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Microscopic models of nuclei

2

Ground-state

masses, radii,                                                  
density profile, …

Excitation spectra

energies, transition probabilities, 

response function to electroweak 

probes, …

Decay modes

lifetime, yields, …

Reactions

cross sections, …

Energy Density Functional

Phenomenological interaction
– Inspired by DFT

– Adjusted in nuclei

Reasonable numerical cost

Large domain of applicability
From structure to fission

Not systematically improvable

– Limited error estimation
Tailored for mean-field
- Difficulties for spectroscopy

Ab Initio methods

Derived consistently with QCD
- Adjusted on small systems
- Systematic expansion

Higher computational cost

- Explicit account of 3-body
Currently limited mass range

Systematically improvable

- « Error estimation »
True interaction
- No spuriosity

From nucleons to nuclei
Prediction of macroscopic properties from

interacting nucleons

Presentation focused on particular Ab Initio method
Objective : solve A-body Schrödinger equation to given accuracy

Projected Generator Coordinate Method Perturbation Theory
Focus on formalism and first implementation
Parallels with EDF whenever possible
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Progress of ab initio / in medias res methods

Ab initio methods
1) A structure-less nucleons as degrees of freedom
2) Interaction mediated by pions and contact terms (e.g. Weinberg PC)
3) Solve A-body Schrödinger equation to relevant accuracy*

* controlled and improvable way
Light nuclei

Closed shells

1990’s

2000’s

2010’s

Quasi-exact methods

Expansion methods
Single-reference

Valence space
Symmetry-breaking

Multi-reference

Singly open-shells

Symmetry-breaking
Multi-reference

2020-?

Steady progress in the last decades

Doubly open-shells

Exponential
scaling

Polynomial
scaling

Polynomial
scaling

Mixed / 
Polynomial

ScalingCourtesy of B. Bally
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1. Formalism

Progress of ab initio / in medias res methods

Single and multi-reference expansion methods

Projected Generator Coordinate Method + Perturbation Theory

2. Numerical aspects of PGCM-PT

Circumventing the complexity of three body interactions

Calculation of matrix elements

Resolution of the linear system

3. Application with IM-SRG evolved interaction

Evolved interactions and parallel with EDF

Ground state energy calculations in closed shell nuclei

Spectroscopy in doubly open-shell Neon20

4. Conclusion

Outline
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Formalism1
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Single and Multi-Reference expansion methods

� Ψ� � ��|Ψ�〉 

Schrödinger equation

Nucleon interaction
1-,2-,3-… body

Correlated wave-function
A! parameters

Partitioning

� ≡ �
 � ��

|Φ�
�〉 reference state eigenstate of �
� ≡ Φ�
� Φ�
�
� ≡ 1 � �

Unperturbed problem
« Easy »

Residual interaction
Treated approximatively

Formal RS
Perturbation Theory

Ψ ≡ � |Θ � 〉
�

�

Φ � ≡ �� �
 � � 
 ����� Θ 


Φ � ≡ �� �
 � � 
 ����� Θ �
Φ � ≡ ⋯

� 
 � Θ 
 �
 Θ 

� � � Θ 
 �� Θ 

� � � Θ 
 �� Θ �
� � � ⋯

Systematic expansion
Open questions
- Choice of reference state
- Choice of partitioning

Optimal strategy ?

Single reference symmetry conserving PT in closed shells

Θ 
 � |���〉
Spherical Hartree Fock �����

�
 ≡ � 
 Φ 
 Φ 
 � � � Φ Φ 
!,#,⋯

 

Canonical Partitioning

Strictly positive diagonal �

Single reference symmetry breaking PT in open shells

���� � � � Φ �� Φ �
� � � 


!,#

 
� � � �$%

&' �

�$ � �% � �& � �'
�

�
 

Degenerate unperturbed state
No expansion possible

�, ( � 0
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Single and Multi-Reference expansion methods

� Ψ� � ��|Ψ�〉 Nucleon interaction
1-,2-,3-… body

Correlated wave-function
A! parameters

Partitioning

� ≡ �
 � ��

|Φ�
�〉 reference state

� ≡ Φ�
� Φ�
�
� ≡ 1 � �

Unperturbed problem
« Easy »

Residual interaction
Treated approximatively

Formal RS
Perturbation Theory

Ψ ≡ � |Θ � 〉
�

�

Φ � ≡ �� � � � 
 ����� Θ 


Φ � ≡ �� � � � 
 ����� Θ �
Φ � ≡ ⋯

� 
 � Θ 
 �
 Θ 

� � � Θ 
 �� Θ 

� � � Θ 
 �� Θ �
� � � ⋯

Systematic expansion
Open questions
- Choice of reference state
- Choice of partitioning

Optimal strategy ?

Single reference symmetry conserving PT in closed shells

Θ 
 � |���〉
Spherical Hartree Fock *����

�
 ≡ � 
 Φ 
 Φ 
 � � � Φ Φ 
!,#,⋯

 

Canonical Partitioning

Strictly positive diagonal �

Single reference symmetry breaking PT in open shells

Multi reference symmetry conserving PT in open shels

���� � � � Φ �� Φ �
� � � 


!,#

 
� � � �$%

&' �

�$ � �% � �& � �'
�

�
 

order par.

Θ 
 � |+��,〉
Symmetry breaking HF Bogoliubov *����

�
, ( - 0, ��, ( - 0
Canonical SB Partitioning

�, ( � 0

SB expansion
Quasi-particle denominators

Contamination to all orders

- Restoration of symmetries?

Symmetry conserving multi-reference state

Θ 
 � � |Φ&〉
�

&

�
, ( � 0, ��, ( � 0
Non canonical SB Partitioning

Choice Ref State?
Choice of basis?
Non diagonal ./

Schrödinger equation

21/11/2023ESNT Workshop– Mikael Frosini
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PGCM + Perturbation Theory

Constrained mean-field
Symmetry breaking

|Φ 0� 〉 |Φ 0� 〉 |Φ 01 〉
23456|Φ 0� 〉 23456|Φ 0� 〉 23456|Φ 01 〉

Ψ3456 ≡ 7+083456 0 23456|Φ 0 〉
�
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Projected Generator Coordinate Method

Variational HWG
Low dimensional

� �:9� 8;� � ℰ;� 0 � =:9� 8;��0�
�

9

�

9

Shape oscillations / rotations accounting for mpmh effects

Projection
Rotation

Shape mixing
Vibration

Hamiltonian kernel Norm kernel

State-specific Partitioning

�;� ≡ � Θ;�> Θ;�>
�

?�;� ≡ 1 � �;� �
 ≡ �;�� @ �;� � �;�� @ �;�
�
, ( � 0

Baranger Hamiltonian

Basis of �?

PGCM-PT(2) equation

Φ � � �� �
 � � 
 ����� Θ 


Analytic inversion not possible in principle

Need for convenient representation of A space

Φ � ≡ � � B �0�|Ω �0�〉
!,#,⋯

 

�
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Ω 0 ≡ �2�|Φ �0�〉Projected excited HFB

Non orthonormal basis

Approximation: Truncation to singles and doubles

� � DEFGHIG H � �JKE �F�
LM

G
 

�

H

Matrix approximation of �
 � ��
�

Vector representation of ���|Θ〉

N :39 ≡ Ω : �
 � � 
 Ω3 9
ℎ� P ≡ 〈Ω : �� Ω 
 〉

Strong static / collective correlations captured by PGCM reference

Weak / dynamical correlations captured in perturbation

Versatile but expansive symmetry conserving expansion method

- *���� PGCM with large prefactor

- *��S� PT denominator matrix construction and inversion

- Applicable to all systems
Multiple redundant copies of Hilbert space  need special care
Following discussion on numerical aspects

Remarks at this stage

ESNT Workshop– Mikael Frosini

See A. Roux presentation

Frosini et al. (2022)
Porro et al. (2024)
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Numerical aspects2
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Circumventing the problem of three-body interaction

� � T � U55 � U555 � ⋯
Ab initio Hamiltonian

Neglected for nowSimilar to other interactions

Essential for predictivity of the theory

True Hamiltonian (no spurisities BMF)

Memory bottleneck (O�NX� vs O�NY�)
Runtime bottleneck

Cost increase in deformed calculation

too large to be handled

Several solutions envisioned

- Compression via tensor factorisation

- In medium interactions

M-scheme

J-scheme

JT-scheme

Jacobi

Z[$\ � 13

R. Roth et al. 2014

NO2B Approximation beyond mean-field

Beyond mean-field, calculations almost never include exact three-body

: �:_` ≡ �5a�b cd � T ⋅ cd � 1
2! U55 ⋅ cdcd � 1

3! U555 ⋅ cdcdcd  
� T � U55 ⋅ cd � U555 ⋅ cd ⋅ cd
�U55 � U555 ⋅ c
�U555

Only convoluted « effective » three body treated beyond MF

- Source of problems in deformed calculations

Generalization to arbitrary densities

1. Apply same contractions with arbitrary « well chosen » c
2. Discard pure three-body terms

3. Convert back to single particle basis

�
 ≡ 1
3! U555 ⋅ c ⋅ c ⋅ c

Th ≡ T � 1
2! U555 ⋅ c ⋅ c

Uh ≡ U � U555 ⋅ c

c chosen to be symmetry conserving

Applications:

- Small error with reasonable c
- Very close to standard NO2B
- True Hamiltonian (e.g. for PGCM)

Connection with EDF?

Could this idea be adapted to Gogny-like interactions?

- At least in PGCM, freeze density-dependant term once and for al

Probably needed trick for 3-body Gogny (cf. Philippe Dacosta’s
presentation)

ij → ili/ …… im → ili/m�l ?
Conversely, could c be obtained from EDF calculation for ab Initio

applications 
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Construction of linear system

ℎ� P ≡ Ω : �� Ω 
 � 〈Φ P 2��� Ω�
�〉 (2-body)

= :39 ≡ Ω : |Ω3 9 � 〈Φ P 2� Φ3�0�〉 (0-body) 

N :39 ≡ Ω : �
 � � 
 Ω3 9 � Φ P �
 � � 
 2� Φ3 0
(3-body)

� � DEFGHIG H � �JKE �F�
LM

G
 

�

H

Constructing the linear system

Construct each |Φ 〉 by permutations on o, U columns
Cost of each matrix element p =q
Total cost p rst[� ⋅ r:uv' ⋅ =q ⋅ =w Impractical

Slater Condon rules in quantum chemistry
Burton et al. (2022)

Naive implementation

Using Thouless theorem

Φ P , p( x ,3 Φ3 0 � Φ P , p,y
3 Φ3 0; x

� Φ P , p,y
3Z6 Φ P 〈Φ�P� Φ3 0; x

� Φ P , ,6p6,y
3,6 Φ P 〈Φ�P� Φ3 0; x

Total cost p rst[� ⋅ r:uv' ⋅ ={ � rst[� ⋅ r:uv' ⋅ =w (less) Impractical

NB : huge prefactor (1000) to account for antisymmetry

Antisymmetry : only to be solved for strictly increasing I, J

Axial + parity symmetry: I and J with good parity and K=0

Very large linear system ∼ }///// configurations in Neon20, 7 shells

Large linear system

How can we solve such a large system?

21/11/2023ESNT Workshop– Mikael Frosini
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Solution of linear system ~� � ��K
Direct methods for the solution of the symmetric linear system

Direct solutions of the system rely on various matrix decompositions

Ideally, one would like to use symmetric eigendecomposition ~ � ����
- Easy separation between range and kernel
- Costly in large dimensions

An alternative could be rank revealing QR ~ � A�
- Cheaper but less precise

Intermediate : rank-revealing QLP ~ � A�� � � �h 0
0 0

21/11/2023ESNT Workshop– Mikael Frosini
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Solution of linear system ~� � ��K
Direct methods for the solution of the symmetric linear system

Solving the system in Krylov space �, N�, N��, ⋯
MINRES-QLP  [Choi11]
- Improvement of MINRES to for better handling of matrix kernel

- Only requires matrix-vector product
- Strongly depends on problem preconditionning

Direct solutions of the system rely on various matrix decompositions

Ideally, one would like to use symmetric eigendecomposition ~ � ����
- Easy separation between range and kernel
- Costly in large dimensions

An alternative could be rank revealing QR ~ � A�
- Cheaper but less precise

Intermediate : rank-revealing QLP ~ � A�� � � �h 0
0 0

Switching to indirect methods in « realistic » space

Very large linear system

High redundancies

- Non orthogonal projected excitations

- Non orthogonal HFB states
- Negative N eigenvalues

Intruder state problem

21/11/2023ESNT Workshop– Mikael Frosini
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Solution of linear system ~� � ��K
Direct methods for the solution of the symmetric linear system

Solving the system in Krylov space �, N�, N��, ⋯
MINRES-QLP  [Choi11]
- Improvement of MINRES to for better handling of matrix kernel

- Only requires matrix-vector product
- Strongly depends on problem preconditionning

Direct solutions of the system rely on various matrix decompositions

Ideally, one would like to use symmetric eigendecomposition ~ � ����
- Easy separation between range and kernel
- Costly in large dimensions

An alternative could be rank revealing QR ~ � A�
- Cheaper but less precise

Intermediate : rank-revealing QLP ~ � A�� � � �h 0
0 0

Switching to indirect methods in « realistic » space

Very large linear system

High redundancies

- Non orthogonal projected excitations

- Non orthogonal HFB states
- Negative �
 eigenvalues

Intruder state problem

N � ��= B � �ℎ�
N ��=

��= �N
B
� � �ℎ�0Complex shift method

Trade instabilities for bias
 Contamination
 In principle : cancelling in spectra
 Under control in practice



Validating PGCM-PT against FCI
Numerical setting
►e

max
= 4, hω = 20 MeV

►N3LO NN interaction [Hüther et al 2020]

►λsrg = 1.88 fm-1

Ground state energy

Static correlations from �� breaking

- 13 MeV
Static correlationc via PGCM

- 5 MeV from projection

- 10% underbound

Dynamical correlations via PGCM-PT(2)
- 1,7% error, slightly overshooting FCI

Deformed SR MBPT(2,3)

- Underbound

- Missing projection

Spectroscopy of l�, �� states

PHFB strongly dependent on deformation

- Not well converged
PHFB-PT(2) flattens the curve

- Empirical sign of onvergence
- Validation of theory

PGCM-PT(2) on top of PGCM
- Large 25MeV cancellations
- Validation of numerics

Need physics beyond 2p2h / axial symmetry
21/11/2023ESNT Workshop– Mikael Frosini
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Application with
IMSRG evolved
interactions3
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IM-SRG evolved interactions and // with EDF

Unitary evolution of Hamiltonian

� � ∞
HF

HF

2p2h

2p2h

HF

HF

2p2h

2p2h

HF

HF

2p2h

2p2h

HF

HF

2p2h

2p2h

Strong coupling
- Missing correlations at HF

Partial decoupling
- Reshuffling of correlations

Effective decoupling
- HF is now true ground state

Loss of unitarity

Standard Single Reference IMSRG

x
� � / MeV��

x
� � K/ MeV��

x
� � l/ MeV��

Hergert et al. (2016)



14/06/2023Nuclear collective behaviors 22

IM-SRG evolved interactions and // with EDF

Unitary evolution of Hamiltonian

x
� � / MeV��

x
� � K/ MeV��

x
� � l/ MeV�� � � ∞

/�

/�
"2p2h"

"2p2h"

/�

/�
"2p2h"

"2p2h"

/�

/�
"2p2h"

"2p2h"

/�

/�
"2p2h"

"2p2h"

Strong coupling
- Missing dynamical correlations

Partial decoupling
- Reshuffling of correlations

Partial decoupling
- PGCM nevel fully decoupled

- Dynamical correlations still missing

- Crancking and / or PGCM-PT

Loss of unitarity

Multi Reference IMSRG for open-shells
Replace HF by 0� PGCM

What happens to excited states?



IM-SRG evolved interactions and // with EDF

Unitary evolution of Hamiltonian

� � ∞
/�

/�
"2p2h"

"2p2h"

/�

/�
"2p2h"

"2p2h"

/�

/�
"2p2h"

"2p2h"

/�

/�
"2p2h"

"2p2h"

l�

l�
"2p2h"

"2p2h"

l�

l�
"2p2h"

"2p2h"

l�

l�
"2p2h"

"2p2h"

l�

l�
"2p2h"

"2p2h"

Last comments on MR-IMSRG
1. Only partial decoupling of the reference state unlike the HF case

- Missing dynamical correlations
- EDF-like Hamiltonian where (P)HFB is closer to experiment

2. No guarantees about excited states
- Most likely not as decoupled as the 0� reference state
- Expected dilatation of spectra (like in the EDF case)

x
� � / MeV��

x
� � K/ MeV��

x
� � l/ MeV��



PGCM-PT(2) with evolved interactions

24

Numerical setting
►e

max
= 6, hω = 20 MeV

►EM 2,8/2,0 interaction

►λsrg = 1.88 fm-1

Reshuffling of correlations
- Much lower mean-field

- Increase of static correlations

PGCM-PT(2) dynamical correlations
- Strong decrease due to reshuffling

- Not vanishing (approximate decoupling)

- Higher order effects (PGCM-PT(3))?

Effect on excited states

- Dilatation of rotational spectrum

- Similar to EDF case
- Difficult to capture with PGCM*

Correction in perturbation
- PGCM-PT(2) contracts back spectra

- Still not scale inependent

- Higher order?

- Richer PGCM?

* shown recently to be possible with cranking

Duguet et al (2023)
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Conclusion4
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Conclusion

Envisioned improvements for PGCM-PT(2)
Today : semi-realistic calculations
- Need to extend to larger bases
- Need to break more symmetries

Main limitation comes from p�rst[� r:uv'=w� complexity

Possible ways out

- Modified partitioning (recover diagonal �
 and p�={�)
- Natural basis (reduce =)
- Tensor factorization (data compression)
- Improve PGCM to reduce rst[

Extensions to be formalized
- Generic observables (transitions)
- Non yrast states
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Conclusion

Connection with EDF

Calculations with evolved interactions close to EDF
- 3-body captured via in medium interaction
- Correlations reshuffled from dynamical to static
- Dilatation of spectra (special case of g.s.)

Raising several questions:
- Dynamical correlations in EDF?
- Bypassing MR-IMSRG?
- Better interplay EDF / ab initio?

Envisioned improvements for PGCM-PT(2)
Today : semi-realistic calculations
- Need to extend to larger bases
- Need to break more symmetries

Main limitation comes from p�rst[� r:uv'=w� complexity

Possible ways out

- Modified partitioning (recover diagonal �
 and p�={�)
- Natural basis (reduce =)
- Tensor factorization (data compression)
- Improve PGCM to reduce rst[

Extensions to be formalized
- Generic observables (transitions)
- Non yrast states

Duguet et al (2023)
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