of Q space

$$
\left|\Phi^{(1)}\right\rangle \equiv \sum_{\substack{q \\ \text { Approximation: Truncation to singles and doubles }}}^{S, D, \cdots} a^{I}(q) \sqrt{\left|\Omega^{I}(q)\right\rangle} \quad \text { Non orthonormal basis excited HFB }\left|\Omega^{I}(q)\right\rangle \equiv Q P^{\sigma}\left|\Phi^{I}(q)\right\rangle
$$

$$
\sum_{\mathbf{q}} \sum_{\substack{\text { SD }}}^{\begin{array}{l}
\text { Matrix approximation of } H_{0}-E^{(0)} \\
\sum_{\text {Vector representation of } H_{1} Q|\Theta\rangle} \mathbf{M}_{\mathbf{I p I q}} \mathbf{a}^{\mathbf{I}}(\mathbf{q})=\mid-\mathbf{h}_{\mathbf{1}}^{\mathbf{I}}(\mathbf{p})
\end{array}} \begin{aligned}
& M_{I p J q} \equiv\left\langle\Omega^{I(p)}\right| H_{0}-E^{(0)}\left|\Omega^{J(q)}\right\rangle \\
& h_{1}^{I}(p) \equiv\left\langle\Omega^{I(p)}\right| H_{1}\left|\Omega^{(0)}\right\rangle
\end{aligned}
$$

Remarks at this stage

Strong static / collective correlations captured by PGCM reference Weak / dynamical correlations captured in perturbation
Versatile but expansive symmetry conserving expansion method

- $\boldsymbol{O}\left(\boldsymbol{N}^{4}\right) \mathrm{PGCM}$ with large prefactor
- $\boldsymbol{O}\left(N^{8}\right)$ PT denominator matrix construction and inversion
- Applicable to all systems

Multiple redundant copies of Hilbert space \rightarrow need special care
Following discussion on numerical aspects

Outline

1. Formalism

Progress of ab initio / in medias res methods
Single and multi-reference expansion methods
Projected Generator Coordinate Method + Perturbation Theory
2. Numerical aspects of PGCM-PT

Circumventing the complexity of three body interactions
Calculation of matrix elements
Resolution of the linear system
3. Application with IM-SRG evolved interaction

Evolved interactions and parallel with EDF
Ground state energy calculations in closed shell nuclei
Spectroscopy in doubly open-shell Neon20

4. Conclusion

Numerical aspects

Circumventing the problem of three-body interaction

Ab initio Hamiltonian

Essential for predictivity of the theory True Hamiltonian (no spurisities BMF)

Memory bottleneck ($\mathrm{O}\left(\mathrm{N}^{6}\right)$ vs $\mathrm{O}\left(\mathrm{N}^{4}\right)$) Runtime bottleneck

Cost increase in deformed calculation too large to be handled

Several solutions envisioned

- Compression via tensor factorisation - In medium interactions

NO2B Approximation beyond mean-field
Beyond mean-field, calculations almost never include exact three-body

$$
\begin{aligned}
: H:_{\rho^{\Phi}} \equiv H^{N O 2 B}\left[\rho^{\Phi}\right] & =T \cdot \rho^{\Phi}+\frac{1}{2!} V^{N N} \cdot \rho^{\Phi} \rho^{\Phi}+\frac{1}{3!} V^{N N N} \cdot \rho^{\Phi} \rho^{\Phi} \rho^{\Phi} \\
& +T+V^{N N} \cdot \rho^{\Phi}+V^{N N N} \cdot \rho^{\Phi} \cdot \rho^{\Phi} \\
& +V^{N N}+V^{N N N} \cdot \rho \\
& +y^{\text {NN }}
\end{aligned}
$$

cea

Only convoluted «effective» three body treated beyond MF

- Source of problems in deformed calculations

Generalization to arbitrary densities

1. Apply same contractions with arbitrary « well chosen» ρ
2. Discard pure three-body terms
3. Convert back to single particle basis

$$
\begin{array}{rlrl}
\overline{E_{0}} & \equiv \frac{1}{3!} V^{N N N} \cdot \rho \cdot \rho \cdot \rho & & \rho \text { chosen to be symmetry conserving } \\
\bar{T} & \equiv T-\frac{1}{2!} V^{N N N} \cdot \rho \cdot \rho & & \text { - Smalications: } \\
\bar{V} & \equiv V+V^{N N N} \cdot \rho & & \text { - Very close to standard NO2B } \\
& \text { True Hamiltonian (e.g. for PGCM) }
\end{array}
$$

Connection with EDF?

Could this idea be adapted to Gogny-like interactions?

- At least in PGCM, freeze density-dependant term once and for al

Probably needed trick for 3-body Gogny (cf. Philippe Dacosta's presentation)
$\rho^{3} \rightarrow \rho^{2} \rho_{0} \ldots \ldots \rho^{\alpha} \rightarrow \rho^{2} \rho_{0}^{\alpha-2} ?$
Conversely, could ρ be obtained from EDF calculation for ab Initio applications

Construction of linear system

Constructing the linear system

$$
\begin{aligned}
& \sum_{\mathbf{q}} \sum_{\mathbf{I}}^{\text {SD }} \mathbf{M}_{\mathbf{I p J q}} \mathbf{a}^{\mathrm{I}}(\mathbf{q})=-\mathbf{h}_{\mathbf{1}}^{\mathrm{I}}(\mathbf{p}) \\
& h_{1}^{I}(p) \equiv\left\langle\Omega^{I(p)}\right| H_{1}\left|\Omega^{(0)}\right\rangle=\left\langle\Phi^{I}(p)\right| P^{\sigma} H_{1}\left|\Omega^{(0)}\right\rangle \\
& N_{I p J q} \equiv\left\langle\Omega^{I(p)} \mid \Omega^{J(q)}\right\rangle=\left\langle\Phi^{I}(p)\right| P^{\sigma}\left|\Phi^{J}(q)\right\rangle \\
& M_{I p J q} \equiv\left\langle\Omega^{I(p)}\right| H_{0}-E^{(0)}\left|\Omega^{J(q)}\right\rangle=\left\langle\Phi^{I}(p)\right|\left(H_{0}-E^{(0)}\right) P^{\sigma}\left|P^{J}(q)\right\rangle \\
& \text { (3-body) })
\end{aligned}
$$

Naive implementation

Construct each $\left|\Phi^{I}\right\rangle$ by permutations on U, V columns
Cost of each matrix element $O\left(N^{3}\right)$
Total cost $O\left(n_{g c m}^{2} \cdot n_{\text {proj }} \cdot N^{3} \cdot N^{8}\right) \quad$ Impractical
Slater Condon rules in quantum chemistry
Burton et al. (2022)

Using Thouless theorem

$$
\begin{aligned}
\langle\Phi(p)| B^{I} O R(\theta) B^{J}\left|\Phi^{J}(q)\right\rangle & =\langle\Phi(p)| B^{I} O B_{\theta}^{J}\left|\Phi^{J}(q ; \theta)\right\rangle \\
& =\langle\Phi(p)| B^{I} O B_{\theta}^{J} e^{Z}|\Phi(p)\rangle\left\langle\Phi(p) \mid \Phi^{J}(q ; \theta)\right\rangle \\
& =\langle\Phi(p)| B^{I, Z} O^{Z} B_{\theta}^{J, Z}|\Phi(p)\rangle\left\langle\Phi(p) \mid \Phi^{J}(q ; \theta)\right\rangle
\end{aligned}
$$

Total cost $O\left(n_{\text {gcm }}^{2} \cdot n_{\text {proj }} \cdot N^{5}+n_{g c m}^{2} \cdot n_{\text {proj }} \cdot N^{8}\right) \quad$ (less) Impractical
NB : huge prefactor (1000) to account for antisymmetry

Large linear system

Antisymmetry : only to be solved for strictly increasing I, J Axial + parity symmetry: I and J with good parity and $\mathrm{K}=0$
Very large linear system $\boldsymbol{\sim} \mathbf{5 0 0 0 0 0}$ configurations in Neon20, $\mathbf{7}$ shells

How can we solve such a large system?

Solution of linear system $M a=-h_{1}$

Direct methods for the solution of the symmetric linear system

Direct solutions of the system rely on various matrix decompositions Ideally, one would like to use symmetric eigendecomposition $M=V^{T} \Sigma V$

- Easy separation between range and kernel
- Costly in large dimensions

An alternative could be rank revealing $\mathbf{Q R} M=\boldsymbol{Q R}$

- Cheaper but less precise

Intermediate : rank-revealing QLP $\boldsymbol{M}=\boldsymbol{Q L P} \quad L=\left(\begin{array}{ll}\bar{L} & 0 \\ 0 & 0\end{array}\right)$

Solution of linear system $M a=-h_{1}$

Direct methods for the solution of the symmetric linear system
Direct solutions of the system rely on various matrix decompositions Ideally, one would like to use symmetric eigendecomposition $M=V^{T} \Sigma V$

- Easy separation between range and kernel
- Costly in large dimensions

An alternative could be rank revealing QR $M=\boldsymbol{Q R}$

- Cheaper but less precise

Intermediate : rank-revealing QLP $\boldsymbol{M}=\boldsymbol{Q L P} \quad L=\left(\begin{array}{ll}L & 0 \\ 0 & 0\end{array}\right)$
Switching to indirect methods in «realistic»space
Solving the system in Krylov space $\left\{X, M X, M^{2} X, \cdots\right\}$
MINRES-QLP [Choi11]

- Improvement of MINRES to for better handling of matrix kernel
- Only requires matrix-vector product
- Strongly depends on problem preconditionning

Very large linear system
High redundancies
Intruder state problem

- Non orthogonal projected excitations
- Non orthogonal HFB states
- Negative M eigenvalues

Solution of linear system $M a=-h_{1}$

Direct methods for the solution of the symmetric linear system
Direct solutions of the system rely on various matrix decompositions Ideally, one would like to use symmetric eigendecomposition $M=V^{T} \Sigma V$

- Easy separation between range and kernel
- Costly in large dimensions

An alternative could be rank revealing $\mathbf{Q R} M=\boldsymbol{Q R}$

- Cheaper but less precise

Intermediate : rank-revealing QLP $\boldsymbol{M}=\boldsymbol{Q L P} \quad L=\left(\begin{array}{ll}\bar{L} & 0 \\ 0 & 0\end{array}\right)$

Switching to indirect methods in «realistic» space

Solving the system in Krylov space $\left\{X, M X, M^{2} X, \cdots\right\}$

MINRES-QLP [Choi11]

- Improvement of MINRES to for better handling of matrix kernel
- Only requires matrix-vector product
- Strongly depends on problem preconditionning

Very large linear system
High redundancies
Intruder state problem

- Non orthogonal projected excitations
- Non orthogonal HFB states
- Negative H_{0} eigenvalues

$$
(M+i \gamma N) a=-h_{1}
$$

$$
\text { Complex shift method } \quad\left(\begin{array}{cc}
M & -\gamma N \\
-\gamma N & -M
\end{array}\right)\binom{a}{b}=\binom{-h_{1}}{0}
$$

Validating PGCM-PT against FCI

Numerical setting

$\rightarrow \mathrm{e}_{\text {max }}=4, \mathrm{~h} \omega=20 \mathrm{MeV}$
$-\mathrm{N}^{3}$ LO NN interaction [Hüther et al 2020]

- $\lambda_{\text {srg }}=1.88 \mathrm{fm}-1$

сеа

ESNT Workshop- Mikael Frosini

Ground state energy

Static correlations from J^{2} breaking - 13 MeV

Static correlationc via PGCM

- 5 MeV from projection

10\% underbound
Dynamical correlations via PGCM-PT(2)

- 1,7\% error, slightly overshooting FCI

Deformed SR MBPT $(2,3)$

- Underbound
- Missing projection

Spectroscopy of $\mathbf{2}^{+}, 4^{+}$states

PHFB strongly dependent on deformation

- Not well converged

PHFB-PT(2) flattens the curve

- Empirical sign of onvergence
- Validation of theory

PGCM-PT(2) on top of PGCM

- Large 25 MeV cancellations
- Validation of numerics

Need physics beyond 2p2h / axial symmetry

Outline

1. Formalism

Progress of ab initio / in medias res methods
Single and multi-reference expansion methods
Projected Generator Coordinate Method + Perturbation Theory

2. Numerical aspects of PGCM-PT

Circumventing the complexity of three body interactions
Calculation of matrix elements
Resolution of the linear system
3. Application with IM-SRG evolved interaction

Evolved interactions and parallel with EDF
Ground state energy calculations in closed shell nuclei
Spectroscopy in doubly open-shell Neon20
4. Conclusion

Application with IMSRG evolved interactions

IM-SRG evolved interactions and // with EDF

Unitary evolution of Hamiltonian

Standard Single Reference IMSRG

IM-SRG evolved interactions and // with EDF

Unitary evolution of Hamiltonian

Multi Reference IMSRG for open-shells
Replace HF by 0^{+}PGCM

IM-SRG evolved interactions and // with EDF

Unitary evolution of Hamiltonian

PGCM-PT(2) with evolved interactions

Numerical setting
$-\mathrm{e}_{\text {max }}=\mathbf{6}, \mathrm{h} \omega=20 \mathrm{MeV}$

- EM 2,8/2,0 interaction
$\rightarrow \lambda_{\text {srg }}=1.88 \mathrm{fm}-1$

Reshuffling of correlations

- Much lower mean-field
- Increase of static correlations

PGCM-PT(2) dynamical correlations

- Strong decrease due to reshuffling
- Not vanishing (approximate decoupling)
- Higher order effects (PGCM-PT(3))?

Effect on excited states

- Dilatation of rotational spectrum
- Similar to EDF case
- Difficult to capture with PGCM*

Correction in perturbation

- PGCM-PT(2) contracts back spectra
- Still not scale inependent
- Higher order?
- Richer PGCM?

Duguet et al (2023)

[^0]
Conclusion

Envisioned improvements for PGCM-PT(2)

Today : semi-realistic calculations

- Need to extend to larger bases
- Need to break more symmetries

Main limitation comes from $O\left(n_{\text {gcm }}^{2} n_{\text {proj }} N^{8}\right)$ complexity
Possible ways out

- Modified partitioning (recover diagonal H_{0} and $O\left(N^{5}\right)$)
- Natural basis (reduce N)
- Tensor factorization (data compression)
- Improve PGCM to reduce $n_{g c m}$

Extensions to be formalized

- Generic observables (transitions)
- Non yrast states

Conclusion

Envisioned improvements for PGCM-PT(2)

Today : semi-realistic calculations

- Need to extend to larger bases
- Need to break more symmetries

Main limitation comes from $O\left(n_{g c m}^{2} n_{\text {proj }} N^{8}\right)$ complexity
Possible ways out

- Modified partitioning (recover diagonal H_{0} and $O\left(N^{5}\right)$)
- Natural basis (reduce N)
- Tensor factorization (data compression)
- Improve PGCM to reduce $n_{g c m}$

Connection with EDF

Calculations with evolved interactions close to EDF

- 3-body captured via in medium interaction
- Correlations reshuffled from dynamical to static
- Dilatation of spectra (special case of g.s.)

Raising several questions:

- Dynamical correlations in EDF?
- Bypassing MR-IMSRG?
- Better interplay EDF / ab initio?

Extensions to be formalized

- Generic observables (transitions)
- Non yrast states

Thanks for your attention

Rémi Bernard
Alessandro Pastore
Pierre Tamagno
Stavros Bofos
Damien Blondeau-Patissier
Clémentine Azam

Thomas Duguet Vittorio Somà Benjamin Bally Alberto Scalesi Gianluca Stelini

Jean-Paul Ebran
Sophie Péru
Noël Dubray
Luis Gonzales-Miret Antoine Roux

Heiko Hergert
T. R. Rodrìguez

Robert Roth
Andrea Porro

TECHNISCHE
UNIVERSITÄT
DARMSTADT

[^0]: * shown recently to be possible with cranking

