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Outline

1 Which type EDF of approach?

1 self-consistent mean field / single-reference EDF approach
2 horizontal expansion (multi reference EDF approach)
3 vertical expansion: QRPA and beyond

2 Functional form

1 relativistic or non-relativistic EDFs?
2 EDF of local or non-local densities?
3 Which kind of terms has to be considered for better phenomenology?
4 Not every form can be safely/meaningfully used in each type of EDF approach!
5 Do we need dedicated parameter sets for each type of approach?
6 What do density dependences actually represent?
7 What about the Pauli principle?

3 Instabilities

1 Landau-type instabilities
2 Finite-size instabilities
3 Others: Shell-structure / BCS-BEC / . . . instability
4 Divergence of QRPA & beyond correlation energy when increasing the model space
5 Divergence of pairing correlations when increasing the model space
6 Cutoff procedures are in general representation-dependent
7 Not all instabilities are resolved by all numerical representations - feature or bug?

4 Numerical challenges of large-scale applications

5 How far can EDF approaches been pushed . . .

1 . . . concerning phenomena to be described
2 . . . concerning observables to be described
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Disclaimer

The following presentation assumes that the audience has working knowledge of the nuclear
EDF approach. There will be only very few equations. A formal introduction into the many
flavours of the nuclear EDF method touched upon and the analysis precise mathematical
nature of the problems mentioned in what follows would require a one-week course.

The following is my personal and biased view of the many open conceptual and practical
problems with using the nuclear EDF method that prevents practitioners from major
advances.

Most, if not all, of these problems are connected. Attempts to avoid one problem usually
leads to at least one new problem at a different place.

Still, some of the problems that will be addressed below are easier to ignore than others.

M. Bender (IP2I Lyon) Mapping the minefield 20 November 2023 3 / 43



What is the nuclear EDF method?

In spite of popular belief, the nuclear EDF
method is not a variant of Density Functional
Theory as used for electronic systems.
As a reminder, the Hohenberg-Kohn theorems
in their most basic form (for non-degenerate
ground states in the absence of a magnetic
fields)

1 The ground state expectation value of any
physical observable of a many-electron
system is a unique functional of the
electron density ρ(r)

2 The total energy functional has a
minimum, the ground state energy E0, in
correspondence to the ground state
density ρ0(r).

Hohenberg, Kohn, PR 136 (1964) B864

Made practical when calculating the density and
kinetic density from an auxiliary product state
that provides yields ρ0(r).
Kohn, Sham, Phys. Rev. A 140 (1965) 1133;

1998 Nobel Prize in Chemistry

The theorems do not cover what is done by all
practitioners

symmetry-breaking calculations (in the
sense of working with densities that do not
adopt the symmetries (J, N, Z , parity,
translational invariance, . . . of the nuclear
wave function

There is no room for a ”beyond-mean-field
DFT” for the ground state

In the end, the contradiction boils down to
(isolated) nuclei being self-bound systems, while
electronic systems are bound by an external
potential (usually generated by atomic nuclei).
The various extensions of DFT to spin-polarised
systems, paired systems, systems with currents
coupling to external potentials, ensemble
averages, do not change this issue.
Engel, PRC 75 (2007) 014306; Barnea, PRC76 (2007) 067302;

Messud, Bender, Suraud, PRC 80 (2009) 054314;

Messud, PRC 87 (2013) 024302;

Kievsky, Orlandini, Gattibigio, PRA (2021) L030801;
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What is the nuclear EDF method?

What is the concept underlying the nuclear EDF method?

Phenomenological functional of one
body densities generated by some
auxiliary state?

Wave-function based method based on
the expectation value of an effective
interaction evaluated for an an
auxiliary state?

What kind of auxiliary state?

Single-reference (self-consistent mean
field)?

Multi-reference?

Summation of diagrams?

Something entirely different?
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Which nuclear EDF method?

Horizontal vs. vertical expansion of correlations

M. Bender, P.-H. Heenen, unpublished

F. D6nau et al. / Large amplitude collective motion 335 

la te r  on  ca l l ed  the  loca l  v a c u u m .  I f  one  is s t u d y i n g  s low co l l e c t i ve  m o t i o n ,  the  s ta te  
Iq) is t a k e n  to be  the  e n e r g e t i c a l l y  l owes t  H F B  d e t e r m i n a n t  sa t i s fy ing  

alq) = 0 ,  (4) 

w h e r e  b o t h  the  d e s t r u c t i o n  o p e r a t o r  a = a ( q )  a n d  its v a c u u m  are  de f i ned  loca l ly  
fo r  e a c h  p o i n t  (q) .  T h e  a b o v e  p r o c e d u r e  m e a n s  an  a d i a b a t i c  p r e p a r a t i o n  o f  a 
s e q u e n c e  o f  s tates* l a b e l e d  by  q, q ' ,  q",  • • • .  In this  a d i a b a t i c  r eg ime ,  c o n s i d e r  t hen  
a ser ies  o f  level  c ross ings  as s h o w n  in fig. 1. H e r e  the  loca l  v a c u u m  Iq) fo l lows  
m e r e l y  the  e n v e l o p e  o f  t he  ene rgy  o f  p u r e  c o n f i g u r a t i o n s  (see fig. 1) in s t ead  o f  
c o n t i n u i n g  in the  p r e v i o u s  c o n f i g u r a t i o n  w h i c h  inc reases  in ene rgy** .  A c c o r d i n g  to 

CAL 
ICUA 

Fig. 1. Schematic plot of the energy versus the collective variable. The dark envelopes show the positions 
of the local vacua. The domain of the collective variable is defined by q,m,~, qm,x and the energy cut Em~,~. 

* To simplify the notation, we label the above well-prepared set of determinantal solutions subject 
to the routhian (3) by the symbol q regardless of the fact that q may not always lead to a complete 
classification of the set of states taken into account. 

** It is important to mention that for the formalism given one can prepare also another set of HFB 
states following adiabatic filling regime, and furthermore adiabatic and diabatic sets could even be used 
simultaneously. 

Dönau et al, NPA496 (1989) 333.
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Some questions on horizontal expansions

By ”horizontal expansion”, I mean symmetry
restoration and mixing of low-lying quasiparticle
vacua differing in some set of collective
coordinates

This establishes a configuration mixing

What are the relevant degrees of freedom?

N-projection, Z -projection, J
projection, parity projection,
projection on the centre-of-mass,
isospsin-projection (and subsequent
mixing of different multiplets
connected by isospin-breaking pieces
of the Hamiltonian, . . .
Mixing shapes with different (axial
and non-axial) quadrupole / octupole
/ hexadecapole / . . . moments,
mean-square radii, pairing gaps,
low-lying quasi-particle excitations
. . .

Phrased differently, where to stop for
which phenomenon / nucleus / . . . ?

PAV or VAP?

Can this be done with the same EDF?

Can MR effects be absorbed into the EDF
for SR calculations?
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Some questions on horizontal expansions
PROJECTED ENERGY 45 

in ref. 5), where the Hamiltonian and the single-particle configuration space are 
also given. It was shown that the unprojected energy (the first term in eq. (11))in its 
dependence on the deformation parameter has a minimum at zero deformation. 
In contrast, the angular momentum projected energy shows a qualitatively different 
behaviour. 

Fig, 1 shows the angular momentum projected energy eq. (11) as a function o f  
Q0, which is proportional to the quadrupole moment 

Qo = ( r2 y2O >. (19) 

One notes that there are two minima, one with positive and the other with negative 
deformation. The prelate one is slightly deeper, however, it is not deep enough to 
guarantee a stable deformation. 

~IE ~" p,o,i. 
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o o  

Fig. 1. Angular momentum projected (J = 0) energy as a function of  the quadrupole moment Qo 
(eq. (19)) for the nucleus lZ°Sn. 

Summarizing, one can say that the HFB theory with the approximate projection 
of angular momentum produces non-spherical equilibrium shapes, even for the 
ground state of ~2°Sn (J = 0) with closed proton shell. 

The author would like to thank Prof. A. Salam, the International Atomic Energy 
Agency and UNESCO for hospitality at the International Centre for Theoretical 
Physics, Trieste. He is also grateful to Prof. H. 3. Mang and Dr. P. Ring for many 
valuable discussions. 

Dalafi, NPA 252 (1975) 42

78 J.L. Egido, L.M. Robledo / Parity-projected calculations 

interaction between positive- and negative-parity states is mainly of particle-hole 
type which is much stronger than the particle-particle or hole-hole interaction due 
to the relatively small value of the pairing field. 

In figs. 3 and 4 the projected energy curves for the two chains studied as well as 
the intrinsic energy (full lines) are represented as a function of q3. In the projected 
case we have represented the two possible prescriptions for the density-dependent 
interaction term [ V(p) and V( px), represented by dashed and dotted lines, respec- 
tively]. Thin lines represent positive-parity curves, while thick curves represent 
negative parity. In the Ba chain all the nuclei studied have different intrinsic states 
for each parity, the one associated with positive parity being shifted to lower values 
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Fig. 3. Projected and intrinsic energy curves plotted as a function of the octupole moment q3 for the 
seven Ra isotopes studied. The intrinsic energy is represented by a full line. Dashed and dotted lines 
represent the projected energies calculated using the two prescriptions, discussed in the text, of the 
density dependence of the interaction; namely, dashed lines are used for method 1 results, while dotted 
line are used for method 2. Thick and thin lines are used for negative- and positive-parity projected 

energies, respectively. 

Egido, Robledo, NPA 524 (1991) 65

Bender, Bertsch, Heenen, PRC 78 (2008) 054312
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Some questions on vertical expansions

Which vertical expansion?

QRPA?

Some flavour of Second
QRPA?

Particle-vibration coupling of
some sort?

Multi-Configuration
Hartree-Fock / variational
multiparticle-multihole
configuration mixing method

M. GRASSO, D. GAMBACURTA, AND O. VASSEUR PHYSICAL REVIEW C 98, 051303(R) (2018)

where the above expression defines the so-called E-mass
m∗

E/m and k-mass m∗
k/m, using the same notation as in

Refs. [5,20– 23]. In cases where the MF self-energy does
not have a k dependence (for instance, with a zero-range
interaction characterized only by a coupling constant, without
any velocity-dependent terms) the k-mass is equal to 1. In
these cases, an effective mass may be generated only at second
order.

The E-mass is equal to 1 in the MF approximation, where
m∗ = m∗

k . Any BMF effect produces a modification of m∗/m
generated by the E-mass. With the effective mass being re-
lated to the density of states [24], BMF changes of its value in-
duce a different single-particle spectrum, which is compressed
if the effective mass is enhanced beyond the mean field.

This aspect is investigated here with the SSRPA model
introduced in Ref. [25], where the MF approximation is over-
come owing to the coupling of 1 particle-1 hole (1p1h) and
2 particle-2 hole (2p2h) configurations. The study is done in
the framework of the energy-density-functional (EDF) theory
[26] with Skyrme forces. We base our analysis on the above-
mentioned relation between the frequency of axial modes and√

m/m∗. We propose a new and original procedure to estimate
BMF effects on the effective mass of nuclear matter. This is
based on BMF predictions of axial breathing modes in nuclei
and is connected with an induced BMF modification of single-
particle spectra. This procedure is quite general and can be
employed with other BMF models. Nevertheless, compared
to other EDF BMF models, the SSRPA has the important
advantage of being safe against instabilities, divergences, and
double counting of correlations [25,27]. This guarantees the
quantitative robustness of the obtained predictions.

We first performed random-phase-approximation (RPA)
calculations for the medium-mass nucleus 48Ca and the heav-
ier nucleus 90Zr by using four Skyrme parametrizations SkP
[28], SGII [29], SLy4 [30], and Ska [31] having, respectively,
MF effective masses equal to 1, 0.79, 0.7, and 0.61 in nuclear
matter. We plot in Fig. 1 the obtained centroid energies for
the IS GQR modes as a function of

√
m/m∗, associating each

centroid energy with the corresponding MF effective mass in
matter. A linear fit is performed on these four points for each
nucleus (blue dotted lines) and the experimental values are
also displayed (orange bands).

We choose two parametrizations, SLy4 and SGII, having
MF effective masses between 0.7 and 0.8. To estimate the
modification of the effective mass produced beyond the mean
field we use the linear fits performed on the RPA points and
we report, on the blue dotted lines, the points corresponding to
the SSRPA centroid energies obtained for the two nuclei and
the two parametrizations. We observe that the centroids are
located at lower energies for the SSRPA model with respect
to the corresponding RPA values. Such a lowering of the
energies implies that the associated effective mass increases
with respect to the MF value. For 48Ca (90Zr), the extracted
effective mass for nuclear matter increases from 0.7 in the MF
case to 0.834 (0.769) for the BMF calculations of the IS GQR
with SLy4. With SGII, the effective mass for matter increases
from 0.79 to 0.837 (0.842) from the calculations done for 48Ca
(90Zr).
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FIG. 1. IS GQR centroid energies for 48Ca and 90Zr as a function
of

√
m/m∗. The RPA centroids (black circles) are reported for four

Skyrme parametrizations and associated with the corresponding MF
effective masses in nuclear matter. A linear fit is done on these points
(blue dotted lines). The SSRPA-SLy4 and SSRPA-SGII centroids
are reported on the blue dotted lines (green triangles and magenta
squares, respectively). The experimental values are also displayed
by orange bands.

Figure 2 displays an estimation of the theoretical error
bar associated with the spreading of the values of the ef-
fective mass in matter. Figure 2(a) shows the MF error bar
(yellow area) which is induced by the dependence on the
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FIG. 2. (a) Theoretical error associated with the MF effective
mass for nuclear matter induced by two Skyrme parametrizations,
SLy4 (indigo) and SGII (magenta) (yellow band) and three Skyrme
parametrizations, SLy4, SGII, and Ska (green) (yellow plus grey
band); (b) Same as in panel (a) but for the BMF effective mass.
The three colors represent the three interactions as in (a). Squares,
triangles, and circles represent the BMF effective masses extracted
from 48Ca, 90Zr, and 120Sn, respectively.

051303-2

Grasso, Gambacurta, Vasseur, PRC98

(2018) 051303(R)
D. GAMBACURTA, M. GRASSO, AND O. SORLIN PHYSICAL REVIEW C 100, 014317 (2019)

physical nature of the predicted low-lying strength is inves-
tigated going from N = 20 to N = 28. The strongly isospin
asymmetric case of 60Ca is studied as an illustration to check
how these excitations, and in particular their collectivity,
further evolve with the neutron excess. Section IV focuses on
N = 20 isotones and the neutron-rich nuclei 34Si and 36S (δ =
0.18 and 0.11, respectively) are analyzed, to be compared with
the N = Z nucleus 40Ca. Section V is finally dedicated to 68Ni
(δ = 0.18), where the isospin asymmetry is comparable to that
of 48Ca and 34Si, but the number of nucleons is higher. This
is done to identify a possible dependence of the collectivity of
low-lying excitations on the mass of the nucleus. An enhanced
collectivity in heavier nuclei would allow for an easier experi-
mental observation in those cases. Finally, Sec. VI describes a
link between the energies of such soft compression modes and
a compressibility modulus introduced for neutron-rich infinite
matter. Conclusions are drawn in Sec. VII.

II. NUMERICAL DETAILS

The formalism and the details of the SSRPA model can
be found in Ref. [32]. The calculation scheme is fully
self-consistent, which means that the residual interaction is
consistently employed in the SSRPA model with respect
to the ground-state calculations carried out with the mean-
field Hartree-Fock model. In addition, the residual interac-
tion includes all the rearrangement tems [36]. The Skyrme
parametrization SGII [37,38] is used.

A cutoff of 80 MeV is chosen for building the 1p1h
configurations, ensuring a full preservation of the isoscalar
and isovector energy-weighted sum rules (EWSRs) at the level
of the random-phase approximation (RPA). Deviations of less
than 1% are found. A numerical cutoff of 60 MeV is used
to truncate on the excitation energies of 2p2h configurations
(we recall, however, that the SSRPA results are not affected
by this cutoff and are stable with respect to the choice of its
value [32]).

The same cutoff value on 2p2h configurations is used both
for the construction of the matrix to be diagonalized and for
the evaluation of the corrective terms induced by the subtrac-
tion procedure [32]. The evaluation of these corrective terms
is performed by using a diagonal approximation. We have
shown that this approximation does not affect the results [32].
The interaction between 2p2h configurations is instead fully
taken into account in the 2p2h block matrix of the SSRPA
eigenvalue problem. The SSRPA model does not account
explicitly for pairing correlations. Work to treat superfulid
systems is presently in progress. For this reason, we have
chosen to limit our analysis to systems having both proton
and neutron shell or subshell closures, with therefore a limited
(or negligible) amount or pair correlations as compared to
midshell nuclei.

III. Ca ISOTOPES WITH NEUTRON EXCESS EQUAL TO
0, 0.17, AND 0.33

A first investigation is done on 40Ca (having no neutron
excess) and the corresponding SSRPA monopole strength
distribution is plotted in Fig. 1(a). In addition to the region
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FIG. 1. (a) Monopole strength distribution computed with RPA
(dashed blue bars) and SSRPA (full red bars) for 40Ca; (b) same as in
(a) but for 48Ca; (c) same as in (a) but for 60Ca.

of the isoscalar giant monopole resonance, which may be
easily recognized in the figure, one observes the presence of
some strength for this nucleus in the energy region around
14 MeV. For comparison, also the RPA strength distribution
is shown to indicate the main effects provided by the beyond-
mean-field SSRPA model, compared to the mean-field-based
RPA predictions. A low-lying excitation is found also with
the RPA model, the main difference being a shift to lower
energies and a stronger fragmentation produced by SSRPA
owing to the coupling with 2p2h configurations. To analyze
the nature of these excitation modes, the SSRPA neutron and
proton transition densities multiplied by r2 and associated
with the energy peak located at 14.2 MeV are shown in
Fig. 2. The dominant proton contribution can be clearly seen.
It was in particular found that such an excitation is mainly
driven by the proton 1p1h configuration [π3s1/2,π2s1/2]J=0.
The RPA prediction is analougous, apart from the fact that
(i) an energy shift exists between the two spectra, (ii) only
1p1h configurations compose this excitation in RPA, and
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FIG. 2. Neutron and proton transition densities multiplied by r2

(in units of fm−1) for 40Ca associated with the SSRPA energy peak
located at 14.2 MeV.

014317-2

Gambacurta, Grasso, Sorlin, PRC100

(20120) 014317

PARTICLE-VIBRATION COUPLING FOR GIANT … PHYSICAL REVIEW C 101, 044316 (2020)

FIG. 2. Strength function of ISGMR (a), ISGDR (b), and ISGQR (c) in 16O calculated by RPA with full interaction and by PVC with
diagonal approximation and central interaction (PVC-dia, Vc), with diagonal approximation and full interaction (PVC-dia, Vfull), and without
diagonal approximation and with full interaction (PVC, Vfull). In all cases the SAMi functional is used. See text for details of the experimental
data [63,64].

increases. The distributions of the peaks near 20, 21.5, 24,
and 29.5 MeV are also affected, but, overall, the effect is
weaker than the case of ISGQR. Among the three cases, the
ISGDR is the one where the diagonal approximation shows
less influence.

As mentioned in the Introduction, the diagonal approxi-
mation has been investigated in the SRPA framework for the
giant resonances of 16O in Ref. [21]. From RPA to SRPA, the
strength distributions are shifted towards a lower energy, sim-
ilar to the effect of PVC in Fig. 2. However, quantitatively, the
effect of SRPA is larger. For ISGMR, IVGDR, and ISGQR,
the main peaks are shifted towards a lower energy by about
4, 6, and 8 MeV, respectively [21], while for PVC the shifts
are ≈ 2–3 MeV. For the ISGMR, the diagonal approximation
in SRPA shifts the distribution to a lower energy by about
2 MeV, while in PVC it changes mildly (see Fig. 2(a) of this
work and Fig. 8(a) of Ref. [21]). For the dipole case, the effect
of diagonal approximation is small in both SRPA and PVC
(see Fig. 2(b) of this work and Fig. 15(b) of Ref. [21]). For
the ISGQR, the diagonal approximation in SRPA shifts the
distribution towards a lower energy by around 2 MeV, similar
to ISGMR, while in PVC it is more complicated as the shape
has changed much (see Fig. 2(c) of this work and Fig. 9(a)
of Ref. [21]). In all the cases, the diagonal approximation
in SRPA does not change much the shape of the strength
distribution, while in PVC this is not the case for the ISGQR.

The diagonal approximation has also been studied in the
RTBA framework [50,51], where it was removed by including
additional phonon coupling between two quasiparticles inside
the two-quasiparticle ⊗ phonon configuration. The low-lying
dipole excitations in 116,120Sn and 68,70,72Ni were investigated.
By removing the diagonal approximation, a larger fraction of
the pygmy mode is pushed above the neutron threshold. For a
detailed comparison between RTBA and current framework,
see Appendix B.

In Fig. 3 the effects of the subtraction [Eq. (37)] in the PVC
calculation are shown for the ISGMR, ISGDR, and ISGQR
strength distributions of 16O. As a reference, the results of
the RPA and experimental data shown in Fig. 2 are also
displayed in Fig. 3. It can be seen that. by adopting the
subtraction procedure, the strength distributions are generally
shifted towards a higher energy by about 1 MeV, except in
the ISGDR case where the main peak at 17 MeV vanishes

and a new peak at 14 MeV appears. The effects of subtraction
presented here are consistent with the findings of a previous
investigation using PVC-dia (see Fig. 4 of Ref. [47]).

In Ref. [65], the quasiparticle-phonon coupling model
with the time-blocking approximation was used to study the
ISGMR, ISGQR, and isovector GDR of 16O, 40Ca, and 208Pb.
A systematic downward shift of the centroid energy of the
giant resonances was found from RPA to TBA with subtrac-
tion. This effect is similar to the one of PVC presented here,
though quantitatively it is smaller (see Fig. 3 of this work and
Fig. 4 of Ref. [65]). Especially in the case of ISGQR, the PVC
calculation (with or without subtraction) gives very different
strength distribution from the one given by RPA, while they
are similar for TBA and RPA [65]. This might be related with
the diagonal approximation, as removing it shows quite some
effect here.

The subtraction in SRPA has been investigated for ISGMR
and ISGQR and it also pushes the strength distribution to a
higher energy [66]. However, comparing with the results of
PVC shown in Fig. 3, the effect in SRPA is again larger. With
subtraction, the strength are shifted towards a higher energy
by about 2 MeV in SRPA while in PVC it is generally less than
1 MeV; see Figs. 1 and 4 of Ref. [66]. Comparing the results
of SRPA including subtraction with RPA given in Ref. [66],
the main peaks of ISGMR and ISGQR given by SRPA with
subtraction are about 1.5 and 1 MeV lower than those by
RPA. These are similar to the differences between PVC with
subtraction and RPA shown in Fig. 3.

In comparison with the experimental data, the three peaks
of ISGMR around 18, 23, and 26 MeV may correspond to
the three peaks given by the PVC, though the energies are
slightly lower than the data. This may be understood because
the SAMi functional has been developed in such a way that the
experimental ISGMR is reproduced at the RPA level, which
can be seen from the black vertical lines in Fig. 3. When the
PVC is included, although the description of resonance width
has been improved, the centroid is pushed to a slightly lower
energy and the subtraction remedies to this problem only to
some extent. The peaks around 12 and 14 MeV may be due to
α-clustering effects [67].

In the case of ISGDR the description of PVC with SAMi
functional is rather good; especially the low-lying 7.1 MeV
level has been nicely reproduced. The peaks around 12 and
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QPVC, is essentially associated with its self-energy. The
real part of the self-energy is, generally speaking, a negative
quantity that decreases as a function of energy. However,
when the energy is close to that of the two-quasiparticle

plus phonon energies, the self-energy may display a pole-
like behavior and the overall trend changes. Therefore, the
value of the self-energy and of the associated QPVC shift is
essentially ruled by the relative position of the ISGMR and
of the two-quasiparticle plus phonon states to which it is
coupled. The presence or absence of pairing, and the
resulting effect on the two-quasiparticle energies, explain
the difference between the energy shifts in Sn isotopes and
208Pb. Detailed figures and estimates are provided in
Supplemental Material [42], where we also discuss the
case of Ca isotopes which, however, is more complicated
because there is not only one dominant QRPA peak. In fact,
one can notice that the QPVC effects in the magic 40;48Ca
isotopes are larger than that in the open-shell nuclei 42;44Ca
in most cases. This different behavior between open-shell
and closed-shell Ca isotopes can also be, to some extent,
understood by the change in the energy difference between
two-quasiparticle plus phonon states and the ISGMR, as the
two-quasiparticles states are affected by the pairing gap.
The linear correlation between the ISGMR energies and

K∞, calculated by different models, is often used as a way
to constrain K∞ [47]. Therefore, in principle, one can
expect a linear correlation between the ISGMR energies in
different nuclei. In the upper panel of Fig. 3, we show that
there is a linear correlation between the ISGMR energies in
120Sn and 208Pb, both in the (Q)RPA case (black square) and
in the (Q)PVC case (blue circle). We use the seven Skyrme

FIG. 2. The energy shifts of ISGMR from (Q)RPA to
ðQÞRPAþ ðQÞPVC (Ec ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1=m−1

p
) in even-even 40–44;48Ca,

112–124Sn, and 208Pb isotopes with seven Skyrme sets: SAMi
(black square), SkM* (red circle), SkP (up blue triangle),
SV-K226 (green diamond), SV-K241 (left navy blue triangle),
SV-bas (right violet triangle), and KDE0 (purple hexagon).

FIG. 1. ISGMR strength functions in even-even 112–124Sn, 48Ca, and 208Pb isotopes, calculated either by (Q)RPA using a smoothing
with Lorentzian having a width of 1 MeV [dash-dotted (black) line], or ðQÞRPAþ ðQÞPVC [solid (blue) line]. The SV-K226 Skyrme
force is used. The experimental data are given by green crosses [8,15,45].
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What does this imply for the adjustment of EDFs on data?

Going beyond the mean field in a horizontal expansion adds correlation energy (and modifies
other observables) for each added collective degree of freedom.

(not shown) Particle-vibration coupling changes the relative positions of low-lying states
often interpreted as ”single-particle states”

Whatever the method, the impact of going beyond (Q)RPA significantly changes
observables used to phenomenologically deduce nuclear matter properties from giant
resonances (incompressibility, effective mass, . . . )
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Which degrees of freedom in EDF?

relativistic or non-relativistic?

contact forces with gradients or
finite range or a combination of
both?

If finite range, which form factor
(Gaussian, Yukawa, . . . )?

exact exchange?

different particle-hole and
particle-particle interactions?

density dependences?

many-body forces?

isospin-breaking nuclear terms?

How to treat the electromagnetic
interaction (Coulomb exchange,
correlation energy, relativistic
corrections, magnetic effects,
intrinsic form factors, . . . )

Is there a constructive scheme that establishes a
hierarchy of terms (with respect to gradients,
2-body vs. 3-body vs. 4-body terms) beyond the
naive expectation that importance decreases with
the complexity of the terms?

Can we expect that coupling constants take a
”natural size”?

An example of ”naive dimensional analysis” based on
chiral EFT adapted to nuclear EDFs:

RAPID COMMUNICATIONS

NATURAL UNITS FOR NUCLEAR ENERGY DENSITY . . . PHYSICAL REVIEW C 82, 011304(R) (2010)

FIG. 1. Logarithmic RMSD as a function of ! with (scaled) and
without (unscaled) an extra factor of four for isovector terms. See text
for details.

The list of functionals considered is given in Table I. In this
table we also categorize the functionals based on the strategy
used to determine the couplings.

The test of whether we truly have natural units is whether Sσ

makes the values of all scaled constants Sσ Cσ
t of order unity.

Their numerical values will obviously depend on the value of
the cut-off parameter ! [11]. In our global study, the natural-
ness criterion can itself be used to extract the value of ! by min-
imizing the deviation of the coupling constants from unity. We
consider a logarithmic root-mean-square deviation (RMSD)

RMSD =
√

1
N

∑

i,σ,t

log2
10

∣∣Cσ
t (i)

∣∣, (6)

because naturalness implies couplings should not be too small
as well as not too large. If a particular coupling constant is
zero, it is excluded from the logarithmic RMSD.

In Fig. 1 we plot RMSD for 48 EDFs as a function of !
with (scaled) and without (unscaled) the extra factor of 4 for

isovector terms. It can be seen that the two different scalings
produce different optimal ! with the scaled result yielding
a clearer minimum that is numerically more consistent with
studies of relativistic functionals. However, the minima in the
RMSD curves are quite shallow, so ! cannot be considered to
be sharply determined for the present Skyrme functionals.

In the present study, we choose to use the scaled isovector
coupling constants for which the optimum is ! = 687 MeV
(but the precise value does not affect our conclusions). In
Fig. 2 we have plotted the scaled coupling constants for all
the functionals of Table I. Also, we plot the square roots of
individual RMSD contributions given by the functional to the
total RMSD value. It can be seen that the Skyrme functionals
have almost all of their parameter values in the interval (1/3, 3)
with the bulk between 1/2 and 2. Exceptions are discussed
below.

We also make a comparison between different represen-
tations of two particular functionals: SIII and HFB16. The
parameters of these functionals are listed in Table II first by
using the (t, x) parametrization and then by the natural units
parametrization, obtained from the corresponding coupling
constants. As can be seen, in the (t, x) parametrization
these two functionals seem to be quite different from each
other. However, when expressed in natural units the coupling
constants of SIII and HFB16 are order unity. In Table II we also
list in natural units the average, minimum, and maximum value
for each coupling constant found in the set of 48 functionals.
This information may provide useful insights into the expected
values and ranges of coupling constants for future attempts to
fit new functionals.

Deviations from order unity. The deviations of the coupling
constants Cσ

t from unity are illustrated in the summary plot
in Fig. 2. As noted earlier, almost all parameters are found
to lie within the interval of (1/3, 3). In terms of naturalness,
we do not observe any significant differences between the
functionals that are strictly based on the Skyrme force and
the extended functionals. However, significant deviations still
exist for some particular Skyrme functionals for the coupling

10-1

=687 MeV
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C DE
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1
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10-2
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FIG. 2. (Color online) Scaled coupling constants |Cσ
t | at ! = 687 MeV (top) and contributions of individual functionals to the total RMS

value (bottom). The filled symbols refer to the isoscalar coupling constants and empty symbols to the isovector ones. The ordering of functionals
by index is the same as in Table I.
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A (hopefully) illustrative tale:
Functionals corresponding to “true Hamiltonians” vs. “general” functionals

True contact pseudo-potential t0 (1 + x0P̂σ) δ(r − r′)

E =

∫
d3r

{
3
8
t0 ρ

2
0(r)− 1

8
t0 (1 + 2x0) ρ2

1(r)− 1
8
t0 (1− 2x0) s2

0(r)

− 1
8
t0 s2

1(r) + 1
8
t0 (1 + x0) s̆0(r) · s̆∗0 (r) + 1

8
t0 (1− x0) ρ̆1(r) ρ̆∗1 (r)

}
(see Perlinska et al. PRC 69 (2004) 014316 for definition of s̆0(r) and ρ̆1(r))

Functional with contact vertices:

E =

∫
d3r

{
Cρ0 [ρ0, . . .] ρ

2
0(r) + Cρ1 [ρ0, . . .] ρ

2
1(r) + C s

0 [ρ0, . . .] s2
0(r)

+C s
1 [ρ0, . . .] s2

1(r) + C s̆
0 [ρ0, . . .] s̆0(r) · s̆∗0 (r) + C ρ̆1 [ρ0, . . .] ρ̆1(r) ρ̆∗1 (r)

}

Coulomb interaction e2

|r−r′|

E =
1

2

∫∫
d3r d3r ′

e2

|r − r′|

[
ρp(r)ρp(r′)− ρp(r, r′)ρp(r′, r) + κ∗p(r, r′)κp(r, r′)

]
Approximate Coulomb functionals

E =
e2

2

∫∫
d3r d3r ′

ρp(r)ρp(r′)

|r − r′| −
3e2

4

(
3

π

)1/3∫
d3rρ4/3

p (r)
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Breaking the Pauli principle causes problems

pure particle-number projection

first hints from Hamiltonian-based
approaches
Dönau, PRC 58 (1998) 872; Almehed, Frauendorf, Dönau, PRC 63

(2001) 044311; Anguiano, Egido, Robledo NPA696 (2001) 467

Subsequent analysis in a strict energy
density functional (EDF) framework
and of EDF-specific consequences
Dobaczewski, Stoitsov, Nazarewicz, Reinhard, PRC 76 (2007)

054315; Lacroix, Duguet, Bender, PRC 79 (2009) 044318; Bender,

Duguet, Lacroix, PRC 79 (2009) 044319; Duguet, Bender,

Bennaceur, Lacroix, Lesinski, PRC 79 (2009) 044320

Same problem in different disguise
found already earlier for EDF kernels
between HFB vacua and
two-quasiparticle states
Tajima, Flocard, Bonche, Dobaczewski, Heenen, NPA542 (1992) 355

Also found in angular-momentum
projection
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The origin of the problem in a nutshell

All standard energy density functionals (EDF) used for mean-field models and
beyond do not correspond to the expectation value of a Hamiltonian for at least one
of the following reasons:

density dependences
the use of different effective interactions in the particle-hole and pairing parts of the
energy functional
the omission, approximation or modification of specific exchange terms

that are all introduced for phenomenological reasons and/or the sake of numerical
efficiency.

consequence: breaking of the exchange symmetry (”Pauli principle”) under particle
exchange when calculating the energy, leading to non-physical interactions of a given
nucleon or pair of nucleons with itself, or of three nucleons among themselves etc.

the resulting self-interactions and self-pairing-interactions remain (usually) hidden in
the mean field

in the extension to symmetry-restored GCM, these terms cause
discontinuities and divergences in symmetry-restored energy surfaces
breaking of sum rules in symmetry restoration
potentially multi-valued EDF in case of standard density-dependences
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Many-body forces or density dependences? I

Based on a back-of-the-envelope estimate, Weisskopf [NP3 (1957) 423] pointed out that
any pure two-body interaction – irrespective of its form – fitted to reproduce – at the
mean-field level – the empirical values for the saturation density ρsat and binding energy per
particle E/A of the model system of homogeneous symmetric and spin-symmetric infinite
nuclear matter necessarily leads to an isocalar effective mass m∗0 /m ≈ 0.4 that is much
smaller than what is expected from empirical data.

⇒ Need for higher-order terms.

There are many indications that there are genuine three-body forces acting in nuclear
many-body systems.

From a modern point of view, any attempt to renormalise the ”bare” NN and NNN
interaction to an effective interaction acting only below a given cutoff scale necessarily leads
to induced three-body (and higher many-body) forces. Although it cannot be expected that
the nuclear EDF can be directly connected to the ”bare” interaction in this way, it
nevertheless represents by construction such a renormalised effective interaction; hence,
implying the presence of induced three-body (and higher) forces.

Any approach that is ”beyond the mean field” in the diagrammatic sense leads in one way
or the other to a kF dependence of the total binding energy (and in principle also an energy
dependence, but that is irrelevant for the present discussion).
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Many-body forces or density dependences? II

The Brueckner-HF formalism when applied to infinite nuclear matter yields a kF -dependent
G matrix, which in local density approximation (LDA) can be translated into a

density-dependent effective in-medium interaction via the relation kF = ( 3
2
π2ρ)1/3 for the

Fermi energy in homogeneous symmetric and spin-symmetric infinite nuclear matter [H. S.
Köhler, NPA258 (1976) 301].

Also, the density-matrix expansion (DME) of exchange terms leads to complicated density
dependences of the resulting effective interaction for Hartree calculations.
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Skyrme’s contact 3-body force vs. a density-dependent two-body force I

Skyrme proposed a combination of two-, three- and four-body contact interactions (with
density- independent coupling constants).

Skyrme’s simple gradientless contact three-body force

v3b = u0

(
δ̂r1r3 δ̂r2r3 + δ̂r3r2 δ̂r1r2 + δ̂r2r1 δ̂r3r1

)
. (1)

In the absence of proton-neutron mixing, the EDF reads

E3b = 3
4
u0

∫
d3r

[
ρn
(
ρ2
p − s2

p + ρ̃∗p ρ̃p
)

+ ρp
(
ρ2
n − s2

n + ρ̃∗n ρ̃n
)]

(2)

The absence of contributions that are trilinear in the same isospin is a consequence of the
Pauli principle: a gradientless contact force only acts between nucleons in relative s waves,
such that the contributions to the energy have to come from two nucleons of same isospin
but opposite spin and a third nucleon of opposite isospin and arbitrary spin [Waroquier et
al, PRC 13 (1976) 1664].

Gradientful contact three-body forces were considered later [Liu, PLBB60, 9 (1975); Onishi
and Negele NPA301, 336 (1978); Waroquier et al, PRC 19 (1979) 1983, NPA404 (1983)
269, NPA404 (1983) 298; Arima et al, NPA459 (1986) 286; Zheng et al, AP201 (1990)
342; Liu et al, NPA534 (1991) 1, NPA534 (1991) 58; Sadoudi et al, PR88 (2013) 064326].
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Skyrme’s contact 3-body force vs. a density-dependent two-body force II

A simple gradientless contact three-body force fails to provide realistic K∞, leads to
repulsive pairing matrix elements [Zamick, Proc. Int. Conf. on Nuclear Structure and
Spectroscopy, Amsterdam (1974), p. 24; Arima, NPA354 (1981) 19c] and leads to an
infinite-wavelength spin-instability signalled by the Landau parameter g0 < −1 [Chang
PLB56 (1975) 205]. The third of these problems disappears when re-interpreting the 3-body
force as a density-dependent 2-body force.
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Skyrme’s contact 3-body force vs. a density-dependent two-body force III

A density dependent two-body force is obtained multiplying Skyrme’s t0 term by
1
3

[
ρn(R) + ρp(R)

]
, where P̂σ is the spin exchange operator and R ≡ 1

2
(r + r′) the mean

position of the two nucleons

v2b,dd :l = 1
3
t3

(
1 + x3P̂σ

) [
ρn(R) + ρp(R)

]
δ̂r1r2 (3)

The corresponding EDF reads

Et3 =

∫
d3r

{
1

12
t3

(
1− x3

)[(
ρ2
n − s2

n + ρ̃∗n ρ̃n
)
ρn +

(
ρ2
p − s2

p + ρ̃∗p ρ̃p
)
ρp
]

+ 1
12
t3

(
1− x3

)[(
ρ2
n − s2

n + ρ̃∗n ρ̃n
)
ρp +

(
ρ2
p − s2

p + ρ̃∗p ρ̃p
)
ρn
]

+ 1
6
t3

(
1 + x3

2

)(
ρ2
n ρp + ρn ρ

2
p

)
+ 1

12
t3

(
ρnsn · sp + sn · spρp

)}
. (4)

The expression in red is what is obtained from genuine three-body force (2).

The expressions in blue and purple have an isospin structure that is not obtained from a
genuine three-body force (2). Choosing x3 = +1 in order to suppress the term in blue also
sets the desired term in red to zero. The term in purple can only be set to zero by setting
t3 = 0, a choice which sets all terms to zero.

The expression in brown has the correct isospin structure for the time-even terms, but has
no spin or pairing terms it can correctly combine with.

Altogether, a gradientless three-body contact force cannot be exactly mapped onto a
density-dependent gradientless contact two-body force, which is not unexpected.
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Skyrme’s contact 3-body force vs. a density-dependent two-body force IV

To obtain the same HF energy in a time-reversal invariant system (where sq = ρ̃q = 0), one
has to set x3 = +1. This suppresses the pairing term altogether. The EDF then reads

Et3,x3=1 =

∫
d3r

{
3

12
t3

(
ρ2
n ρp + ρn ρ

2
p

)
+ 1

12
t3

(
ρnsn · sp + sn · spρp

)}
. (5)

which evidently differs from the expression from a true three-body force (2)

E3b = 3
4
u0

∫
d3r

[
ρn
(
ρ2
p − s2

p + ρ̃∗p ρ̃p
)

+ ρp
(
ρ2
n − s2

n + ρ̃∗n ρ̃n
)]

From a phenomenological point of view this has been excellent news. Following the
suggestion of Vautherin and Brink [PRC5 (1972) 626] to re-interpret the three-body force of
early parameterisations like SIII as a density-dependent two-body force that gives the same
result for time-reversal-conserving HF states, the difference in spin structure between (2)
and (5) suppresses the (Landau type) spin-instability of these parameterisations.

However, as results for homogeneous isotropic spin-saturated infinite matter are not
affected, the incompressibility K∞ remains non-physically high.
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Skyrme’s contact 3-body force vs. a density-dependent two-body force V

The incompressibility can be lowered to its empirical value by taking a fractional power
α < 1/n of the density entering the density dependence

[
ρn(R) + ρp(R)

]α
of the coupling

constant, as can be motivated by the structure of the expression for the Brueckner G matrix
[Köhler, NPA258 (1976) 301]

v2b,dd = 1
3
t3

(
1 + x3P̂σ

) [
ρn(R) + ρp(R)

]α
δ̂r1r2 (6)

which leads to the EDF

Et3 =

∫
d3r

{
1

12
t3

(
1− x3

)[(
ρ2
n − s2

n + ρ̃∗n ρ̃n
)

+
(
ρ2
p − s2

p + ρ̃∗p ρ̃p
)]

(ρn + ρp)α

+ 1
6
t3

(
1 + x3

2

)
ρn ρp

(
ρn + ρp

)α
+ 1

12
t3sn · sp

(
ρn + ρp

)α]
. (7)

Köhler’s Ska and Skb with α = 1/3, SkM withα = 1/6 [Krivine et al, NPA336 (1980) 155].

Such density dependence with α = 1/3 has also always been used with the Gogny force
making the additional choice x3 = +1 in order to suppress local T = 1 pairing terms that
would diverge when solving the HFB equations for like-particle pairing.

For all widely-used standard Skyrme parameterisations, only the coupling constant of the
gradientless two-body term is chosen to be density dependent. Extensions tried concern
density-dependences of gradient terms [Krewald et al, NPA281 (1977) 166; Farine et al,
NPA696 (2001) 396; Chamel et al, PRC80 (2009) 065804] using two density dependences
[Farine et al, NPA696 (2001) 396; Cochet et al, NPA731(2004) 34; Lesinski et al, PRC74
(2006) 044315] density-dependence with different isospin structure [Dutta et al, NPA458
(1986) 77] and different forms [Erler et al, PR82 (2010) 044307].
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Second problem: non-analytical density dependences

Non-viability of non-analytical density
dependences

Duguet, Lacroix, Bender, Bennaceur, Lesinski, PRC 79 (2009) 044320

in symmetry restored GCM, the local
densities ρqq

′
(r) are in general complex[

ρqq
′
(r)
]α

is a multi-valued
non-analytical function

spurious contribution from branch cuts
(see Dobaczewski et al. PRC76 (2007)
054315, and Duguet et al. PRC79
(2009) 044320 for complex plane
analysis)

(partial) workaround when conserving
specific symmetries: use
particle-number projected densities for
density dependence instead
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Density dependences cannot be on laboratory densities

Using a prescription that combines transition/mixed densities and laboratory densities for
restoration of spatial symmetries leads to problems with nuclear saturation as these
objects have different spatial distribution.
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Simple 3+4-body have problems with phenomenology: SLyMR0

it is impossible to fulfill the usual nuclear
matter constraints , to have stable
interactions and attractive pairing

no ”best fit” possible

very bad performance compared to standard
general functionals

Sadoudi, Bender, Bennaceur, Davesne, Jodon, and Duguet, Physica Scripta T154 (2013) 014013
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Density dependence with particle-number projected density

Dependence on the number of discretization points chosen for Euler angles when
projecting the same blocked triaxial state of 25Mg which is practically pure K = 5/2, with
SLy5sp2 and SLyMR0.

SLy5sp2

E
(M

eV
)

mα

mβ = 24, mγ = 2mα

effective interaction: standard density-dependent
Skyrme (SLy5sp2) taking all exchange and pairing
terms into account, courtesy of K. Bennaceur
(unpublished, 2012).

exact Coulomb exchange and Coulomb pairing

particle-number projected (mixed) density entering
the linear density dependence ρα = ρ

No obvious problems when projecting and mixing
time-reversal invariance conserving HFB states.

On a very small level, projected energies depend
on the number of discretization points and
sumrules might not be fulfilled.

unrealistic decomposition into J, K components
when projecting time-reversal-invariance breaking
HFB states (where the particle-number projected
mixed densities are complex)
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Discretization dependence

Dependence on the number of discretization points chosen for Euler angles when projecting the
same blocked triaxial state of 25Mg which is practically pure K = 5/2, with SLy5sp2 and
SLyMR0.

SLy5sp2

E
(M

eV
)

mα

mβ = 24, mγ = 2mα

SLyMR0

E
(M

eV
)

mα

mβ = 24, mγ = 2mα

M. Bender, unpublished.
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25Mg, HF, K = 5/2: projection of the t0 term of the Skyrme Hamiltonian

t0 term, nn contribution

+ −

− +

π/4 π/2 3π/4 π

β α = γ = 0

t0 term, np contribution

+ −

− +

π/4 π/2 3π/4 π

β α = γ = 0

t0 term, pp contribution

+ −

− +

π/4 π/2 3π/4 π

β α = γ = 0

ELR
t0

= 〈L|t0
(

1 + x0P̂σ
)
δ̂

r|R〉

= 1
4
t0
(

1− x0
) ∫

d3r
[
ρ
LR
n (r) ρLRn (r)− sLRn (r) · sLR (r) + ρ̃

RL∗
n (r) ρ̃LRn (r)

]
〈Ln|Rn〉 〈Lp |Rp〉

+

∫
d3r

[
1
2
t0
(

1 +
x0
2

)
ρ
LR
n (r) ρLRp (r) + 1

4
t0sLRn (r) · sLRp (r)

]
〈Ln|Rn〉 〈Lp |Rp〉

+ 1
4
t0
(

1− x0
) ∫

d3r
[
ρ
LR
p (r) ρLRp (r)− sLRp (r) · sLRp (r) + ρ̃

RL∗
p (r) ρ̃LRp (r)

]
〈Ln|Rn〉 〈Lp |Rp〉

where |L〉 = R̂(α, β, γ)|R〉 with |R〉 = |Rn〉 ⊗ |Rp〉 and analogous for |L〉.
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25Mg, HF, K = 5/2: projection of the t3 term of a density-dependent
Skyrme Hamiltonian

SLy5sp.v2, mixed density

+ −

+ − +

π/4 π/2 3π/4 π

+ −

β α = γ = 0

For a parameterization with x3 = 1 and in the limit of Slater
determinants, the energy kernel of the density-dependent part
of the Skyrme interaction reads

ELR
t3

=

∫
d3r

[
1
2
t3
(

1 +
x3
2

)
ρ
LR
n (r) ρLRp (r)

+ 1
4
t3 sLRn (r) · sLRp (r)

]
×
[
ρ
LR
n (r) + ρ

LR
p (r)

]α
×〈Ln|Rn〉 〈Lp |Rp〉
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Same in HFODD

J. Dobaczewski, private communication, 18/03/2017
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Self-interactions in SR calculations

Self-interaction in a nut-shell:

A many-body system shall not gain binding through the interaction of a given article
with itself.
early papers by Hartree and Fock

S. Stringari and D. M. Brink, NPA 304, 307 (1978)

P. Perdew and A. Zunger, PRB 23, 5048 (1981)

D. Lacroix, T. Duguet, and M. Bender, PRC 79, 044318 (2009); M. Bender, T. Duguet, and D. Lacroix, PRC 79, 044319 (2009)

The interaction part of the EDF has to vanish in the one-body limit

lim
A→1
E → Ekin ⇔ lim

A→1
ESkyrme → 0

Similarly, the 3-body contribution to the EDF has to vanish in the 2-body limit

Automatically fulfilled for HF-expectation values of true operators

Similar concept (”self-pairing”) for paired systems: ”A correlated pair shall not gain
energy by pair-interaction with itself”, automatically fulfilled for HFB-expectation
values of true operators
M. Bender, T. Duguet, and D. Lacroix, PRC 79, 044319 (2009)
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Self-interactions in SR calculations

TARPANOV, TOIVANEN, DOBACZEWSKI, AND CARLSSON PHYSICAL REVIEW C 89, 014307 (2014)

energies in even and odd systems. Inserting the odd-system
density matrices (2) into the odd-system energy (1b), we obtain

EA±1 = EA ± tλλ +
∑

ii ′

ti ′iδρii ′ + 1
2
v̄λλλλ

+ 1
2

∑

ii ′kk′

δρi ′i v̄ik′i ′kδρkk′ ±
1
2

∑

ii ′

ρA
i ′i v̄iλi ′λ

± 1
2

∑

kk′

v̄λk′λkρ
A
kk′ ±

1
2

∑

ii ′

δρi ′i v̄iλi ′λ

± 1
2

∑

kk′

v̄λk′λkδρkk′ + 1
2

∑

ii ′kk′

ρA
i ′i v̄ik′i ′kδρkk′

+ 1
2

∑

ii ′kk′

δρi ′i v̄ik′i ′kρ
A
kk′ . (16)

We now use the following facts and definitions:

hA
i ′i = ti ′i +

∑

kk′

v̄i ′k′ikρ
A
kk′, (17a)

eλ = hA
λλ, (17b)

0 = v̄λλλλ, (17c)

hλ
i ′i = v̄i ′λiλ, (17d)

δhi ′i =
∑

kk′

v̄i ′k′ikδρkk′ . (17e)

Equation (17a) is the standard definition of the HF mean
field in the A-particle system and eλ (17b) is its diagonal matrix
element in the self-consistent basis. Equation (17c) is a simple
consequence of the antisymmetry of the two-body matrix
elements and represents the fact that in the HF approximation
there is no self-interaction (SI). Equations (17d) and (17e)
define the mean-field potentials generated by the polarizing
state λ and correction δρ, respectively. In terms of these
definitions, the odd-system energy can be written as

EA±1 = EA ± eλ +
∑

ii ′

hA
i ′iδρii ′

±
∑

ii ′

hλ
i ′iδρii ′ + 1

2

∑

ii ′

δhi ′iδρii ′ . (18)

Up to now, expression (18) is exact. To simplify it, we
can use the small-amplitude expansion (9) and thus conditions
(12), and neglect terms beyond second order. In the basis of
particle and hole states, the mean-field Hamiltonian hA

i ′i is by
definition diagonal; therefore, owing to Eqs. (12), the third
term on the right-hand side is of the second order in δρ(1).
Similarly, the fifth term is obviously of the second order too.
However, unless we assume that hλ is small (of the first order),
the fourth term may contain subleading second-order terms,
including the pp and hh matrix elements of δρ(2), which do
not appear in the standard RPA method. Therefore, to have a
consistent RPA-type second-order expression for the energy
of the A ± 1 system, we must make the assumption of hλ

being small as compared to hA. This assumption can also be

understood as ρλ being small as compared to ρA, that is, the
system being appropriately heavy.

In fact, such an assumption can partially be tested by
keeping the leading-order (second-order) pp′ and hh′ matrix
elements of the fourth term, which depend on the leading-
order (first-order) matrix elements of δρ. Then we obtain the
following approximate expression:

EA±1 = EA ± eλ +
∑

ph

(ep − eh)δρphδρhp

+ 1
2

∑

ph

δhphδρhp + 1
2

∑

ph

δhhpδρph

±
∑

pp′h

hλ
p′pδρphδρhp′ ∓

∑

hh′p

hλ
h′hδρhpδρph′

±
∑

ph

hλ
phδρhp ±

∑

ph

hλ
hpδρph. (19)

This can be summarized in the form of polarization corrections
to energies of odd states δE,

EA±1 = EA ± eλ + δE, (20)

or polarization corrections to s.p. energies δeλ,

EA±1 = EA ± (eλ + δeλ), (21)

for

δE = ±δeλ = 1
2

(δρ∗, δρ)
(

A′ B
B∗ A′∗

) (
δρ
δρ∗

)

± (δρ∗, δρ)
(

hλ

hλ∗

)
, (22)

where δρ and hλ represent vectors of ph matrix elements, δρph
and hλ

ph, respectively; that is,

hλ
ph = v̄pλhλ, (23a)

hλ∗
ph = hλ

hp = v̄hλpλ, (23b)

and matrices A′ and B,

A′
p′h′,ph = Ap′h′,ph ± hλ

p′pδh′h ∓ hλ
hh′δpp′ , (24a)

Ap′h′,ph = (ep − eh)δpp′δhh′ + v̄hp′ph′ , (24b)

Bp′h′,ph = v̄pp′hh′ , (24c)

build the RPA matrix (A′ B
B∗ A′∗).

We see that the second-order terms depending on hλ, which
we have kept in Eq. (19), lead to modified matrix elements
A′

p′h′,ph, as compared to the standard RPA matrix Ap′h′,ph. In this
formulation, the RPA equations do depend on the polarizing
state λ. In Sec. III, we perform numerical calculations with
and without these terms, and we check that they play a minor
role and can be safely omitted, thus supporting the validity of
the assumption about the smallness of hλ.

3. Equation for δρ

Equation for the correction δρ can be derived from the fact
that the density matrix of Eq. (2) is a self-consistent solution
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systems, unless we make the simplifying assumption that
v̄[ρA±1] and v̄[ρA] can be connected by a second-order
expansion in ρA±1 − ρA. From Eq. (2) we see again that this
requires ρλ to be of the same (first) order as δρ. Under this
assumption, we have

v̄i ′k′ik[ρA±1]

# v̄i ′k′ik[ρA] ±
∑

mn

∂ v̄i ′k′ik

∂ρmn

(
ρλ

mn ± δρmn

)

+ 1
2

∑

m′n′mn

∂2v̄i ′k′ik

∂ρmn∂ρm′n′

(
ρλ

mn ± δρmn

) (
ρλ

m′n′ ± δρm′n′
)
,

(39)

where all partial derivatives must be evaluated at ρ ≡ ρA.
We can now insert Eqs. (2) and (39) into the odd-system

energy (38b) and obtain up to the second order in ±ρλ + δρ,

EA±1 = EA + Trh̃A(±ρλ + δρ)

+ 1
2 Tr1Tr2(±ρλ + δρ) ˜̃v(±ρλ + δρ), (40)

where the mean-field Hamiltonian h̃A,

h̃A
i ′i = ti ′i +

∑

kk′

ṽi ′k′ikρ
A
kk′, (41)

and effective two-body matrix elements, ṽi ′k′ik and ˜̃vi ′k′ik ,
contain rearrangement terms,

ṽi ′k′ik = v̄i ′k′ik + 1
2

∑

j ′j

∂ v̄j ′k′jk

∂ρii ′
ρA

jj ′ , (42a)

˜̃vi ′k′ik = v̄i ′k′ik +
∑

j ′j

(
∂ v̄j ′k′jk

∂ρii ′
+ ∂ v̄j ′i ′ji

∂ρkk′

)
ρA

jj ′

+ 1
2

∑

j ′m′jm

∂2v̄j ′m′jm

∂ρii ′∂ρkk′
ρA

jj ′ρ
A
mm′ . (42b)

The redefined two-body matrix elements allow us to write
the odd-system energy in the form analogous to Eq. (18),

EA±1 = EA ± eλ +
∑

ii ′

h̃A
i ′iδρii ′ +

1
2

˜̃hλ
λλ

±
∑

ii ′

˜̃hλ
i ′iδρii ′ + 1

2

∑

ii ′

δ ˜̃hi ′iδρii ′ , (43)

but with the following redefinitions,

eλ = h̃A
λλ (44a)

˜̃hλ
λλ = ˜̃vλλλλ, (44b)

˜̃hλ
i ′i = ˜̃vi ′λiλ, (44c)

δ ˜̃hi ′i =
∑

kk′

˜̃vi ′k′ikδρkk′ . (44d)

We see that the first-order rearrangement terms (42a)
become fully absorbed in the s.p. energies, which are now, as
usual, the eigenvalues of mean fields h̃A. Moreover, both the
polarizing fields ˜̃hλ and RPA matrices A and B [see Eqs. (23)

and (24)] must now be determined using the second-order
rearrangement terms (42b). Therefore, owing to the fact
that the effective two-body matrix elements (42a) are not
antisymmetric, the SI term (44b),

Eλ
SI = 1

2
˜̃hλ
λλ, (45)

is nonzero, and explicitly appears in Eq. (43). This leads to
corrections to s.p. energies now having the form,

δeλ = ±δE = ±
(
δEλ

SIF + Eλ
SI

)
, (46)

where, based on the analogy with Eq. (37), the first term can
be called self-interaction-free (SIF) polarization correction,

δEλ
SIF = −

∑

ω>0

∣∣∑
ph

˜̃hλ∗
phX

ω
ph + ˜̃hλ

phY
ω
ph

∣∣2

!ω
. (47)

The second-order mean fields ˜̃hλ
i ′i (44c) and δ ˜̃hi ′i (44d) are

simply related to the linearized first-order mean fields; that is,

˜̃hλ
i ′i =

∑

k′k

∂h̃i ′i

∂ρk′k

∣∣∣∣∣∣
ρ=ρA

ρλ
k′k, (48a)

δ ˜̃hi ′i =
∑

k′k

∂h̃i ′i

∂ρk′k

∣∣∣∣∣∣
ρ=ρA

δρk′k. (48b)

These expressions can be explicitly verified directly from
definitions (42). They are extremely useful in practical
applications because (i) the second-order mean fields (48a)
that define the polarization vertex (47) can be determined
without explicitly calculating the second derivatives of matrix
elements, (ii) the amplitude mean fields (48b) are the only
objects that one has to calculate when using the iterative
methods to solve the RPA equations [37], and (iii) exactly
the same piece of code can be used to calculate both mean
fields (48a) and (48b).

1. The self-interaction

The SI term (45), where a particle interacts with the mean
field generated by itself, is unphysical, because, in reality,
each nucleon should interact with the other nucleons only. As
discussed in Sec. II A 2, for an EDF generated by Hamiltonian,
no SI appears. However, EDFs generated by density-dependent
interactions do produce the SI.

An EDF has a one-body SI if it gives nonzero energy for a
single nucleon state. This was discussed in Ref. [35], where it
has been shown how the one-body SI of a Skyrme EDF can be
removed by introducing extra constraints between the Skyrme
coupling constants. We note here that in our approach there
is no SI of this type, because we use the so-called “native”
time-odd terms [27], that is, those originating from the mean-
field averaging of the Skyrme force. In general, the SI results
from the violation of the antisymmetry of effective matrix
elements (42b); that is, the SI studied here originates from the
density dependence of the Skyrme force. Another source of the
SI is the mismatch between the ph and the pp matrix elements
of the interaction; see Eq. (68) below.
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low energies [14]. However, assuming the above assumptions
are fulfilled, the equivalence of the HF(B) and (Q)RPA
polarization corrections is obtained only when all phonons
are included, irrespective of their collectivity or energy. This
is because, when deriving the SIF corrections of Eqs. (47)
or (76), the exact (Q)RPA completeness relations must be used.
In addition, the same equivalence guarantees the convergence
of sums in Eqs. (47) or (76); indeed, with the increasing phase
space, owing to the variational principle, the HF(B) energies
must converge, and thus the (Q)RPA polarization corrections
must converge too.

III. RESULTS

All calculations presented in this section aim at comparing
self-consistent results obtained using the deformed solver
HFODD (v2.52k) [46], with RPA and QRPA solutions im-
plemented in the spherical solver HOSPHE [47]. We used the
configuration space that includes all harmonic-oscillator shells
up to N0 = 15.

A. RPA calculations in 100Sn for the Skyrme EDF SV

We begin the presentation by showing examples of calcu-
lations performed for the case of an exact HF approximation,
as discussed in Sec. II A. To this end, we employed the
density-independent Skyrme interaction SV [48] and we
analyzed results only for neutrons, so as to avoid effects
of density-dependent Slater approximation for the Coulomb
exchange term. On the one hand, to treat the EDF SV as fully
generated by an interaction, we included in the functional
all tensor terms, that is, those given by the square of the
spin-orbit density J2, which were originally neglected [48].
Also the so-called “native” time-odd terms [27], that is, those
originating from the mean-field averaging of the Skyrme force,
were all included. On the other hand, as mentioned in Sec. II A,
we neglected the so-called center-of-mass correction to the
kinetic energy.

In Fig. 1 we test Eq. (21); that is, we compare polarization
corrections,

δeλ = ±(EA±1 − EA) − eλ, (80)

FIG. 1. (Color online) Comparison of polarization corrections of
selected orbitals in 100Sn, determined using the HF and RPA methods
and Skyrme EDF SV [48]; see text. Lines connect the values obtained
for different projections of the angular momentum |mλ| = 1

2 , . . . ,jλ

(from left to right).

FIG. 2. (Color online) Polarization corrections of |mλ| = jλ or-
bitals in 100Sn, determined by not including (left bars) and including
(right bars) the orbital-dependent terms in the RPA matrices; see text.
The order of orbitals is the same as shown in Fig. 1. Contributions
coming from four RPA channels J π = 0+, 1+, 2+, and 3+ are shown
separately (note very different scales).

obtained from the HF energies of odd and even systems, EA±1

and EA, and HF s.p. energies, eλ, with those determined form
the RPA solutions [Eq. (37)]. Apart from a few cases, the
obtained agreement is nearly perfect. This result is particu-
larly gratifying, because it confirms not only the analytical
derivations presented in Sec. II A and the Appendix, but also
the validity of two completely independent numerical codes.

At this point, we must discuss one important aspect of the
HF calculations in odd nuclei. In principle, for any given value
of mλ, there may exist two solutions: one with prolate and
another one with oblate shape. Usually only the lowest one
can be converged; the other one, being excited, either does not
converge or falls down to the lowest one. In our calculations,
in full agreement with the standard Nilsson diagram [32], we
obtain converged prolate (oblate) solutions for low-mλ (high-
mλ) particle states, and vice versa for the hole states. We
note here that we did not constrain these solutions to axial
symmetry; nevertheless, stable triaxial solutions were never
obtained.

FIG. 3. (Color online) Contributions to polarization corrections
of |mλ| = jλ orbitals in 100Sn, coming from different J π RPA
channels, determined for the Skyrme EDF SV [48]. The order of
orbitals is the same as shown in Fig. 1. Contributions are ordered
according to the value of J , with the 0+ channels shown nearest the
abscissa.
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FIG. 4. (Color online) Same as in Fig. 3, but for the |mλ| = 1
2

orbitals.

Next we tested the assumption, discussed in Sec. II A,
related to the smallness of terms ρλ and hλ with respect to the
small-amplitude expansion. In Fig. 2, we compare polarization
corrections determined using the standard RPA matrices (24b)
with those containing the orbital-dependent terms (24a).
Because both sets of results are almost identical, we conclude
that in medium-heavy nuclei like 100Sn, the orbital-dependent
terms can be safely ignored. This significantly simplifies the
calculations because a single common solution of the RPA
equation can then be used to determine polarization corrections
for all orbitals.

In Fig. 3, we show polarization corrections of the |mλ| = jλ

orbitals in 100Sn, split into contributions from different J π

RPA channels. First we note that the geometric constraints in
Eq. (A16) limit the polarizations of jλ orbitals to channels with
J ! 2jλ. As expected, the largest contributions come from the
coupling to the quadrupole channel 2+; however, the monopole
0+ and dipole 1+ channels also significantly contribute. For
higher-jλ orbitals, channels 3+ and 4+ show some effect,
whereas channels with J > 4 can be safely neglected. For the
|mλ| = 1

2 orbitals shown in Fig. 4, the convergence is slightly
slower, but still all terms with J > 5 contribute very little.

B. RPA calculations in 100Sn for the Skyrme EDF SLy5

We now proceed to discuss the problem of SI energies
in the EDF calculations, presented in Sec. II B. To this

FIG. 5. (Color online) Same as in Fig. 1, but for the Skyrme EDF
SLy5 [49]. The RPA results correspond to the SIF terms in Eq. (46),
whereas RPA + SI denotes both SIF and SI contributions combined.

FIG. 6. (Color online) The SIF and SI contributions to the polar-
ization corrections of Eq. (46), calculated in 100Sn for the Skyrme
EDF SLy5.

end, we repeated the self-consistent calculations presented in
Sec. III A by employing the Skyrme EDF SLy5 [49]. This is a
standard Skyrme parametrization containing a strong density-
dependent term, for which we can study the SI energies, as
defined in Eq. (45). As before, the “native” time-odd terms of
SLy5 were included and the center-of-mass correction to the
kinetic energy was neglected.

In Fig. 5, we show the RPA (SIF) contributions to polar-
ization corrections (46), and we compare the total polarization
corrections calculated using Eq. (46) with the HF results (80).
The obtained agreement is very good, although not as perfect as
that obtained in Sec. III A for the Skyrme EDF SV. Moreover,
the RPA results obtained for the SV and SLy5 functionals are
significantly different from one another, the latter ones being
close to about ±0.4 MeV for holes and particles, respectively.
We also see that the SLy5 results are much less mλ dependent.

The most striking observation seen in Fig. 5, also explicitly
illustrated in Fig. 6, is a strong cancellation between the SIF
and SI contributions to the polarization corrections (46). This
cancellation makes the HF polarization corrections quite small
and gives the explanation to the long-standing problem of
significant differences between the magnitudes of the HF and
RPA values [20]. Indeed, it is the unphysical SI contribution
that renders the HF polarization corrections so small; see
Ref. [25] for a set of comprehensive calculations across the
mass chart.

FIG. 7. (Color online) Same as in Fig. 3, but for the contributions
to the RPA SIF polarization corrections of |mλ| = jλ orbitals,
determined for the Skyrme EDF SLy5.
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FIG. 4. (Color online) Same as in Fig. 3, but for the |mλ| = 1
2

orbitals.
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equation can then be used to determine polarization corrections
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orbitals in 100Sn, split into contributions from different J π
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whereas channels with J > 4 can be safely neglected. For the
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in the EDF calculations, presented in Sec. II B. To this
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EDF SLy5.

end, we repeated the self-consistent calculations presented in
Sec. III A by employing the Skyrme EDF SLy5 [49]. This is a
standard Skyrme parametrization containing a strong density-
dependent term, for which we can study the SI energies, as
defined in Eq. (45). As before, the “native” time-odd terms of
SLy5 were included and the center-of-mass correction to the
kinetic energy was neglected.

In Fig. 5, we show the RPA (SIF) contributions to polar-
ization corrections (46), and we compare the total polarization
corrections calculated using Eq. (46) with the HF results (80).
The obtained agreement is very good, although not as perfect as
that obtained in Sec. III A for the Skyrme EDF SV. Moreover,
the RPA results obtained for the SV and SLy5 functionals are
significantly different from one another, the latter ones being
close to about ±0.4 MeV for holes and particles, respectively.
We also see that the SLy5 results are much less mλ dependent.

The most striking observation seen in Fig. 5, also explicitly
illustrated in Fig. 6, is a strong cancellation between the SIF
and SI contributions to the polarization corrections (46). This
cancellation makes the HF polarization corrections quite small
and gives the explanation to the long-standing problem of
significant differences between the magnitudes of the HF and
RPA values [20]. Indeed, it is the unphysical SI contribution
that renders the HF polarization corrections so small; see
Ref. [25] for a set of comprehensive calculations across the
mass chart.
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to the RPA SIF polarization corrections of |mλ| = jλ orbitals,
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FIG. 10. (Color online) Same as in Fig. 6, but for 110Sn.

for predominantly hole-type (particle-type) quasiparticles. For
quasiparticles near the Fermi level, however, there is a certain
degree of ambiguity, which we here arbitrarily resolve by
checking whether the s.p. energy e! corresponding to the
blocked quasiparticle state is below or above the Fermi level
λ. In practice, we determine e! by diagonalizing in the even
nucleus the mean-field Hamiltonian hA, which is a part of the
HFB Hamiltonian (49). In addition, to link results presented in
this section to those presented before for magic nuclei without
pairing, in Figs. 9–16 we plot results for hole states with flipped
signs, that is,

− δE = +(EA − EA−1) − (λ − E!) for e! < λ, (81a)

+δE = −(EA − EA+1) − (λ + E!) for e! > λ (81b)

[cf. Eq. (80)].
Within such a convention, in Fig. 9 we show the QRPA

SIF + SI (symbols) and HFB (lines) polarization corrections
given by the left-hand and right-hand sides of Eqs. (81),
respectively. We note that not all blocked quasiparticle states
could be converged in all studied nuclei, and thus in the figure
there is quite a number of missing HFB points. Nevertheless,
we conclude that the agreement between the QRPA and the
HFB results is satisfactory. By this we establish the equivalence
of the two methods in determining the polarization corrections
with pairing.

In Figs. 10 and 11, we compare the QRPA SIF (76) and
SI (77) contributions to the polarization corrections. Similar

FIG. 11. (Color online) Same as in Fig. 6, but for 120Sn.

FIG. 12. (Color online) Same as in Fig. 7, but for 110Sn.

to that seen in the case without pairing, shown in Fig. 6,
the SIF and SI terms always have opposite signs, and thus
the SI partially cancels the SIF contribution. However, here
the SI terms are relatively smaller, and thus they to a lesser
degree decrease the SIF contributions, as compared to the
results with no pairing. It is fairly difficult to pin down specific
reasons for the qualitative differences between the SI energies
obtained with and without pairing correlations. It could be that
the SI energies related to density dependence of the Skyrme
interaction (45) and those related to differences between the
pp and ph channels (68), partially cancel out.

Convergence of the QRPA polarization corrections as a
function of the angular momentum J of the QRPA phonons,
shown in Figs. 12 and 13, is much faster than that without
pairing; cf. Figs. 7 and 8. Here, the 2+ channels clearly dom-
inate. This can be interpreted as the result of the quadrupole
collectivity being increased by the pairing correlations. In most
cases, channels with J > 4 can be safely neglected, with the
exception of the J = 2j! channels that slightly contribute to
the corrections of the m! = 1

2 quasiparticle states.
All results presented up to now pertain to single-reference

HF(B) and (Q)RPA calculations; that is, only one single
orbital, with a fixed projection mλ or m!, was occupied and
was inducing polarization effects. As discussed previously,
this required symmetry breaking in the HF(B) solutions
and required coupling of (Q)RPA phonons to odd particles
in a symmetry-nonconserving way. However, a symmetry-
conserving (Q)RPA coupling [14] simply amounts to averag-
ing the results obtained for different values of mλ or m!; see
Eqs. (A18). In Figs. 14–16, we present results for the averages
obtained in this way.

FIG. 13. (Color online) Same as in Fig. 8, but for 110Sn.
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obtained with and without pairing correlations. It could be that
the SI energies related to density dependence of the Skyrme
interaction (45) and those related to differences between the
pp and ph channels (68), partially cancel out.

Convergence of the QRPA polarization corrections as a
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shown in Figs. 12 and 13, is much faster than that without
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inate. This can be interpreted as the result of the quadrupole
collectivity being increased by the pairing correlations. In most
cases, channels with J > 4 can be safely neglected, with the
exception of the J = 2j! channels that slightly contribute to
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2 quasiparticle states.
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HF(B) and (Q)RPA calculations; that is, only one single
orbital, with a fixed projection mλ or m!, was occupied and
was inducing polarization effects. As discussed previously,
this required symmetry breaking in the HF(B) solutions
and required coupling of (Q)RPA phonons to odd particles
in a symmetry-nonconserving way. However, a symmetry-
conserving (Q)RPA coupling [14] simply amounts to averag-
ing the results obtained for different values of mλ or m!; see
Eqs. (A18). In Figs. 14–16, we present results for the averages
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FIG. 2. (Color online) Maximum value of C
ρ"ρ
1 for which a

solution is found for the ground state of a given nucleus. Results
are displayed for SLy5′ [(a) and (c)] and LNS′ [(b) and (d)]. Results
are displayed in the upper (lower) panel as a function of the mesh
(basis) size used in LENTEUR (HOSPHE).

to be compared with those of EV8 where, for all mesh sizes,
the energy only varies by a few keV for a 1 MeV fm5 step in
C

ρ"ρ
1 below C

ρ"ρ
1,crit. Increasing Nsh to unusually large values

makes the detection of instabilities easier, but still leads to
values of C

ρ"ρ
1,crit significantly larger than those found with

LENTEUR and EV8, even for Nsh = 60. This result clearly
illustrates the shortcomings of an oscillator basis for the
accurate determination of C

ρ"ρ
1,crit. It also demonstrates that the

manifestation of finite-size instabilities can be obscured by
a choice of Nsh leading to an apparent convergence of the
binding energies but artificially suppressing the instability.

2. Determination of instabilities with the spherical codes

Systematic calculations with both HOSPHE and LENTEUR
for 16O, 40,48Ca, 56,78Ni, 100,132,176Sn, and 208Pb have shown
that the lowest C

ρ"ρ
1 at which the instability sets in is always

found for either 40Ca or 208Pb. This is illustrated in Fig. 2
for 16O, 40Ca, 78Ni, 176Sn, and 208Pb with SLy5′ and LNS′.
Results for 56Ni and 100,132Sn were omitted for reasons of
presentation but are in all cases situated between the lowest
and highest curves. For LNS′, the critical value of C

ρ"ρ
1 is

obtained in 40Ca whereas for SLy5′ it is found in 208Pb. In the
latter case, several nuclei lead to similar values. Throughout
our analysis and at the highest accuracy of the two spherical
codes, the lowest values of C

ρ"ρ
1,crit are systematically obtained

with LENTEUR.

3. Determination of instabilities with the 3D code

Because the calculations with the 3D code are very time
consuming at small mesh sizes, they were limited to these two
doubly-magic nuclei and a deformed one, 170Hf, and C

ρ"ρ
1 was

initially varied in steps of 1 MeV fm5. Results with LENTEUR
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FIG. 3. (Color online) Contribution of E
ρ"ρ
1 to the binding en-

ergy of 40Ca as a function of the number of iterations. Four modified
SLy5′ [34] parametrizations with values of C

ρ"ρ
1 around its critical

value C
ρ"ρ
1,crit are represented. Calculations are performed with the EV8

code for a value dx = 0.4 fm of the Cartesian mesh. During the
iterations, the Coulomb term in the EDF is switched off, such that the
exact value of E

ρ"ρ
1 should be zero for 40Ca.

and EV8 are consistent but C
ρ"ρ
1,crit systematically takes lower

values with EV8, as can be seen for example by comparing
Figs. 2 and 4. This can be explained by the lower degree of
symmetry of the latter code, which allows more freedom to
develop oscillations in a “spherical” nucleus. Our observation
that 170Hf and 208Pb give rise to almost identical C

ρ"ρ
1,crit can

be understood from this argument. For all parametrizations
studied with EV8, the value of C

ρ"ρ
1 at which the instability

sets in is systematically the lowest in 40Ca. Therefore, in the
following, we concentrate on the results obtained with EV8 for
40Ca. At dx = 0.40 fm, the size of the box in all directions was
chosen equal to 26 fm and for larger values of dx the number
of points on the mesh was adjusted accordingly.

In a next step, we compute the energy of 40Ca without
Coulomb interaction to obtain an accurate determination of
C

ρ"ρ
1,crit up to a precision of 0.1 MeV fm5. Indeed, 40Ca being

an N = Z nucleus, E
ρ"ρ
1 should be zero at convergence. The

starting point of the iterations is a converged wave function of

TABLE II. Nominal values of C
ρ"ρ
1 (MeV fm5). The critical

coupling constant C
ρ"ρ
1,crit is obtained for 40Ca with EV8 and dx =

0.4 fm. The ρmin/ρsat and ρcrit/ρsat are extracted from Figs. 7 and 8,
respectively. Values indicated with a star (∗) are extracted from the
asymptotic behavior of ρp(qph) (see Sec. III B for more details).

Param. Ref. C
ρ"ρ
1 ρmin/ρsat C

ρ"ρ
1,crit ρcrit/ρsat

KDE0v1 [29] 11.498 2.39 30.8(1) 1.18
LNS [30] 33.750 1.25∗ 28.5(1) 1.35∗

NRAPRii [31] 16.599 4.21 33.1(1) 1.67∗

SQMC700 [32] 15.884 4.77 31.1(1) 1.45∗

SkM* [33] 17.109 2.94 32.7(2) 1.36∗

SLy5 [34] 16.375 1.72 31.7(2) 1.08
T11 [35] 14.252 1.92 31.6(2) 1.08
T44 [35] − 4.300 6.63 31.8(2) 1.05
UNEDF0 [36] − 55.623 4.13 29.0(1) 1.02∗

064323-4

SPURIOUS FINITE-SIZE INSTABILITIES IN NUCLEAR . . . PHYSICAL REVIEW C 88, 064323 (2013)

 28

 30

 32

 34

 36

 38

 40

 0.4  0.6  0.8

C
ρ∆

ρ
1,

cr
it 
[M

eV
 f

m
5 ]

dx  [fm]

SLy5’
T11’
T44’
SkM*’
KDE0v1’

LNS’
NRAPRii’
SQMC700’
UNEDF0’

FIG. 4. (Color online) C
ρ"ρ
1,crit obtained for 40Ca with the EV8 code

for the various (modified) parametrizations as a function of the step
size dx.

50Ca for which E
ρ"ρ
1 is nonzero (∼ 10−1 MeV). The code is

then run for 4000 iterations. Parametrizations are considered
stable when the linear slope with which E

ρ"ρ
1 changes in log

scale after 1000 iterations is negative (see Fig. 3) and E
ρ"ρ
1 is

at most of the order 10−10 MeV. This allows us to pin down
C

ρ"ρ
1,crit with a numerical uncertainty of about 0.2 MeV fm5 (see

Table II for dx = 0.4 fm). Figure 4 illustrates the sensitivity
of C

ρ"ρ
1,crit to the mesh size for the nine parametrizations

under study. One observes a large change with dx for LNS′,
NRAPRii′, SQMC700′, SkM*′, and UNEDF0′, whereas that
variation is much milder for KDE0v1′, SLy5′, T11′, and T44′.
While C

ρ"ρ
1,crit varies over a range similar to its numerical

uncertainty for the latter group, it continues to decrease linearly
for the former group as one lowers the mesh to dx = 0.4 fm,
which is half of the value typically used in nuclear structure
studies. The same effect is observed for the results obtained
with HOSPHE and LENTEUR, as can be seen from Fig. 2 for
SLy5′ and LNS′.

A few comments are in order before the further presentation
of our results. First, we have verified that pairing correlations
do not alter the outcome of the analysis. Second, we note
that the number of iterations necessary for the unambiguous
identification of the instability is significantly larger than what
is routinely used. It is thus easy to overlook the unstable
nature of a given parametrization [8]. The same is true when
imposing overly restrictive symmetries. As such, the values of
C

ρ"ρ
1,crit extracted with EV8 should be seen as upper bounds, as

one cannot rule out that a completely symmetry-unrestricted
numerical representation might result in even lower values.
Last but not least, overly restrictive numerical parameters may
also hide the instability as already mentioned for the code
employing a HO basis expansion.

B. Connection with RPA in SNM

We now proceed to step 3 of our protocol (see Sec. II B)
and aim to establish a connection between the nonconvergence
occurring in calculations of finite nuclei with results obtained
using the RPA in SNM.

In Fig. 5, we display a representative RPA calculation of
ρp(qph). The parametrization SLy5′ has been used for a value
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FIG. 5. (Color online) The function ρp(qph) for a SLy5′

parametrization corresponding to C
ρ"ρ
1 = 30.0 MeV fm5. The min-

imum of the ρp(qph) defines the lowest density ρmin at which a pole
occurs for this value of C

ρ"ρ
1 .

of C
ρ"ρ
1 slightly below C

ρ"ρ
1,crit. The value of ρmin is defined

as the minimum of ρp(qph) and corresponds to a momentum
transfer qph = qmin. Its dependence on C

ρ"ρ
1 is illustrated in

Fig. 6 and the critical density ρcrit is extracted as the value of
ρmin obtained for C

ρ"ρ
1 = C

ρ"ρ
1,crit. However, one has to check

that a lower value of ρmin is not obtained for very large values
of the momentum transfer. This is illustrated in Figs. 7 and 8
which provide the same information as Fig. 5 for the nine
parametrizations but extended to much larger values of qph. In
Fig. 7, Cρ"ρ

1 was taken at its nominal value. All curves present
a well defined minimum at a small qph, except for LNS, where
ρp(qph) decreases monotonically above qph = 4 fm−1. This
different behavior of the LNS curve can be attributed to the
fact that LNS is already unstable at the nominal value of C

ρ"ρ
1 .

In Fig. 8, C
ρ"ρ
1 was chosen at its critical value. For all EDFs,

ρmin is significantly reduced as compared to Fig. 7. For the
four parametrizations (KDE0v1′, SLy5′, T11′, and T44′) with
small error bars in ρcrit/ρsat, this minimal value corresponds to
a well defined minimum beyond which the curve increases in a
monotonic way. By contrast, for the other five parametrizations
(LNS′, SQMC700′, SkM*′, UNEDF0′, NRAPRii′), there is
a monotonic decrease of the density corresponding to the
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FIG. 6. (Color online) ρmin as defined in Fig. 5 as a function of
C

ρ"ρ
1 . The vertical band C

ρ"ρ
1,crit intersects the curve to define the

horizontal band ρcrit. The dashed line denotes the saturation density
ρsat of SNM corresponding to SLy5′.
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FIG. 7. (Color online) ρp(qph) for the parametrizations given in
Table II at the nominal value of the coupling constant C
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pole for large values of qph which seemingly approaches an
asymptotic value. Then, the value of ρp at qph = 15 fm−1 is
chosen as an upper bound for ρmin.

The values of ρcrit thus extracted for the nine EDF
parametrizations are listed in Table II and plotted in Fig. 9.
The uncertainty on ρcrit is estimated from that on C

ρ"ρ
1,crit,

combining both the uncertainty found at a certain dx and the
overall dx dependence of the results. Figure 9 also presents
the interval between ρsat and ρcent, which is the highest density
attained in 40Ca. Note that ρcent is typically about 20 % larger
than ρsat.

Naively, ρcrit is expected at values of the density that are
explored in a nucleus; stated differently, one would expect
ρcrit ! ρcent. This is the case for UNEDF0, KDE0v1, SLy5,
T11, and T44 over the whole uncertainty band. By contrast,
for LNS, SQMC700, and SkM* it is only true at the lowest
accuracies (thus, corresponding to the largest mesh size dx).
With NRAPRii, ρcrit even corresponds to densities that are
never probed inside a nucleus. Clearly, the picture is more
complicated than a naive one-to-one correspondence between
the densities occurring in a finite nucleus and those probed
by SNM. This could be expected when considering that the
density at each point inside the nucleus is not behaving as if
it simply were a piece of SNM with the same density. Not
surprisingly, the four parametrizations (KDE0v1, SLy5, T11,
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FIG. 9. (Color online) Critical density ρcrit/ρsat. The uncertainty
band comes both from the numerical extraction and the variation with
dx. The vertical bar indicates the value for the lowest mesh size used
dx = 0.4 fm. The dashed line indicates the interval [1,ρcent/ρsat].

and T44) for which the value of C
ρ"ρ
1,crit does not vary much with

dx (see Fig. 4 ) present much smaller error bars than the five
others.

C. Discussion

Let us now look at the distribution of relative neutron
momenta fn(q) in the center of 40Ca, where its density is
maximal. The calculation is performed in spherical symmetry
with the code LENTEUR. The converged wave function for the
nominal value C

ρ"ρ
1 of a given parametrization is taken as a

starting point of the calculation. We then set C
ρ"ρ
1 to a value

just above C
ρ"ρ
1,crit and run the calculation for several hundreds of

iterations. Figures 10 and 11 display f 2
n (q) at various numbers

of iterations on the way to the nonconvergence for SLy5′ and
SQMC700′, respectively.

Both parametrizations display a very different behavior. For
SLy5′, f 2

n (q) starts to grow around q = 2.2 fm−1 (see Fig. 7)
and increases significantly at low qvalues during the iterations
(note the logarithmic scale). This indicates that the divergence
is highly dominated by these low q values and is consistent
with the fact that ρp(qph) exhibits a clear global minimum at
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10-2

 0  1  2  3  4  5

f n
(q

)2

q  [fm-1]

2kF
SLy5’

0
40

140
400

FIG. 10. (Color online) Square of the relative momentum dis-
tribution f 2

n (q) at R = 0 for neutrons in 40Ca with SLy5′ taking
C

ρ"ρ
1 slightly above C

ρ"ρ
1,crit. The four curves (see text) correspond to

different numbers of Hartree-Fock iterations and the vertical dashed
line indicates q = 2kF .
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Finite-size isospin instabilities

In the context of standard Skyrme EDFs,
finite-size instabilities in the isospin
channel are triggered by the
ρ1(r)∆ρ1(r) =

[
∇ρ1(r)]2 terms.

Finite-size instabilities can be detected
calculating linear response of infinite
nuclear matter

Finite-size instabilities can also be found
for finite-range interactions

also possible to identify the instabilities occurring at finite transferred momentum. This happens when

1/�(↵)(! = 0, q, ⇢) = 0 . (119)

By scanning all values of transferred momentum in a range q  4 fm�1, we identify the values of
the critical densities ⇢c at which Eq. (119) has a solution. The results are reported in Fig. 37. The
same calculation was also performed in Ref. [36], using CF formalism, but ignoring the spin-orbit ph
interaction. Apart from the spinodal instability in the scalar-isoscalar channel, we also observe another
instability in the scalar-isovector channel close to the saturation density of the system. A detailed
analysis of finite size instabilities has been performed in Ref. [34] by using Skyrme functionals. The
authors have thus identified a simple criterion to establish if the presence of poles may a↵ect or not finite
nuclei calculations. In particular, they observed that when an instability appears at densities below 1.2
⇢0 a possible issue in the calculation of finite nuclei may manifest. This means that at these densities,
the HF ground state used for the current calculations is no more the true ground state and the system
will undergo a phase-transition. We stress that the findings of Ref. [34] for zero-range interactions are
confirmed in Ref. [36] for finite-range interactions.
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Figure 37: Critical densities as a function of the transferred momentum for the D1M⇤ interaction for
di↵erent spin isospin channels (S,M,I). The horizontal dot-dashed line represents the saturation density
⇢0. See text for details.

It is now interesting to explore the position of finite size instabilities for Gogny interactions as done
in Ref. [100]. In Fig. 38, we illustrate the position of the critical densities for D1S and D1N.
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Figure 38: Finite-size instabilities for the Gogny D1N (left) and D1S.
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7 Phenomenological interactions and finite size instabilities

We conclude this review by considering an important connection with finite nuclei as is the detection
of finite-size instabilities associated with the employed phenomenological interaction. By means of
the linear response theory, it is possible to identify the presence of zero-energy modes with infinite
strength [107, 195]. These modes can be associated with a physical instability as in the case of the
spinodal one in the channel (0,0,0). The spinodal instability [29] is associate with the liquid-gas phase
transition of the infinite medium and it plays a crucial role in the formation of non-homogeneous phases
in the crust of neutron stars [10]. Other instabilities may also appear, but if not associated with any
physical process, we call them spurious. As showed in Refs. [33, 34, 35, 37, 38, 86], these instabilities
may manifest in the calculations of properties of atomic nuclei, leading to non-converging results. To
avoid the problems of spurious finite-size instabilities, in Ref.[39, 41], a di↵erent optimisation procedure
was discussed by making use of explicit results coming from the RPA responses.

As an example, we illustrate in Fig. 36 the proton and neutron densities from an Hartree-Fock
calculation with the D1M, D1N and D1M⇤ [123] Gogny interactions for 208Pb. With the D1M⇤ interac-
tion, the calculations do not converge and lead to oscillations of the isovector density with very large
amplitude, as shown by the behaviour of the densities as the number of HF iterations is increased. For
D1M and D1N only the final densities are represented since the calculations are fully converged.

Figure 36: Neutron (in red) and proton (in blue) densities obtained from Hartree-Fock calculations for
208Pb, with the interactions D1M (top panel), D1N (central panel) and D1M⇤ (bottom panel). Since
the interaction D1M⇤ does not lead to a self-consistent convergent solution, di↵erent levels of red and
blue are used to plot the densities after di↵erent numbers of iterations as indicated in the figure. Taken
from Ref. [36].

Such a behaviour has been also observed in Refs [37, 34] for the case of Skyrme interactions and
it has been identified with the presence of spurious zero-energy modes in infinite nuclear matter at
densities close to saturation. Using Landau theory of Fermi liquid is it possible to identify all spurious
modes associated with zero transferred momentum [139, 168], but only thanks to RPA responses it is

48

Martini, De Pace, Bennaceur, EPJA 55 (2019) 150

M. Bender (IP2I Lyon) Mapping the minefield 20 November 2023 34 / 43



Finite-size spin instabilities

Convergence problems:
ONE-QUASIPARTICLE STATES IN THE NUCLEAR . . . PHYSICAL REVIEW C 81, 024316 (2010)

FIG. 8. Triaxiality (measured by the angle γ ) of well-deformed
odd-proton states (β > 0.1) in the rare-earth region calculated with
SIII, SkP, and SLy4 EDFs for the two orientations discussed in
Sec. IV B3: collective (top) and noncollective (bottom).

performed in Ref. [92] was based on the RPA response function
approach of Ref. [93] applied to Skyrme functionals [94,95].
Results were reported in 40Ca and 56Ni for the SkP and SLy5
parametrizations.

Finite-size instabilities governed by C#s
t terms are ampli-

fied in polarized systems such as odd-mass nuclei. Indeed,
these terms are only active when time-reversal symmetry
is broken. As shown in Sec. IV B, the impact of time-odd
components is weak, at least in the rare-earth region that
we study. It is therefore possible to scale these terms by
slightly varying the values of C#s

t , without impacting the
calculated properties significantly. By contrast, scaling the
coupling constants C

#ρ
t could result in totally nonphysical

solutions.
According to Ref. [92], the functionals employed in this

work, namely, SIII, SkP, and SLy4, should not be particularly
sensitive to spin instabilities. Indeed, the rate of convergence
in our calculations is of the order of 40%–50% for those three
cases. This is less than for even-even axially deformed nuclei,
but this rate can be tied to factors such as collapse of pairing,
level crossings, etc.

However, other Skyrme parametrizations may be prone to
severe and systematic divergences. To illustrate this point, we
have performed a set of calculations with three functionals:
SkO [96], SkP, and SkM* [97]. For each of those, we have used
the native variant of the time-odd terms; only C#s

0 is multiplied
by a scaling factor α ranging between 0 (no coupling) and 1
(standard coupling). A measure of stability of the iterative
process is the rate of convergence for a predefined set of one-
q.p. states. A result is deemed converged if the binding energy

FIG. 9. Convergence rate of HFB equations with SkP, SkO, and
SkM* functionals for one-quasiproton states in odd-A Ho isotopes
with 88 ! N ! 104 as a function of the scalar-isoscalar coupling
constant C#s

0 . See text for details.

does not change by more than 2 keV from one iteration to
the next for three consecutive iterations. We show in Fig. 9 the
evolution of this convergence rate as a function of α. Our set of
configurations consists of 24 different one-quasiproton states
in nine odd-A Ho isotopes with 88 ! N ! 104. Therefore, the
sample size used to define the convergence rate is 216.

According to Fig. 9, SkM* and SkP parametrizations are
stable with respect to variations of C#s

0 , but the SkO functional
exhibits a sharp drop in the convergence rate when α > 0.5,
that is, C#s

0 >∼ 35 MeV. Preliminary investigation of the RPA
response function [98] suggests that instabilities could occur
for transferred momenta q of the order of 2.2–2.5 fm−1 for
this particular value of C#s

0 . These results agree nicely with
the original findings in Ref. [92] and emphasize the need to
test EDFs against finite-size instabilities.

V. CONCLUSIONS

In this work, we have carried out a systematic theoretical
survey of one-quasiproton states in deformed rare-earth nuclei.
Our study is based on the symmetry-unconstrained Skyrme
HFB framework that fully takes into account time-odd polar-
ization effects.

We show that the EFA is equivalent to full blocking when
the time-odd fields are set to zero. In this case, an arbitrary
combination of time-reversed orbits can be used to define the
blocked orbit, and this can be nicely quantified by introducing
the notion of alispin. We emphasize the role of symmetries, in
particular, nuclear alignment properties, in the exact treatment
of the blocked state.

Our systematic survey indicates that, when native function-
als are employed, the contributions from time-odd fields to
the energy of the ground state and low-lying excited states
is rather small, about 50 keV on average, with a variation of
about 100–150 keV. Significant differences are found from

024316-13
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See also Pototzky, Erler, Reinhard, Nesterenko, EPJ A 46 (2010) 299
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Finite-size spin instabilities
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FIGURE 1. Left: Dependence of the C∆s
0 s0 · ∆s0 term of a modified T22 parameterization (see text) on

the value of its coupling constant C∆s
0 for the Jz = 54 h̄ state in the ground superdeformed band of 194Hg.

Variation of the Cs
t s2

t , t = 0, 1, terms relative to their values at C∆s
0 = 0 in the same calculation.
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FIGURE 2. (color online) Left: The isoscalar spin density s0 obtained with a modified T22 parame-
terization (see text) with C∆s

0 = 0 for the Jz = 54h̄ state in the ground superdeformed band of 194Hg at
convergence. Right: Same as the panel on the left, but for C∆s

0 = 40 MeV fm5 at a few iterations before
the code crashes.

Instead, we will analyze here what happens to the spin densities during the onset of a
finite-size instability. The evolution of the energy of the C∆s

0 st · ∆s0 term when varying
C∆s

0 is presented in the left panel of Fig. 1. When approaching C∆s
0 ≈ 36 MeV fm5, the

energy of the C∆s
0 st · ∆s0 term displays a strong downwards slope. Simultaneously, all

other terms containing the spin density st are strongly amplified, in particular the Cs
0s2

0
term (see the right panel of Fig. 1), indicating a strong change in spin polarization.

In Fig. 2, we present the corresponding spin densities s0. In the left panel, at C∆s
0 = 0,

most spins are oriented along the rotation axis of the nucleus. This picture is completely
altered for C∆s

0 = 40 MeV fm5 (right panel). Because the calculations do not converge
for such a value of C∆s

0 , we display the spin density at a few iterations before the code
crashes. First of all, one notice that the norms of the spin vectors are one order of
magnitude larger than at C∆s

0 = 0. Second, the spins are no longer parallel but are in
fact perpendicular to the rotation axis, as is also exemplified in Fig. 3, which presents a
cut of the spin density. As a function of iterations, the spins are evolving from initially
parallel to the rotation axis over an intermediate situation (left panel) to perpendicular

244
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Finite-size spin instabilities – linear response
A. PASTORE, D. TARPANOV, D. DAVESNE, AND J. NAVARRO PHYSICAL REVIEW C 92, 024305 (2015)
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FIG. 3. (Color online) Evolution phonons in 56Ni as a function of the multiplicative factor γ for T44 (a), SLy5 (b), BSk27 (c), and SIII (d).
The caption is the same as that for Fig. 2.

value is not the same for all different multipolarities, still
such a value exists for all multipolarities and we observe a
concentration of the strength of the low-lying RPA phonons
when the respective critical value is approached. We remind
the reader that the breathing mode 0+ does not break the
time-reversal symmetry; thus the time-odd coupling constants
play no role [39].

We have also analyzed the behavior of the vibrational states
up to J = 12 and observed the same trend. It also seems
that they are not decisive for setting the critical value of the
C"s

t coupling constant. For this particular parametrization, the
isoscalar coupling constant is closer to its critical value for
most of the multipolarities considered here.

In Fig. 2(b), we repeat the same calculations, but for the
isovector coupling constant C"s

1 . The multiplier parameter γ
is set in exactly the same way, but for the isovector constant.
In this case the critical coupling constant is located at ≈ 2.5
its nominal value.

In Fig. 3, we investigate further the instabilities related to the
isoscalar coupling constant in 56Ni by performing systematic
RPA calculations with the other selected functionals. We
observe that T44 is not stable when we use the nominal
value of the coupling constant, making it improper for RPA
calculations. To converge the RPA calculations, we have to use
a smaller multiplier, γ ! 0.5. Because in the present study,
we do not modify the coupling constants related to the term
(∇st=0,1)2, our result cannot be directly compared with the one
obtained in Ref. [18].

Similarly the isoscalar coupling constants of the SLy5 and
BSk27 parametrizations of the Skyrme force are close to the
limit of stability and we clearly observe that the phonons in the

area where γ ≈ 1 strongly depend on the exact value of the
time-odd coupling constant C"s

0 . We can thus conclude that
these functionals are not adapted to describe vibrational states
in finite nuclei.

We have also tested the dependence of our results on the
size of the basis. In Fig. 4, we show the evolution of the lowest
critical coupling constants C"s

0c [panel (a)] and C"s
1c [panel (b)],

i.e., the value beyond which at least one of the multipolarities
studied here gives an imaginary phonon, as a function of the
number of major shells n included in our calculation for the
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FIG. 4. (Color online) Evolution of the critical coupling con-
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functions to describe the dependence of the critical coupling constants
with the shell numbers.
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RPA calculation of lowest state of multipolarity J± in 56Ni

Skyrme parameterisation T44, SLy5, BSk27, SIII

nominal coupling constant of the γ C s∆s
t

∫
d3r st∆st term is rescaled by factor γ
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Finite-size spin instabilities

Can be correlated to linear response in infinite matter

A. PASTORE, D. TARPANOV, D. DAVESNE, AND J. NAVARRO PHYSICAL REVIEW C 92, 024305 (2015)

of collapsing solutions in a very tight region of values could
be reproduced using different approaches realized in different
numerical codes. In particular the results obtained with the
present RPA code has been checked [42] using another RPA
code [43] based on the finite amplitude method [41].

IV. RPA INSTABILITIES IN INFINITE MATTER

In this section, we present the formalism of the linear
response theory in infinite nuclear matter. This method has
been the subject of a recent review article [19], where all the
details of the formalism are presented and discussed. We limit
ourselves to sketching the basic ingredients of the formalism.

The first ingredient is the Hartree-Fock retarded propagator
of a noninteracting ph pair. Because for the present study we

ignore the charge-exchange process, the particle and the hole
in the same pair share the same isospin number τ = p,n:

G
(τ )
HF(k,p,ω) =

θ
(
kτ
F − k

)
− θ

(
kτ
F − |k + q|

)

ω + ετ (k) − ετ (k + q) + iη
, (11)

where θ (kτ
F − k) is the standard step-function, ετ (k) = !2k2

2m∗
τ

+
Uτ is the single-particle energy, and m∗

τ and Uτ represent the
effective mass and the single-particle potential, respectively,
while k is the moment of the hole and q is the external
momentum transferred by the probe we use to excite the
system. The latter can be taken along the z axis without loss of
generality [44]. For simplicity, we illustrate the case of SNM,
but the formalism has been already generalized to the more
general case of isospin asymmetric nuclear matter [19,45].
Because the two Fermi surfaces are equal in SNM, we can
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FIG. 7. (Color online) Instabilities in SNM for the functionals considered in the present article. The dashed-dotted horizontal line stands
for the saturation density of the functional. See text for details.
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Unexpected instabilities: ”spin-orbit coexistence”

Jq is not a bulk property, but a shell effect. It varies
rapidly between near-zero and substantial values.
Multiplying a large Jq with a large coupling constant leads
to a large contribution to the spin-orbit potential

Wn(r) = −W0

2

(
2∇ρn +∇ρp) + α Jn + β Jp

which (3) might switch levels originating from different j
shells, which further increases J. Feed this back to (1)
and you have an instability towards unrealistic spectra

fits in many regions of the parameter space not
covered by our parameter sets have this instability

there is even ”spin-orbit current coexistence”

constraint on

C =

∫
d3r Jn · ∇ρn

TXX : parameter set with C J
0 = −157.57 MeV fm5

and C J
1 = −114.88 MeV fm5.

α = C J
0 + C J

1 , β = C J
0 − C J

1 .
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The impact of time-odd terms on energies of 2qp states

In the strong-coupling limit, there are two different ways of coupling two single-article states
Ψk (r) with good jz out of a Kramers-degenerate doublet

ĴzΨ1(r) = K1Ψ1(r) with K1 = 〈Ψ1|L̂z |Ψ1〉+ 〈Ψ1|Ŝz |Ψ1〉
ĴzΨ2(r) = K2Ψ2(r) with K2 = 〈Ψ2|L̂z |Ψ2〉+ 〈Ψ2|Ŝz |Ψ2〉

to a two-particle state with good jz

ĴzΨ1(r)Ψ2(r′) = (K1 + K2)Ψ1(r)Ψ2(r′)

ĴzΨ1(r)Ψ2̄(r′) = (K1 − K2)Ψ1(r)Ψ2̄(r′)

(plus two others related to these by time-reversal).

[C. J. Gallagher, PR 126 (1962) 1525]: For the lower 2qp state in well-deformed even-even

nuclei
∣∣〈Ψ1|Ŝz |Ψ1〉+ 〈Ψ2|Ŝz |Ψ2〉

∣∣ is minimal (anti-parallel spins)

[C. J. Gallagher and S. A. Moszkowski, PR 111 (1958) 1282]: For the lower 2qp state in

odd-odd nuclei
∣∣〈Ψ1|Ŝz |Ψ1〉+ 〈Ψ2|Ŝz |Ψ2〉

∣∣ is maximal (parallel spins)

see also [J. Boisson, R. Piepenbring, and W. Ogle, Phys. Rep. 26 (1976) 99]
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The impact of time-odd terms on energies of 2qp states

Robledo, Bernard, Bertsch, PRC 89 (2014) 021303(R)

RAPID COMMUNICATIONS

L. M. ROBLEDO, R. N. BERNARD, AND G. F. BERTSCH PHYSICAL REVIEW C 89, 021303(R) (2014)

 400

 300

 200

 100

 0Ex
ci

ta
tio

n 
En

er
gy

  (
ke

V
)

(71,102)     (70,103)      (71,103)

Exp. Exp. Exp.D1S D1S D1S
7/2+

5/2-
1/2-

1/2-

7/2+

5/2-

7/2+ 7/2+

5/2- 1-

6-

1-

6-

FIG. 1. (Color online) Low-lying band heads in the spectra of the
nucleus 174Lu and odd-A neighbors: 173Lu (left), 173Yb (center), and
174Lu (right). Due to the inversion of the lowest proton quasiparticle
energies, the ground-state doublet in 174Lu is not the lowest two-
quasiparticle configuration in the calculated spectrum. Lower energy
calculated configurations are not shown.

parametrization. Namely, it is a density-dependent contact
interaction in both the Skyrme and Gogny functionals of the
form

t3(1 + x0P̂σ )δ(!r1 − !r2)ρ((!r1 + !r2)/2)α (1)

in the standard notation [12]. It is further restricted to the
parallel-spin interaction (x0 = 1) in the Gogny functionals.
It must be repulsive to saturate nuclear matter, but it cannot
have a significant antiparallel-spin component because that
channel requires an attractive interaction overall to produce
BCS pairing.

We first illustrate the problem with a well-known example,
the nucleus 174Lu. The odd nucleons in its ground band have
angular momenta and parities (Kp,Kn) = (7/2+,5/2−) for the
proton and neutron respectively. These correspond to Nilsson
orbitals [404] ↓p and [512] ↑n. The spins are parallel for
antiparallel orbital angular momentum, i.e., K = |Kp − Kn|.
Indeed, the ground-state band has Kπ = 1− in agreement with
the Gallagher-Moszkowski rule. The other coupling of angular
momenta, K = Kp + Kn = 6−, is associated with an excited
band with a band head at 171-keV excitation. The experimental
levels are compared with the HFB calculations in Fig. 1. We
first show the spectra of neighboring odd-A nuclei on the
left-hand and middle panels. In the middle one, the theory
confirmed the ground-band assignment of a quasiparticle
in the [512] ↑n Nilsson orbital. However, the theory does
not predict the correct ordering of the proton quasiparticle
energies, shown in the left-hand panel. As a consequence, the
[404] ↓p [512] ↑n appear as excited states in the theoretical
spectrum of the 174Lu, shown in the right-hand panel. One
sees that the level ordering is opposite to the experimental,
with the 6− band head below the 1−, thus violating the GM
rule.

To understand the theoretical splittings in more detail, we
separate three contributions:

(i) the spin dependence of the two-body interaction,
treating the interaction in first-order perturbation
theory;

TABLE I. Theoretical spin splittings of neutron-proton configu-
rations for odd-odd nuclei in the rare-earth region. For each nucleus,
two-quasiparticle states were constructed, taking 10 to 15 proton
quasiparticle orbitals and a like number of neutron quasiparticle
orbitals. The table shows the percentages of the cases in which the
calculated splitting agrees with the GM rule, combining the results
for several isotopes of each element. Columns labeled 2BP, 3BP,
and FP show the perturbative results for the two-body interaction
alone, the three-body interaction alone, and the full interaction
treated perturbatively. The last column shows the results of the fully
self-consistent calculation of the HFB minima. The table shows the
results for the D1S interaction [13]. We also have calculated splittings
with the D1M interaction [14] and found similar results.

2BP (%) 3BP (%) FP (%) Self-consistent (%)

164−168Ho 93 8 28 45
168−172Tm 97 4 26 41
172−176Lu 97 4 28 40
180−184Ta 97 5 37 30
184−188Lu 97 3 36 28

(ii) the spin dependence of the density-dependent interac-
tion, again treating it perturbatively;

(iii) the many-body rearrangement effects associated
with the wave function modifications in the two-
quasiparticle state.

The two- and three-body perturbative contributions are +188
and −291 keV, respectively. The rearrangement contribution
is +44 keV, giving a total splitting of −61 keV as shown in
the level scheme in Fig. 1. This should be compared with an
empirical value of +114, which is what is left of the observed
splitting of +171 after the rotational effects have been removed
[10]. Thus, as claimed earlier, the three-body contribution has
a bad sign and in this case it overwhelms the good sign of the
two-body contribution.

We carried out this analysis on 100–225 doublets in each of
15 nuclei in the deformed rare-earth region. All of these nuclei
have strong prolate deformations. The results are shown in
Table I. A histogram of calculated GM splittings for for the Lu
isotopes is provided in the Supplemental Material [16]. These
results confirm the statements made earlier that the two-body
interaction has a correct sign, the three-body interaction has
the wrong sign, and the net sign with all the contributions is
variable and inconsistent with a general GM rule.

To gain a better understanding of the origin of the problem
we briefly review how the interaction energies are calculated
using the one-body densities of Hartree-Fock-Bogoliubov
(HFB) theory. When time-reversal symmetry is broken the
one body-density matrix can be decomposed as the sum of a
time-even density and a time-odd density. In the expression of
the total energy there is a contribution which is quadratic in
the time-odd term. Starting from an even-even HFB reference
state, the creation of a quasiparticle leads to a nonzero time-odd
density matrix. The blocking of the time-reversed state leads to
the same time-odd density but with opposite sign. To build the
two configurations defining a GM pair, a proton quasiparticle
with quantum number Kp and a neutron one with Kn are
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[404] ↓p [512] ↑n coupled to 1− or 6−

Gogny force

density-dependent term (called ”3-body” for
whatever reason) is identified as likely origin of
the wrong sign of the matrix element of the
spin-spin interaction

Skyrme SLy4 gives same for this nucleus (MB,
unpublished)
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blocked to obtain one of the states. The other corresponds to
blocking (−Kp,Kn). Among the different terms contributing
to the energy in the Gogny interaction there are a few that
do not contribute to the splitting, namely the Wigner term of
the central potential, the Coulomb potential, and the pairing
channel of the central potential. Among the remaining terms,
the spin-orbit contribution is much smaller than the other two
and will be omitted in the discussion. Tensor potentials are
not common either in Gogny or Skyrme interactions but they
may be required to improve the single-particle spectrum in
some cases [15,17]. It was shown in Ref. [10] that the tensor
contribution to the GM splitting has in most of the cases the
same sign as the central one and is typically much smaller
in magnitude. Its inclusion is not expected to modify our
conclusions; we only consider the contributions of central
two-body and three-body interactions in the following.

We first calculate the perturbative contribution to the split-
ting, taking the expectation value of the energy functional in the
two-quasiparticle states formed by applying the Bogoliubov
quasiparticle creation operators to the HFB ground state of
a neighboring even-even nucleus. The formula for the energy
difference due to the three-body interaction is very simple if the
quasiparticle spins are perfectly aligned along the symmetry
axis. Namely, the contribution of the three-body term !v3b is

!v3b = v3b(Kp,Kn) − v3b(−Kp,Kn)

= 4t3

∫
d3"rρα

(
ρ

p,o
1/2,1/2ρ

n,o
1/2,1/2 + ρ̄

p,o
1/2,−1/2ρ̄

n,o
1/2,−1/2

)
,

(2)

where ρ is the ordinary density, and ρτ,t
s,s ′ ("r) =∑

ll′ ρ
τ,t
qs,q ′s ′ϕ∗

q ′ ("r)ϕq("r) represent the different components of
the density, depending on nucleon type τ , spin projections
s and s ′, and the time-reversal behavior t = ±1 (even, odd)
of the density matrix elements ρτ,t

qs,q ′s ′ . The bar denotes the
modulus of a (complex) density. If the blocked quasiparticle
is BCS-like (i.e., linear combinations of creation and
annihilation canonical basis states) then the time-odd density
matrix ρτ,o

qs,q ′s ′ is diagonal in the canonical basis with zeros in
the diagonal except for the blocked orbital quantum number,
where it takes the value ±1/2 according to the direction of
the spin σ of the blocked orbital. In this very specific case
only taking place at the first iteration (first order), the density
ρτ,o

1/2,−1/2 is zero and the sign of ρτ,o
1/2,1/2 equals (−1)σ−1/2.

Therefore !v3b is positive for parallel spins and negative for
antiparallel ones, just the opposite of the GM rule.1 Since all
of the quantities in the integrand as well as t3 are positive, the
contribution to the splitting is repulsive, i.e., the wrong sign.

It is also of interest to examine the various interactions in a
momentum space representation, taking the two-quasiparticle
wave function as |"knsn,"kpsp〉 with "k as the nucleon’s mo-

1In the actual HFB calculation the blocked quasiparticle may have
a mixture of the two spin orientations and the simple argument
given above may fail. This occurs for some configurations treated in
Table I.
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FIG. 2. Matrix elements of the effective neutron-proton interac-
tion from the D1S Gogny energy functional at nuclear matter density,
ρ = 0.16 fm−3. In the upper panel, the individual contributions of
the two- and three-body terms from Eqs. (3) and (4) are shown. In
the lower panel, the total for the D1S is shown in comparison to the
empirical !vnp discussed in Refs. [10,18].

mentum and s as its spin quantum number.2 The two-body
interaction energy in the Gogny functional depends on the
relative momentum |"kn − "kp|. Taking the two particles on
the Fermi surface, the relative momentum is given by q± =
kF

√
1 ± cos θ with cos θ = "kn · "kp/knkp. The contribution to

the GM splitting,

!v2b = 〈q+ ↑n↑p |v|q+ ↑n↑p〉 − 〈q− ↑n↓p |v|q− ↑n↓p〉,
(3)

is shown in the left-hand panel of Fig. 2 as the solid line. The
three-body contribution, given by

!v3b = t3ρ
α, (4)

is shown as the dashed line. One sees that the two components
have opposite sign. They are added together in the plot on the

2See Supplemental Material for specific formulas in terms of the
Gogny parameters [16].
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And there is still more

When preparing the transparencies, I expected that I ran out of time by now, so here is a
short list of further issues:

How to calculate observables in the context of an effective EDF? Do we need
effective operators for other observables as well?

Which is the range of densities, momenta, . . . at which an EDF that describes finite
nuclei can be meaningfully applied? How to consistently define cutoffs?

Is large-amplitude motion described by the same EDF formalism as stationary states?

How to make efficient use of modern high-performance computation? (see talk by
WR)

Add your own problems and worries.
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