Microscopic Analysis of Induced Nuclear Fission Dynamics

Dario Vretenar University of Zagreb

Future of nuclear fission theory

J. Phys. G: Nucl. Part. Phys. 47 (2020) 113002

Two basic microscopic approaches to the description of induced fission dynamics:

The time-dependent generator coordinate method (TDGCM)

$$|\Psi(t)\rangle = \int_{\boldsymbol{q}\in E} \mathrm{d}\boldsymbol{q} |\phi(\boldsymbol{q})\rangle f(\boldsymbol{q},t).$$

 \Rightarrow represents the nuclear wave function by a superposition of generator states that are functions of collective coordinates.

 \Rightarrow a fully quantum mechanical approach but only takes into account collective degrees of freedom in the adiabatic approximation.

 \Rightarrow no dissipation mechanism.

TDGCM in the Gaussian overlap approximation (TDGCM+GOA)

Example

Time-dependent Schroedinger-like equation for fission dynamics (axial quadrupole and octupole deformation parameters as collective degrees of freedom):

$$i\hbar\frac{\partial}{\partial t}g(\beta_2,\beta_3,t) = \left[-\frac{\hbar^2}{2}\sum_{kl}\frac{\partial}{\partial\beta_k}B_{kl}(\beta_2,\beta_3)\frac{\partial}{\partial\beta_l} + V(\beta_2,\beta_3)\right]g(\beta_2,\beta_3,t)$$

RMF+BCS quadrupole and octupole constrained deformation energy surface of 226 Th in the $\beta_2 - \beta_3$ plane.

TAO, ZHAO, LI, NIKŠIĆ, AND VRETENAR PHYSICAL REVIEW C **96**, 024319 (2017)

→ includes static correlations: deformations & pairing

→ does not include dynamic (collective) correlations that arise from symmetry restoration and quantum fluctuations around mean-field minima

PC-PK1 plus δ-force pairing

A triple-humped fission barrier is predicted along the static fission path, and the calculated heights are **7.10**, **8.58**, **and 7.32 MeV** from the inner to the outer barrier.

The height of the fission barriers (in MeV) with respect to the corresponding ground-state minima:

	B_I	B_{II}^{asy}	$B_{III}^{\rm asy}$	B_{II}^{sym}	$B_{III}^{\rm sym}$
90% pairing	8.23	9.47	7.74	15.64	6.38
100% pairing	7.10	8.58	7.32	14.21	5.72
110% pairing	5.92	7.78	7.09	12.72	5.17

Induced Fission - Finite Temperature Effects

Finite temperature effects:

$$i\hbar \frac{\partial g(\boldsymbol{q},t)}{\partial t} = \hat{H}_{coll}(\boldsymbol{q})g(\boldsymbol{q},t)$$
$$\hat{H}_{coll}(\boldsymbol{q}) = -\frac{\hbar^2}{2} \sum_{ij} \frac{\partial}{\partial q_i} B_{ij}(\boldsymbol{q}) \frac{\partial}{\partial q_j} + V(\boldsymbol{q})$$
$$\text{Helmholtz free energy:} \quad F = E(T) - TS$$

... entropy of the compound nuclear system:

$$S = -k_B \sum_{k} \left[f_k \ln f_k + (1 - f_k) \ln(1 - f_k) \right]$$

... thermal occupation probabilities:

$$f_k = \frac{1}{1 + e^{\beta E_k}}$$

Dynamics of induced fission

Zhao, Nikšić, Vretenar, Zhou Phys. Rev. C **99**, 014618 (2019).

Charge yields:

Experimental results \implies photoinduced fission with photon energies in the interval 8 – 14 MeV, and a peak value E γ = 11 MeV.

T = 0.5, **0.75**, **1.0**, and 1.25 MeV **•••** corresponding internal excitation energies E* are: 2.58, **8.71**, **16.56**, and 27.12 MeV, respectively.

*The temperature is adjusted so that the intrinsic excitation energy corresponds to the experimental exc. energy.

Zhao, Nikšić, Vretenar Phys. Rev. C **104**, 044612 (2021).

SCMF deformation energy surface \Rightarrow constraints on the mass multipole moments and the particle-number dispersion operator: $\Delta \hat{N}^2 = \hat{N}^2 - \langle \hat{N} \rangle^2$.

3D TDGCM+GOA calculation

$$\hat{H}_{\text{coll}}(\boldsymbol{q}) = -\frac{\hbar^2}{2} \sum_{ij} \frac{\partial}{\partial q_i} B_{ij}(\boldsymbol{q}) \frac{\partial}{\partial q_j} + V(\boldsymbol{q}) \qquad \mathbf{q} = \{\beta_2, \beta_3, \lambda_2\}$$

Effect of dynamical pairing on the flux of the probability current through the scission hyper-surface:

$$B(\lambda_2) \propto \sum_{\xi \in \mathcal{B}} \lim_{t \to \infty} F(\xi, \lambda_2, t).$$

 \rightarrow time-integrated flux through the scission contour in the (β_2 , β_3) plane, for a given value of the pairing collective coordinate λ_2 .

Charge yields calculated in the 3D collective space \rightarrow deformation β_2 , β_3 and dynamical pairing λ_2 coordinates.

Adiabatic evolution and dissipative dynamics

Time-dependent density functional theory (TDDFT)

$$i\frac{\partial}{\partial t}\psi_k(\boldsymbol{r},t) = \left[\hat{h}(\boldsymbol{r},t) - \varepsilon_k(t)\right]\psi_k(\boldsymbol{r},t),$$

$$i\frac{d}{dt}n_k(t) = n_k(t)\Delta_k^*(t) - n_k^*(t)\Delta_k(t),$$
flu
$$i\frac{d}{dt}\kappa_k(t) = [\varepsilon_k(t) + \varepsilon_{\bar{k}}(t)]\kappa_k(t) + \Delta_k(t)[2n_k(t) - 1].$$

 \Rightarrow classical evolution of independent nucleons in mean-field potentials, cannot be applied in classically forbidden regions of the collective space, nor does it take into account quantum fluctuations.

 \Rightarrow automatically includes the one-body dissipation mechanism, but can only simulate a single fission event by propagating the nucleons independently.

Negele et al. (1978) — use an adiabatic model for the time interval in which the fissioning nucleus evolves from the quasi-stationary initial state to the saddle point, and a non-adiabatic method for the saddle-to-scission and beyond-scission dynamics.

Ren, Zhao, Vretenar, Nikšić, Zhao, Meng Phys. Rev. C **105**, 044313 (2022).

TDDFT fission trajectories

Total kinetic energies (TKEs) of the fragments

TDGCM+GOA
$$E_{\text{TKE}} = \frac{e^2 Z_H Z_L}{d_{\text{ch}}}$$
, distance between centers of charge at the point of scission.

TDDFT
$$E_{\mathrm{TKE}} = \frac{1}{2}mA_{\mathrm{H}}\boldsymbol{v}_{\mathrm{H}}^{2} + \frac{1}{2}mA_{\mathrm{L}}\boldsymbol{v}_{\mathrm{L}}^{2} + E_{\mathrm{Couls}}$$

(~ 25 fm, at which shape relaxation brings the fragments to their equilibrium shapes)

Extended TDGCM - dissipation effects

Zhao, Nikšić, Vretenar Phys. Rev. C **105**, 054604 (2022).

Extended TDGCM many-body wave function: $|\Phi(t)\rangle = \sum_n \int d{m q} f_n({m q},t) \, |n{m q}\rangle$

... excited states at each value of the collective coordinate **q**

 \Rightarrow the matrix integral Hill-Wheeler equation:

$$\sum_{n'} \int d\boldsymbol{q}' \left\{ \mathcal{H}_{nn'}(\boldsymbol{q}, \boldsymbol{q}') f_{n'}(\boldsymbol{q}', t) - \mathcal{N}_{nn'}(\boldsymbol{q}, \boldsymbol{q}') \left[i\hbar \partial_t f_{n'}(\boldsymbol{q}', t) \right] \right\} = 0$$

... the level density for each value of **q** is high even at low excitation energies \Rightarrow the discrete label *n* can be separated into a continuous excitation energy variable ε , and a degeneracy label λ :

$$\begin{split} \sum_{\lambda, \text{ fixed } \epsilon} &= \rho(\boldsymbol{q}, \epsilon) d\epsilon, \\ i\hbar \frac{\partial}{\partial t} \psi(\boldsymbol{q}, \epsilon; t) &= \int d\boldsymbol{q}' h(\boldsymbol{q}, \boldsymbol{q}'; \epsilon, \epsilon) \psi(\boldsymbol{q}', \epsilon; t) \\ &+ \sum_{\lambda' \neq \lambda} \int \int d\boldsymbol{q}' d\epsilon' h(\boldsymbol{q}, \boldsymbol{q}'; \epsilon, \epsilon') \psi(\boldsymbol{q}', \epsilon'; t), \end{split}$$

... expansion of the Hamiltonian kernel in a power series in collective momenta: $m{P}=-i\hbar(\partial/\partialm{q}),$

$$i\hbar\partial_t\psi(\boldsymbol{q},\epsilon;t) = \left[V(\boldsymbol{q},\epsilon) + \boldsymbol{P}\frac{1}{2\mathcal{M}(\boldsymbol{q},\epsilon)}\boldsymbol{P}\right]\psi(\boldsymbol{q},\epsilon;t) \\ + \frac{i}{2}\int\left\{\boldsymbol{P},\boldsymbol{\eta}(\boldsymbol{q};\epsilon,\epsilon')\right\}\psi(\boldsymbol{q},\epsilon';t)d\epsilon'.$$

...dissipation function: $oldsymbol{\eta}(oldsymbol{q};\epsilon,\epsilon') \ = \ h^{(1)}(oldsymbol{q};\epsilon,\epsilon')/\hbar$

... excitation energy \rightarrow nuclear temperature $\eta(q; T, T') \equiv$

$$\eta(\boldsymbol{q};T,T') \equiv \eta(\boldsymbol{q};\epsilon(T),\epsilon(T'))$$

Extended TDGCM

$$i\hbar\partial_t\psi(\boldsymbol{q},T;t) = \left[V(\boldsymbol{q},T) + \boldsymbol{P}\frac{1}{2\mathcal{M}(\boldsymbol{q},T)}\boldsymbol{P}\right]\psi(\boldsymbol{q},T;t) \\ + \frac{i}{2}\int\left\{\boldsymbol{P}, \mathcal{O}(\boldsymbol{q};T,T')\right\}\psi(\boldsymbol{q},T';t)dT', \\ \mathcal{O}(\boldsymbol{q};T,T') = \eta(\boldsymbol{q};T,T')d\epsilon(T)/dT.$$

ILLUSTRATIVE CALCULATION: INDUCED FISSION DYNAMICS OF ²²⁸Th

The data for photo-induced fission correspond to photon energies in the interval 8 – 14 MeV, and a peak value of E_{γ} = 11 MeV.

2D projections on the (β_2 , β_3) plane of the probability distribution of the initial wave packet, at different T. The excitation energy of the initial state is E^{*} = 11 MeV.

The collective potential:

$$V(\boldsymbol{q},T) = \epsilon(T) + F(\boldsymbol{q},T)$$

The dissipation function:

$$\boldsymbol{\eta}(\boldsymbol{q};T,T') = \begin{cases} 0 & \beta_2 < \beta_2^0\\ \boldsymbol{\eta}(T,T') & \beta_2 \ge \beta_2^0, \end{cases}$$
Gaussian random variables

Yields (normalized to 200)

Total Kinetic Energy Distribution

The integrated flux F (ξ ; t) for a given scission surface element ξ is defined:

$$F(\xi;t) = \int_{t_0}^t dt' \int_{(\boldsymbol{q},T)\in\xi} \boldsymbol{J}(\boldsymbol{q},T;t') \cdot d\boldsymbol{S},$$

Scission contours for 228 Th in the (β_2 , β_3) deformation plane for several values of the nuclear temperature T, plotted on the deformation energy surface calculated at

The TKE for the fission fragment with mass A:

Zhao, Nikšić, Vretenar Phys. Rev. C 106, 054609 (2022).

Dynamical synthesis of ⁴He in the scission phase of nuclear fission

TDDFT fission trajectories

Density profiles at times immediately prior to the scission event.

Ren, Vretenar, Nikšić, Zhao, Zhao, Meng, Phys. Rev. Lett. 128, 172501 (2022).

For homogeneous nuclear matter: $C_{q\sigma}=1/2$

For the a-cluster of four particles: $C_{q\sigma}(\vec{r}) \, pprox \, 1$

Generalized time-dependent generator coordinate method

Li, Vretenar, Nikšić, Zhao, Meng, Phys. Rev. C **108**, 014321 (2023).

...collective wave function: $g = \mathcal{N}^{1/2} f$

$$i\hbar \dot{g} = \mathcal{N}^{-1/2} (H - H^{MF}) \mathcal{N}^{-1/2} g + i\hbar \dot{\mathcal{N}}^{1/2} \mathcal{N}^{-1/2} g.$$

Superposition of 5 TD-DFT trajectories from region 1.

Methods (TDGCM, TDDFT) based on the framework of universal Energy Density Functionals

✓ ...accurate microscopic description of universal collective phenomena (fission) that reflect the organisation of nucleonic matter in finite nuclei.

- Finite temperature effects
- Energy dissipation and TKE of fragments
- Neck formation and scission mechanism
- Ternary fission
- Fragment angular momentum generation
- Symmetry restoration