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Figure 1. Schematic illustration of the features most relevant to the ssion phenomenon.
The red curve depicts (in a one-dimensional projection) the potential energy as a function
of the elongation; the ground state is at the lowest minimum, and the shape-isomeric
state is at the second minimum. From these states it is possible to tunnel through the
potential barrier. Tunnelling is also relevant for neutron or photon induced ssion when
the resulting initial state lies below the ssion barrier. If the initial state is excited above
the ssion barrier, it may undergo a complicated shape evolution crossing the barrier
from above. Once the system nds itself beyond the barrier, it relatively quickly descends
towards scission. There it divides into two nascent fragments, which subsequently move
apart under the in uence of their mutual Coulomb repulsion while gradually attaining
their equilibrium shapes and become primary fragments. Primary fragments then de-
excite by evaporating neutrons, radiating photons, and undergoing decay.

In addition to an SF, ssion can be induced by a variety of nuclear reactions. The ssion-

induced processes include: neutron capture (responsible for energy production in ssion reac-

tors), electron capture and beta decay, photo ssion, and reactions involving charged particles

and heavy ions. In all these processes, the ssioning nucleus is created in an excited state,

which may lie above or below the ssion barrier.

Theoretical descriptions of ssion induced by fast probes often assume the creation of

a compound nucleus at a given thermal excitation energy. However, as discussed later, that

assumption might be ill-founded for fast probes because the nuclear system may not have

suf cient time to thermalise before undergoing ssion. This becomes increasingly important

at higher energies where pre-equilibrium processes play an increasingly signi cant role and

may lead to the emission of one or more nucleons before equilibrium is reached. Moreover, as

the excitation energy of the compoundnucleus is increased, neutron evaporation competes ever

more favourablywith ssion and as a result, one ormore neutronsmay be evaporated before s-

sion occurs (multi-chance ssion). In addition, for non-thermalised systems one should develop

approaches using xed energy rather than xed temperature.

2.2. Important observables

When talking about ssion observables, it is important to remember that what is often

considered ‘experimental’ is often the result of an indirect process, in which a quantity of
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Two basic microscopic approaches to the description of induced fission dynamics: 

The time-dependent generator coordinate method (TDGCM) 

Verriere and Regnier The TDGCM in Nuclear Physics

the one-body density). The generator state is then obtained
by minimizing the Routhian

)] HFB )] , (1)

where the refer to the chosen multipole operators and
are their associated Lagrange multipliers. This method presents
the benefit of controlling the principal components of the shape
of the states through a small set of DoFs. The other DoFs are
determined automatically from the HFB variational principle. It
is often qualified as an adiabatic method because the generator
states will minimize their HFB energy under a small number
of constraints. One drawback of this method is that it does no
necessarily ensure the continuity of the function
This could severely a ect some applications as mentioned in
sections 2.6, 3.3.

In the context of nuclear structure, the now-standard strategy
of symmetry breaking and restoration provides a di erent yet
natural way of building generator states. In this context, w
typically define the generator states as the result of applying a
parameterized group of symmetry operators on a reference (and
symmetry breaking) HFB state . Typically, for the particle-
number symmetry, the relevant collective coordinate is the gauge
angle 16] and the generator states read

exp . (2)

Note that the two strategies mentioned above to create the
generator states are often mixed when dealing with several
collective coordinates [ ].

2.2. Griffin-Hill-Wheeler Ansatz
Once the family of generator states is chosen, the Gri n-Hill-
Wheeler (GHW) ansatz assumes that the many-body state of the
system reads at any time

∣

∣9(t)
〉

=

∫

q∈E
dq

∣

∣φ(q)
〉

f (q, t). (3)

The function ) gives the complex-valued weights of this
quantum mixture of states. It should belong to the space
of square-integrable functions that we note here ). The
expectation value of any observable for a GHW state has the
compact form

∫∫

). (4)

We used here the notation ) for the kernel of the
observable defined by

. (5)

Significant kernels that we will discuss through this review are
the norm kernel and the energy (or Hamiltonian) kernel. They
are defined as

(Hamiltonian), (6)

(norm). (7)

We emphasize that the choice of collective coordinates is
somehow arbitrary. From one choice of collective coordinate, we
may switch to a di erent one while keeping invariant the space of
GHW states. We can show this by defining a change of variable

). (8)

Then we may consider the GHW ansatz built on the transformed

generator states ))

). (9)

Any GHW state defined by Equation (3) can be cast into
Equation (9) with the weight function

), det( )) . (10)

Here is the Jacobian matrix of the coordinate transformation.
Also, the formula for the expectation value observables is
invariant by this change of coordinate. Typically we have in
the representation

∫∫

), (11)

with

. (12)

Although applying such a change of variable does not change
the physics of the ansatz, it does change intermediate quantities
involved in the GCM framework. In some cases, it may be
essential to change the variables to obtain valuable mathematical
properties of the kernel operators [15 16].

As a final remark, we would like to highlight that the
integral of Equation (3) may not be well defined for some
weight functions and family of generator states. The [15] gives
a mathematically rigorous presentation of the GCM framework
We retain from this work that a su cient condition for the GHW
ansatz to be valid is that norm kernel defines a bounded linear
operator on ).

2.3. Griffin-Hill-Wheeler Equation
The time-dependent Schrödinger equation in the entire many-
body Hilbert space,

0, (13)

drives the exact time evolution of amany-body system .We
assume here that all the interactions between the nucleons are
encoded into the Hamiltonian acting on the full many-body
space. From this starting point, the TDGCM equation of motion
can be obtained by assuming that at any time

1. the wave function of the system keeps the form of
Equation (3),
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⇒ represents the nuclear wave function by a superposition of 

generator states that are functions of collective coordinates. 

⇒ a fully quantum mechanical approach but only takes into account collective degrees of freedom in 

the adiabatic approximation. 

⇒ no dissipation mechanism. 

TDGCM in the Gaussian overlap approximation (TDGCM+GOA)

Time-dependent Schroedinger-like equation for fission dynamics (axial quadrupole and octupole deformation 

parameters as collective degrees of freedom): 

i!
∂

∂t
g(β2,β3, t) =

[

−
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2

2
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Example 



RMF+BCS quadrupole and octupole constrained deformation energy surface of 226Th in the β2 − β3 plane. 

PC-PK1 plus δδ-force pairing

→ includes static correlations:  

deformations & pairing 

→ does not include dynamic  

(collective) correlations that  

arise from symmetry restoration  

and quantum fluctuations  

around mean-field minima



is indeed at , that is, axial prolate. The microscopic

of coexistence of the two minima becomes apparent from the dependence of the single-

on the two deformation parameters. Figure 12

of Th along a path in the

up to the position of the

at

0 to

of low-energy octupole collectivity is

of pairs of orbitals near the Fermi level that are strongly coupled by the octupole

In the panels on the left of 12 we notice states of opposite parity that

15 13

be related to the level density around the Fermi surface, that is, a lower-

of single-particle levels results in extra binding. Therefore, the local

on the axial energy surface of Th re of

of the Nilsson diagram for 0. For the levels in the panels on the right of

12 is not conserved, and the only quantum number that characterises these states

is the projection of the angular momentum on the symmetry axis. The octupole minimum,

in is attributed to the low density of both proton and

Th single-neutron in
as functions of the deformation parameters. The path follows the

up to the position of the equilibrium minimum
. For

on the right display the single-nucleon energies from 0 to
of the Fermi level at each deformation.
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A triple-humped fission barrier is predicted along 

the static fission path, and the calculated heights 

are 7.10, 8.58, and 7.32 MeV from the inner to the 

outer barrier. 

FIG. 4: (Color online) The calculated total kinetic energy of the nascent fission fragments for 226Th

as a function of fragment mass, in comparison to the data [53].

TABLE I: The height of the fission barriers (in MeV) with respect to the corresponding ground-

state minima, for di erent values of the pairing strengths.

BI B
asy

II B
asy

III B
sym

II B
sym

III

90% pairing 8.23 9.47 7.74 15.64 6.38

100% pairing 7.10 8.58 7.32 14.21 5.72

110% pairing 5.92 7.78 7.09 12.72 5.17

dynamics, we analyze the characteristics of the fission process for di erent strengths of

the pairing interaction. Figure 5 displays the PESs of 226Th for three parametrizations of

pairing force: ( , V ) = (324 340 2), (360, 378), and (396, 415.8) MeV fm . These values

correspond to 90%, 100%, and 110%, respectively, of the original pairing strengths that

were determined to reproduce the empirical pairing gaps of 226Th. Even though the general

topography of the PESs does not change significantly as pairing increases, the barriers are

reduced considerably (see Table I). In particular, the ridge between the symmetric and

asymmetric fission valleys is lowered, and this leads to pronounced competition between the

two fission modes (c.f. Fig. 10).

In Fig. 6 we plot the collective masses 22 and 33 , related to vibrations in and

11

The height of the fission barriers (in MeV) with respect 

to the corresponding ground-state minima:



    Induced Fission - Finite Temperature Effects



    Finite temperature effects:

The entropy of the nuclear system is calculated using
the relation:

ln + (1 ) ln(1 )] (14)

The thermodynamical potential relevant to study finite-
temperature deformation e ects is the Helmholtz free en-
ergy TS, computed at constant volume
and temperature [44]. ) is the binding energy of
the deformed nucleus, and the deformation-dependent
energy landscape is obtained in a self-consistent finite-
temperature mean-field calculation with constraints on
the mass multipole moments . The nuclear
shape is parameterized by the deformation parameters

AR
(15)

The shape is assumed to be invariant under the exchange
of the and axes, and all deformation parameters
with even can be included simultaneously. The self-
consistent RMF+BCS equations are solved by an expan-
sion in the axially deformed harmonic oscillator (ADHO)
basis [54]. In the present study calculations have been
performed in an ADHO basis truncated to = 20 os-
cillator shells. For details of the MDC-RMF model we
refer the reader to Ref. [34].

In the TDGCM+GOA nuclear fission is modeled as
a slow adiabatic process driven by only a few collective
degrees of freedom [18]. The dynamics is described by
a local, time-dependent Schrödinger-like equation in the
space of collective coordinates

i!
∂g(q, t)

∂t
= Ĥcoll(q)g(q, t) (16)

The collective Hamiltonian coll ) reads

coll ) =
ij

ij (17)

where ) and ij ) = ) are the collective po-
tential and mass tensor, both determined by microscopic

self-consistent mean-field calculations based on universal
energy density functionals. , t) is the complex wave
function of the collective variables

The collective space is divided into the inner region
with a single nuclear density distribution, and an external
region that contains the two fission fragments. The set
of scission configurations defines the hyper-surface that
separates the two regions. The flux of the probability
current through this hyper-surface provides a measure of
the probability of observing a given pair of fragments at
time . Each infinitesimal surface element is associated
with a given pair of fragments ( , A ), where and

denote the lighter and heavier fragment, respectively.
The integrated flux , t) for a given surface element
is defined as [16]

, t) = , t (18)

where , t) is the current

, t) = )[ , t , t , t , t)]

(19)
The yield for the fission fragment with mass is defined
by

lim
→∞

, t (20)

The set ) contains all elements belonging to the scis-
sion hyper-surface such that one of the fragments has
mass number

The inertia tensor is calculated in the finite-
temperature perturbative cranking approximation [43,

Cp
(1) (3) (1) (21)

with

ij,T 〉〈 tanh tanh

)]}

〉〈 tanh + tanh

)]}

(22)

The starting point of the dynamical calculation is the
choice of the collective wave packet , t = 0). We build
the initial state as a Gaussian superposition of the quasi-

bound states

, t = 0) = exp (23)

The entropy of the nuclear system is calculated using
the relation:

ln + (1 ) ln(1 )] (14)

The thermodynamical potential relevant to study finite-
temperature deformation e ects is the Helmholtz free en-
ergy TS, computed at constant volume
and temperature [44]. ) is the binding energy of
the deformed nucleus, and the deformation-dependent
energy landscape is obtained in a self-consistent finite-
temperature mean-field calculation with constraints on
the mass multipole moments . The nuclear
shape is parameterized by the deformation parameters

AR
(15)

The shape is assumed to be invariant under the exchange
of the and axes, and all deformation parameters
with even can be included simultaneously. The self-
consistent RMF+BCS equations are solved by an expan-
sion in the axially deformed harmonic oscillator (ADHO)
basis [54]. In the present study calculations have been
performed in an ADHO basis truncated to = 20 os-
cillator shells. For details of the MDC-RMF model we
refer the reader to Ref. [34].

In the TDGCM+GOA nuclear fission is modeled as
a slow adiabatic process driven by only a few collective
degrees of freedom [18]. The dynamics is described by
a local, time-dependent Schrödinger-like equation in the
space of collective coordinates

, t
coll , t (16)

The collective Hamiltonian coll ) reads

Ĥcoll(q) = −
!
2

2

∑

ij

∂

∂qi
Bij(q)

∂

∂qj
+ V (q), (17)

where ) and ij ) = ) are the collective po-
tential and mass tensor, both determined by microscopic

self-consistent mean-field calculations based on universal
energy density functionals. , t) is the complex wave
function of the collective variables

The collective space is divided into the inner region
with a single nuclear density distribution, and an external
region that contains the two fission fragments. The set
of scission configurations defines the hyper-surface that
separates the two regions. The flux of the probability
current through this hyper-surface provides a measure of
the probability of observing a given pair of fragments at
time . Each infinitesimal surface element is associated
with a given pair of fragments ( , A ), where and

denote the lighter and heavier fragment, respectively.
The integrated flux , t) for a given surface element
is defined as [16]

, t) = , t (18)

where , t) is the current

, t) = )[ , t , t , t , t)]

(19)
The yield for the fission fragment with mass is defined
by

lim
→∞

, t (20)

The set ) contains all elements belonging to the scis-
sion hyper-surface such that one of the fragments has
mass number

The inertia tensor is calculated in the finite-
temperature perturbative cranking approximation [43,

Cp
(1) (3) (1) (21)

with

ij,T 〉〈 tanh tanh

)]}

〉〈 tanh + tanh

)]}

(22)

The starting point of the dynamical calculation is the
choice of the collective wave packet , t = 0). We build
the initial state as a Gaussian superposition of the quasi-

bound states

, t = 0) = exp (23)

The entropy of the nuclear system is calculated using
the relation:

ln + (1 ) ln(1 )] (14)

The thermodynamical potential relevant to study finite-
temperature deformation e ects is the Helmholtz free en-
ergy F = E(T ) − TS, computed at constant volume
and temperature [44]. ) is the binding energy of
the deformed nucleus, and the deformation-dependent
energy landscape is obtained in a self-consistent finite-
temperature mean-field calculation with constraints on
the mass multipole moments . The nuclear
shape is parameterized by the deformation parameters

AR
(15)

The shape is assumed to be invariant under the exchange
of the and axes, and all deformation parameters
with even can be included simultaneously. The self-
consistent RMF+BCS equations are solved by an expan-
sion in the axially deformed harmonic oscillator (ADHO)
basis [54]. In the present study calculations have been
performed in an ADHO basis truncated to = 20 os-
cillator shells. For details of the MDC-RMF model we
refer the reader to Ref. [34].
In the TDGCM+GOA nuclear fission is modeled as

a slow adiabatic process driven by only a few collective
degrees of freedom [18]. The dynamics is described by
a local, time-dependent Schrödinger-like equation in the
space of collective coordinates

, t
coll , t (16)

The collective Hamiltonian coll ) reads

coll ) =
ij

ij (17)

where ) and ij ) = ) are the collective po-
tential and mass tensor, both determined by microscopic

self-consistent mean-field calculations based on universal
energy density functionals. , t) is the complex wave
function of the collective variables

The collective space is divided into the inner region
with a single nuclear density distribution, and an external
region that contains the two fission fragments. The set
of scission configurations defines the hyper-surface that
separates the two regions. The flux of the probability
current through this hyper-surface provides a measure of
the probability of observing a given pair of fragments at
time . Each infinitesimal surface element is associated
with a given pair of fragments ( , A ), where and

denote the lighter and heavier fragment, respectively.
The integrated flux , t) for a given surface element
is defined as [16]

, t) = , t (18)

where , t) is the current

, t) = )[ , t , t , t , t)]

(19)
The yield for the fission fragment with mass is defined
by

lim
→∞

, t (20)

The set ) contains all elements belonging to the scis-
sion hyper-surface such that one of the fragments has
mass number

The inertia tensor is calculated in the finite-
temperature perturbative cranking approximation [43,

Cp
(1) (3) (1) (21)

with

ij,T 〉〈 tanh tanh

)]}

〉〈 tanh + tanh

)]}

(22)

The starting point of the dynamical calculation is the
choice of the collective wave packet , t = 0). We build
the initial state as a Gaussian superposition of the quasi-

bound states

, t = 0) = exp (23)

F = E((((T )))) − TSHelmholtz free energy:

Gogny functionals [48]. The e ect of FT on perturbative
cranking inertia tensors has also been investigated in the
FT-HFB framework [43, 48]. Exploratory studies of FT

ects on induced fission yield distributions using semi-
classical approaches have been reported in Refs. [49–51].
In this work we present the first microscopic investigation
of finite temperature e ects on induced fission dynamics
using the TDGCM+GOA collective model. The theo-
retical framework and method are introduced in Sec. II.
The details of the calculation for the illustrative example
of 226Th, the results for deformation energy landscapes,
inertia tensor, as well as the charge and mass yield dis-
tributions are described and discussed in Sec. III. Sec. IV
contains a summary of the principal results.

II. THE METHOD

Assuming that the compound nucleus is in a state of
thermal equilibrium at temperature , it can be de-
scribed by the finite temperature (FT) Hartree-Fock-
Bogoliubov (HFB) theory [42, 52]. In the grand-
canonical ensemble, the expectation value of any oper-
ator is given by an ensemble average

= Tr [ (1)

where is the density operator:

(2)

is the grand partition function, = 1/k with the

Boltzmann constant is the Hamiltonian of the sys-
tem, denotes the chemical potential, and is the par-
ticle number operator. In the present study we employ
the relativistic mean-field (RMF) model for the particle-
hole channel, while pairing correlations are treated in the
BCS approximation. The Dirac single-nucleon equation

) = (3)

is determined by the Hamiltonian

)] + ) + (4)

where, for the relativistic energy-density functional DD-
PC1 [53], the scalar potential, vector potential, and re-
arrangement terms read

TV ~ρTV ~τ

∂α

∂ρ

∂α

∂ρ

∂αTV

∂ρ TV (5)

respectively. is the nucleon mass, ), ),
and TV ) are density-dependent couplings for di er-
ent space-isospace channels, is the coupling constant
of the derivative term, and is the electric charge. In the

finite-temperature RMF+BCS approximation the single-
nucleon densities (scalar-isoscalar density), (time-

e component of the isoscalar current), and TV (time-
e component of the isovector current), are defined by

the following relations:

)[ (1 ) + (6)

)[ (1 ) + (7)

TV ~τγ )[ (1 ) + (8)

where is the thermal occupation probability of a quasi-
particle state

1 +
(9)

and = 1/k = [( is the quasi-
particle energy, and is the Fermi level. are the BCS
occupation probabilities

(10)

and = 1 . The gap equation at finite temperature
reads

pp

kk
(1 (11)

In the particle-particle channel we use a separable pairing
force of finite range [54]:

) = (1

(12)
where = ( 2 and denote the center-
of-mass and the relative coordinates, respectively.
reads

) =
(4

(13)

The two parameters of the interaction were originally ad-
justed to reproduce the density dependence of the pair-
ing gap in nuclear matter at the Fermi surface calculated
with the D1S parameterization of the Gogny force [13].
The entropy of the compound nuclear system is com-

puted using the relation:

S = −kB
∑

k

[fk ln fk + (1 − fk) ln(1 − fk)] (14)

The thermodynamical potential relevant for an analysis
of finite-temperature deformation e ects is the Helmholtz

… entropy of the compound nuclear system:

Gogny functionals [48]. The e ect of FT on perturbative
cranking inertia tensors has also been investigated in the
FT-HFB framework [43, 48]. Exploratory studies of FT

ects on induced fission yield distributions using semi-
classical approaches have been reported in Refs. [49–51].
In this work we present the first microscopic investigation
of finite temperature e ects on induced fission dynamics
using the TDGCM+GOA collective model. The theo-
retical framework and method are introduced in Sec. II.
The details of the calculation for the illustrative example
of 226Th, the results for deformation energy landscapes,
inertia tensor, as well as the charge and mass yield dis-
tributions are described and discussed in Sec. III. Sec. IV
contains a summary of the principal results.

II. THE METHOD

Assuming that the compound nucleus is in a state of
thermal equilibrium at temperature , it can be de-
scribed by the finite temperature (FT) Hartree-Fock-
Bogoliubov (HFB) theory [42, 52]. In the grand-
canonical ensemble, the expectation value of any oper-
ator is given by an ensemble average

= Tr [ (1)

where is the density operator:

(2)

is the grand partition function, = 1/k with the

Boltzmann constant is the Hamiltonian of the sys-
tem, denotes the chemical potential, and is the par-
ticle number operator. In the present study we employ
the relativistic mean-field (RMF) model for the particle-
hole channel, while pairing correlations are treated in the
BCS approximation. The Dirac single-nucleon equation

) = (3)

is determined by the Hamiltonian

)] + ) + (4)

where, for the relativistic energy-density functional DD-
PC1 [53], the scalar potential, vector potential, and re-
arrangement terms read

TV ~ρTV ~τ

∂α

∂ρ

∂α

∂ρ

∂αTV

∂ρ TV (5)

respectively. is the nucleon mass, ), ),
and TV ) are density-dependent couplings for di er-
ent space-isospace channels, is the coupling constant
of the derivative term, and is the electric charge. In the

finite-temperature RMF+BCS approximation the single-
nucleon densities (scalar-isoscalar density), (time-

e component of the isoscalar current), and TV (time-
e component of the isovector current), are defined by

the following relations:

)[ (1 ) + (6)

)[ (1 ) + (7)

TV ~τγ )[ (1 ) + (8)

where is the thermal occupation probability of a quasi-
particle state

fk =
1

1 + eβEk

, (9)

and = 1/k = [( is the quasi-
particle energy, and is the Fermi level. are the BCS
occupation probabilities

(10)

and = 1 . The gap equation at finite temperature
reads

pp

kk
(1 (11)

In the particle-particle channel we use a separable pairing
force of finite range [54]:

) = (1

(12)
where = ( 2 and denote the center-
of-mass and the relative coordinates, respectively.
reads

) =
(4

(13)

The two parameters of the interaction were originally ad-
justed to reproduce the density dependence of the pair-
ing gap in nuclear matter at the Fermi surface calculated
with the D1S parameterization of the Gogny force [13].
The entropy of the compound nuclear system is com-

puted using the relation:

ln + (1 ) ln(1 )] (14)

The thermodynamical potential relevant for an analysis
of finite-temperature deformation e ects is the Helmholtz

… thermal occupation probabilities:



Charge yields:

Experimental results ➠ photoinduced fission with 

photon energies in the interval 8 − 14 MeV, and a 

peak value E� = 11 MeV.

Dynamics of induced fission Zhao, Nikšić, Vretenar, Zhou 

Phys. Rev. C 99, 014618 (2019).

T = 0.5, 0.75, 1.0, and 1.25 MeV ➠ corresponding 

internal excitation energies E∗ are: 2.58, 8.71, 

16.56, and 27.12 MeV, respectively. 



*The temperature is adjusted so that the intrinsic excitation energy corresponds to the experimental exc. energy.  

*
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SCMF deformation energy surface ➠ constraints on the mass multipole moments and the particle-number 

dispersion operator: dynamics of the final stage of the fission process, from
configurations close to the outer fission barrier to full
scission.

The influence of ground-state (static) pairing correla-
tions on charge yields and total kinetic energy of fission
fragments for the case of induced fission of 226Th iso-
tope was analyzed in Ref. [17] using the TDGCM+GOA
framework. It has been shown that an increase of the
strength of the pairing interaction, beyond the range de-
termined by empirical pairing gaps obtained from the
experimental masses of neighboring nuclei, reduces the
asymmetric peaks and enhances the symmetric peak in
charge yields distribution. This is a very interesting re-
sult, and thus it is important to explore dynamical pair-
ing correlations in induced fission. In this work we ex-
plicitly include the isoscalar pairing degree of freedom in
the space of TDGCM+GOA collective coordinates, and
perform the first realistic three-dimensional calculation
of induced fission of 228Th. The theoretical framework
and methods are reviewed in Sec. II. The details of the
calculation and principal results are discussed in Sec. III.
Section IV contains a short summary and outlook for
future studies.

II. THE TDGCM+GOA METHOD

In the TDGCM+GOA framework induced fission is
described as a slow adiabatic process determined by a
small number of collective degrees of freedom. The ini-
tial step in modeling the fission of a heavy nucleus is
a self-consistent mean-field (SCMF) calculation of the
corresponding deformation energy surface as a function
of few selected collective coordinates. Such a calcula-
tion provides the microscopic input, that is, the single-
quasiparticle states, energies, and occupation factors,
that determine the parameters of a local equation of mo-
tion for the collective wave function.

The theoretical framework and specific model have
been detailed in our previous studies [17–20]. For com-
pleteness, here we include a short outline and discuss
in more detail the specific points that arise when con-
sidering pairing as a collective degree of freedom. The
relativistic energy density functional DD-PC1 [32] is em-
ployed in the particle-hole channel, while pairing corre-
lations are taken into account in the Bardeen-Cooper-
Schrie er (BCS) approximation by a separable pairing
force of finite range [33]. The parameters of the pairing
interaction have been adjusted to reproduce the empir-
ical pairing gaps in the mass region considered in the
present study [19].

The self-consistent deformation energy surfaces are cal-
culated using the multidimensionally constrained rela-
tivistic mean-field (MDC-RMF) model [16, 21, 34, 35]
with constraints on mass multipole moments

, and the particle-number dispersion operator

∆N̂2 = N̂2−〈N̂〉2. The Routhian is therefore defined as

RMF (1)

where RMF denotes the total RMF energy that includes
static BCS pairing correlations. The amount of dynamic
pairing correlations can be controlled by the Lagrange
multipliers n, p), [16, 25, 36, 37]. To reduce
the number of collective degrees of freedom and, there-
fore, the considerable computational task, here we only
consider isoscalar dynamical pairing; is
employed as the collective coordinate.
The dynamics of the fission process is governed by a

local, time-dependent Schrödinger-like equation in the
space of collective coordinates . The collective Hamil-
tonian coll

coll ) =
ij

ij (2)

determines the time-evolution of the nuclear wave func-
tion from an initial state at equilibrium deformation,
up to scission and the formation of fission fragments.

ij ) and ) denote the inertia tensor and collec-
tive potential, respectively, that are computed using the
self-consistent solutions for the RMF+BCS deformation
energy surface. Here we assume axial symmetry with
respect to the axis along which the two fragments even-
tually separate, and consider the three-dimensional (3D)
collective space of quadrupole and octupole defor-
mation parameters, and the dynamical pairing coordi-
nate . The inertia tensor is the inverse of the mass
tensor, that is, ij ) = ( ij ). The mass tensor
is calculated using the adiabatic time-dependent Hartree-
Fock-Bogoliubov (ATDHFB) method in the cranking ap-
proximation [39]:

ij 2 ˙
(3)

where

∂ρ ∂κ ∂ρ ∂κ

(4)
and are the self-consistent Bogoliubov matrices,

and and are the corresponding particle and pairing
density matrices, respectively. The cranking expression
Eq. (3) can be further simplified in the perturbative ap-
proach [41–45], and this leads to the perturbative crank-
ing mass tensor:

Cp
(1) (3) (1) (5)

where

ij

〉〈

(6)
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∑
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where RMF denotes the total RMF energy that includes
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multipliers n, p), [16, 25, 36, 37]. To reduce
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fore, the considerable computational task, here we only
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employed as the collective coordinate.
The dynamics of the fission process is governed by a

local, time-dependent Schrödinger-like equation in the
space of collective coordinates . The collective Hamil-
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determines the time-evolution of the nuclear wave func-
tion from an initial state at equilibrium deformation,
up to scission and the formation of fission fragments.

ij ) and ) denote the inertia tensor and collec-
tive potential, respectively, that are computed using the
self-consistent solutions for the RMF+BCS deformation
energy surface. Here we assume axial symmetry with
respect to the axis along which the two fragments even-
tually separate, and consider the three-dimensional (3D)
collective space of quadrupole and octupole defor-
mation parameters, and the dynamical pairing coordi-
nate . The inertia tensor is the inverse of the mass
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Fock-Bogoliubov (ATDHFB) method in the cranking ap-
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and are the self-consistent Bogoliubov matrices,
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2D projections of the deformation-energy 

manifold of 228Th on the quadrupole-

octupole axially symmetric plane, for selected 

values of the pairing coordinate λ2.  
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Static fission path of minimum energy 
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3D TDGCM+GOA calculation
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Schrie er (BCS) approximation by a separable pairing
force of finite range [33]. The parameters of the pairing
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culated using the multidimensionally constrained rela-
tivistic mean-field (MDC-RMF) model [16, 21, 34, 35]
with constraints on mass multipole moments
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where RMF denotes the total RMF energy that includes
static BCS pairing correlations. The amount of dynamic
pairing correlations can be controlled by the Lagrange
multipliers n, p), [16, 25, 36, 37]. To reduce
the number of collective degrees of freedom and, there-
fore, the considerable computational task, here we only
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employed as the collective coordinate.
The dynamics of the fission process is governed by a

local, time-dependent Schrödinger-like equation in the
space of collective coordinates . The collective Hamil-
tonian coll

Ĥcoll(q) = −
!
2

2

∑

ij

∂

∂qi
Bij(q)

∂

∂qj
+ V (q), (2)

determines the time-evolution of the nuclear wave func-
tion from an initial state at equilibrium deformation,
up to scission and the formation of fission fragments.

ij ) and ) denote the inertia tensor and collec-
tive potential, respectively, that are computed using the
self-consistent solutions for the RMF+BCS deformation
energy surface. Here we assume axial symmetry with
respect to the axis along which the two fragments even-
tually separate, and consider the three-dimensional (3D)
collective space of quadrupole and octupole defor-
mation parameters, and the dynamical pairing coordi-
nate . The inertia tensor is the inverse of the mass
tensor, that is, ij ) = ( ij ). The mass tensor
is calculated using the adiabatic time-dependent Hartree-
Fock-Bogoliubov (ATDHFB) method in the cranking ap-
proximation [39]:

ij 2 ˙
(3)

where

∂ρ ∂κ ∂ρ ∂κ

(4)
and are the self-consistent Bogoliubov matrices,

and and are the corresponding particle and pairing
density matrices, respectively. The cranking expression
Eq. (3) can be further simplified in the perturbative ap-
proach [41–45], and this leads to the perturbative crank-
ing mass tensor:

Cp
(1) (3) (1) (5)

where

ij

〉〈

(6)

q≡{!2,!3,"2}

Charge yields calculated in the 3D collective space 

→ deformation β2, β3 and dynamical pairing λ2 

coordinates. 

Effect of dynamical pairing on the flux of the probability current 

through the scission hyper-surface:

FIG. 3. (Color online) Perturbative cranking masses Cp
11

Cp
22

, and the non-perturbative cranking mass 33 (in
MeV ) (logarithmic scale) along the static fission path for
several values of

FIG. 4. (Color online) The scission controur of 228Th in the
) deformation plane for several values of the collective

pairing coordinate

empirical ground-state pairing gaps in this mass region
(100%), predicts yields that are entirely dominated by
asymmetric fission with peaks at = 35 and = 55. By
increasing static pairing (110%), the asymmetric peaks
are reduced and a contribution of symmetric fission de-
velops, but not strong enough to reproduce the data. It
is interesting to notice that a very similar distribution of
charge yields is predicted by the 3D model calculation

FIG. 5. (Color online) Charge yields for induced fission of
228Th, calculated in the 3D collective space built from the de-
formation and dynamical pairing coordinates (solid
red curve). The yields are shown in comparison to the re-
sults obtained in the 2D space of shape degrees of freedom

and , with static pairing correlations adjusted to empir-
ical ground-state pairing gaps (100% pairing strength), and
enhanced by ten percent (110% pairing strength). The data
for photo-induced fission correspond to photon energies in the
interval 8-14 MeV, and peak value of = 11 MeV [47].

that includes dynamical pairing. On a quantitative level,
even the 3D calculation does not completely reproduce
the experimental yields. The model predicts tails of the
asymmetric peaks that are not seen in experiment, and
thus fails to quantitatively match the symmetric contri-
bution. It has to be noted, however, that in the present
study the collective potential and inertia tensor have
been calculated at zero temperature. In our recent study
of finite temperature e ects in TDGCM+GOA [18], a
calculation of induced fission of 226Th has shown that,
although the model can qualitatively reproduce the em-
pirical triple-humped structure of the fission charge and
mass distributions already at zero temperature, the po-
sition of the asymmetric peaks and the symmetric-fission
yield can be described much better when the potential
and collective mass are determined at a temperature that
approximately corresponds to the internal excitation en-
ergy of the fissioning nucleus.
Finally, to illustrate the e ect of dynamical pairing on

the flux of the probability current through the scission
hyper-surface, in Fig. 7 we plot the time-integrated flux
through the scission contour in the ( ) plane, for a
given value of the pairing collective coordinate

B(λ2) ∝
∑

ξ∈B

lim
t→∞

F (ξ,λ2, t). (10)

The set ) contains all elements of the scission
contour with a given value . Even though it appears
that dynamical pairing does not significantly modify the

→ time-integrated flux through the scission contour in the (β2, β3) 

plane, for a given value of the pairing collective coordinate λ2 .

static BCS 

λ2 = 0.



Adiabatic evolution and dissipative dynamics
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Adiabatic evolution 

TDGCM

Dissipative motion 

TDDFT

Ren, Zhao, Vretenar, Nikšić, Zhao, Meng 
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Time-dependent density functional theory (TDDFT) 

determined by the time-dependent Dirac equation

i
∂

∂t
ψk(r, t) =

[

ĥ(r, t)− εk(t)
]

ψk(r, t), (13)

where the single-particle energy ) = , and the single-particle Hamiltonian , t) reads

, t) = ) + (14)

The scalar , t) and four-vector , t) potentials are consistently determined at each step in time by the time-
dependent densities and currents in the isoscalar-scalar, isoscalar-vector and isovector-vector channels,

, t) = (15a)

, t) = (15b)

TV , t) = (15c)

respectively. is the isospin Pauli matrix with eigenvalues +1 for neutrons, and 1 for protons (see details in
Ref. [20]). The time evolution of the occupation probability ) = , and pairing tensor ) = ), is
governed by the following equations

dt
) = (16a)

dt
) = [ ) + )] ) + )[2 1] (16b)

In time-dependent calculations, a monopole pairing interaction is employed, and the gap parameter ) is determined
by the single-particle energy and the pairing tensor,

) = (17)

where ) is the cut-o function for the pairing window.
In the calculations with time-dependent covariant DFT, the mesh spacing of the lattice is 1.0 fm for all directions,

and the box size is taken as = 20 20 60 fm . The time-dependent Dirac equation (13) is solved
with the predictor-corrector method, and the time-dependent equations (16) using the Euler algorithm. The step
for the time evolution is 6 67 10 zs. The density functional, pairing strength parameters , and the cut-o
function ) for the pairing window are taken the same as in the calculation with TDGCM. The initial states
for the time evolution are obtained by self-consistent deformation-constrained relativistic DFT calculations in three-
dimensional lattice space based on the inverse Hamiltonian and Fourier spectral methods [23–25], with the box size:

= 20 20 50 fm

B. Fission trajectories

In Fig. 1 we plot the TD(C)DFT fission trajectories from the initial points (denoted by open dots ) on the self-
consistent deformation energy surface of 240Pu. The initial points for the time evolution correspond to the iso-energy
contours at 1 MeV (upper panel) and 4 MeV (lower panel), below the energy of the equilibrium minimum. Only
those trajectories that end up in scission of the fissioning nucleus are shown. Trajectories that start from very
asymmetric shapes (large 30 values in the upper panel), or from almost symmetric shapes (small 30 values in both
panels), do not lead to scission but get trapped in local minima. Most trajectories simply follow the path of steepest
descent, especially in the lower panel where the initial points are closer to scission. In this case, scission is obtained
also for very asymmetric shapes. The disconnected region without open dots in the lower panel correspond to points
on the deformation energy surface that, in the TDGCM calculation, are located beyond the scission contour defined
by the number of particles in the neck.
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function ) for the pairing window are taken the same as in the calculation with TDGCM. The initial states
for the time evolution are obtained by self-consistent deformation-constrained relativistic DFT calculations in three-
dimensional lattice space based on the inverse Hamiltonian and Fourier spectral methods [23–25], with the box size:
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B. Fission trajectories

In Fig. 1 we plot the TD(C)DFT fission trajectories from the initial points (denoted by open dots ) on the self-
consistent deformation energy surface of 240Pu. The initial points for the time evolution correspond to the iso-energy
contours at 1 MeV (upper panel) and 4 MeV (lower panel), below the energy of the equilibrium minimum. Only
those trajectories that end up in scission of the fissioning nucleus are shown. Trajectories that start from very
asymmetric shapes (large 30 values in the upper panel), or from almost symmetric shapes (small 30 values in both
panels), do not lead to scission but get trapped in local minima. Most trajectories simply follow the path of steepest
descent, especially in the lower panel where the initial points are closer to scission. In this case, scission is obtained
also for very asymmetric shapes. The disconnected region without open dots in the lower panel correspond to points
on the deformation energy surface that, in the TDGCM calculation, are located beyond the scission contour defined
by the number of particles in the neck.

⇒ classical evolution of independent nucleons 

in mean-field potentials, cannot be applied in 

classically forbidden regions of the collective 

space, nor does it take into account quantum 

fluctuations. 

⇒ automatically includes the one-body dissipation mechanism, but can only simulate a single fission event 

by propagating the nucleons independently. 



Negele et al. (1978) ➠ use an adiabatic model for the time interval in which the fissioning nucleus evolves from 

the quasi-stationary initial state to the saddle point, and a non-adiabatic method for the saddle-to-scission and 

beyond-scission dynamics. 

Ren, Zhao, Vretenar, Nikšić, Zhao, Meng 
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TDDFT fission trajectories

1 MeV below the minimum

4 MeV below the minimum



Total kinetic energies (TKEs) of the fragments

FIG. 5. Same as in the caption to Fig. 4 but for the initial
iso-energy curve 4 MeV bellow the energy of the equilibrium
minimum.

mined before the final stage of the fission process in which
the dissipation mechanism becomes important [44]. The
TD(C)DFT reproduces the peaks of the experimental
charge yields but not the width. Only when the set of ini-
tial points on the deformation energy surface is located
much closer to the fission valley, the calculated fission
yields exhibit a structure that qualitatively resembles the
empirical charge yields. This emphasizes the importance
of quantum fluctuations that are included in the TDGCM
evolution of the collective nuclear function, but not in the
TD(C)DFT trajectories that correspond to the propaga-
tion of individual nucleons in mean-field potentials.

FIG. 6. The calculated total kinetic energies of the nascent
gments for induced fission of 240Pu, as functions of the
gment charge. The TDGCM and TD(C)DFT results are

shown in comparison to the data [45].

A di erent result is obtained for the total kinetic en-
ergy (TKE) of the fragments. In Fig. 6 we show the
TKEs of the nascent fission fragments for 240Pu, as func-
tions of the fragment charge. The theoretical values are
compared to data [45]. In the TDGCM, the total kinetic
energy for a particular pair of fragments can be evaluated

from

ETKE =
e2ZHZL

dch
, (19)

where is the proton charge, ) the charge of the
heavy (light) fragment, and ch is the distance between
centers of charge at the point of scission. For TD(C)DFT,
the TKE at a finite distance between the fission frag-
ments ( 25 fm, at which shape relaxation brings the
fragments to their equilibrium shapes) is calculated us-
ing the expression [15]

TKE mA mA Coul (20)

where the velocity of the fragment H,L reads

mA
(21)

and ) is the total current density. The integration is
over the half-volume corresponding to the fragment
and Coul is the Coulomb energy.
TDGCM by definition describes non-dissipative dy-

namics and, in the adiabatic approximation, all the po-
tential energy is converted into collective kinetic energy
during the saddle-to-scission evolution. The nascent frag-
ments are cold, and the calculated TKEs are systemati-
cally too large. On the other hand, one-body dissipation
is automatically included in TD(C)DFT and, in the short
time interval it takes from the initial point to scission, the
collective flow energy is converted into intrinsic degrees
of freedom and the nucleus heats up [15]. This results in
a lower TKE, as show in Fig. 6. In addition, because of
shape relaxation after scission, the deformation energy of
the fragments is also converted into internal heat. It is
interesting to note that the calculated TKEs essentially
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pre-scission energy. Namely, while for the TDGCM the
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tions, a quantal equation of motion was derived in both
the collective coordinates and excitation energy. With
the usual assumption of a narrow hamiltonian kernel,
a Schrödinger-like equation can be derived for the sta-
tistical collective wave function, including dissipation.
In Ref. [1] the method was illustrated with a simple
one-dimensional model calculation of heavy-ion collision.
Here we employ this method to extend our implementa-
tion of the temperature-dependent TDGCM for induced
fission dynamics, to include dissipation e ects in the col-
lective space of axial quadrupole and octupole deforma-
tions. The formalism is developed in Sec. II. In Sec. III
we present an illustrative calculation of charge yields for
induced fission of 228Th. Finally, Section IV contains a
short summary and an outlook for future studies.

II. THEORETICAL FRAMEWORK

The purpose of the present study is to extend the time-
dependent generator coordinate method (TDGCM) by
including energy dissipation, and apply the model to the
description of induced fission dynamics. The method is
based on the quantum theory of dissipation for nuclear
collective motion of Ref. [1].
The derivation starts with a trial TDGCM many-body

wave function of the following form:

|Φ(t)〉 =
∑

n

∫

dqfn(q, t) |nq〉 (1)

where denotes the set of collective coordinates, la-
bels the excited states at each value of the collective co-
ordinate , and , t) are weight functions. From the
time-dependent variational principle

dt = 0 (2)

the matrix integral Hill-Wheeler equation is obtained

{Hnn , t

nn ) [ , t)] = 0

(3)

where nn ) = is the Hamiltonian

kernel, and nn ) = is the norm overlap
kernel. It is useful to express Eq. (3) in terms of another
set of functions , t), defined by

, t) = nn , t (4)

With this transformation, Eq. (3) takes the form

, t) = nn , t (5)

with

nn ) = nn

(6)

As noted in Ref. [1], the level density for each value of
the collective coordinate is high even at relatively low
excitation energies, so that the discrete label can be
separated into a continuous excitation energy variable
and a degeneracy label

fixed

(7)

where ) denotes the level density at the point in
the collective coordinate space. We can then substitute

, t (8)

nn λλ (9)

and rewrite Eq. (5) as

) = λλ

∫ ∫

λλ

(10)

Following the prescription of Ref. [1], ) in

Eq. (10) is replaced by its average value ), and
the statistical wave function ) is defined as

) = (11)

where the bar denotes average on . Performing the sum-
mation of Eq. (10) over , one obtains

) =

∫ ∫ (12)

with the statistical Hamiltonian kernels are defined as

) = λλ

(13)

) = λλ

(14)
The usual GCM assumption that the Hamiltonian

overlap kernel decreases rapidly with increasing
(in comparison to the scale of variations in the statisti-
cal wave function ), enables an expansion of Eq. (12)
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dq′h(q, q′; ǫ, ǫ)ψ(q′, ǫ; t)

+
∑

λ′ #=λ

∫ ∫
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in a power series in collective momenta P = −i!(∂/∂q),
leading to a Schrödinger-like equation

) = (0) (2)

(2)

, h(1)

(15)
where

) = 2; (16)

, and ). The curly brack-
ets in the last term of Eq. (15) denote anti-commutation.
With the collective potential defined as

) = (0) (2) (17)

and the collective mass

) = (2) (18)

Eq. (15) can be written in the final form

) = ) +

(19)

The dissipation function ) = (1) is
anti-hermitian in the variables and , so that the

iltonian is still a hermitian operator. For further
details we refer the reader to Ref. [1].
To describe low-energy induced fission dynamics, we

employ the framework of finite-temperature TDGCM
[12, 13]. The extension of TDGCM to include finite-
temperature e ects presents a first step in going be-
yond the adiabatic approximation [6], in the sense that
excitations of intrinsic degrees of freedom are included
through the temperature dependence of the generator
states [29, 30]. The specific value of the temperature de-
pends on the intrinsic excitation energy of the fissioning
nucleus. Because of constant temperature, however, this
simple model cannot describe dissipation e ects. In the
method developed in the present study, the excitation en-
ergy appearing in the Schrödinger-like equation (19) is a
function of temperature, and the energy dependent col-
lective potential ), mass ), and dissipation
function ) can be expressed in terms of the nu-
clear temperature , T )), , T

)), and T, T )). The
generator states in the TDGCM ansatz (1) are deter-
mined by thermal occupation probabilities of quasiparti-

cle states ( 1 + ) at a given temperature (intrin-
sic energy) and collective coordinate, and the dissipation

term in eq. (19) mixes states corresponding to di erent
temperatures. During the time-evolution of an initial
collective state, this term takes into account the tem-
perature increase of the fissioning system. We express
Eq. (19) in the form:

, T ) = , T ) +
, T

, T

T, T , T dT

(20)
with T, T ) = T, T /dT
In the present study we employ the self-consistent

multidimensionally-constrained (MDC) relativistic
tree-Bogoliubov (RHB) model [34, 35] at finite

temperature [12, 29, 30]. In a grand-canonical ensemble,

the expectation value of an operator is given by the
ensemble average

= Tr (21)

where is the density operator

(22)

is the partition function, = 1/k is the inverse

temperature with the Boltzmann constant is the
iltonian of the system, denotes the chemical po-

tential, and is the particle number operator. The en-
tropy of the nuclear system is ln . The
intrinsic level density is calculated in the saddle-point
approximation [40]

(2
(23)

where is the determinant of a 3 3 matrix that contains
the second derivatives of the entropy with respect to
and p, n) at the saddle point.
The finite temperature relativistic Hartree-Bogoliubov

(FT-RHB) equations are obtained by minimizing the

grand-canonical potential TS . In this
work the particle-hole channel is specified by the choice
of the relativistic energy density functional DD-PC1 [31],
while pairing correlations are taken into account in the
Bardeen-Cooper-Schrie er (BCS) approximation with a
finite-range separable pairing force [32]. The parameters
of the pairing interaction have been adjusted to repro-
duce the empirical pairing gaps in the mass region con-
sidered in this study [13]. The nuclear shape is parame-
terized by the deformation parameters

AR
(24)

The shape is assumed to be invariant under the exchange
of the and axes, and all deformation parameters

with even can be included simultaneously. The
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Eq. (15) can be written in the final form
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The dissipation function ) = (1) is
anti-hermitian in the variables and , so that the

iltonian is still a hermitian operator. For further
details we refer the reader to Ref. [1].

To describe low-energy induced fission dynamics, we
employ the framework of finite-temperature TDGCM
[12, 13]. The extension of TDGCM to include finite-
temperature e ects presents a first step in going be-
yond the adiabatic approximation [6], in the sense that
excitations of intrinsic degrees of freedom are included
through the temperature dependence of the generator
states [29, 30]. The specific value of the temperature de-
pends on the intrinsic excitation energy of the fissioning
nucleus. Because of constant temperature, however, this
simple model cannot describe dissipation e ects. In the
method developed in the present study, the excitation en-
ergy appearing in the Schrödinger-like equation (19) is a
function of temperature, and the energy dependent col-
lective potential ), mass ), and dissipation
function ) can be expressed in terms of the nu-
clear temperature , T ≡ )), M , T

)), and η(q;T, T ′) ≡ η(q; ǫ(T ), ǫ(T ′)). The
generator states in the TDGCM ansatz (1) are deter-
mined by thermal occupation probabilities of quasiparti-

cle states ( 1 + ) at a given temperature (intrin-
sic energy) and collective coordinate, and the dissipation

term in eq. (19) mixes states corresponding to di erent
temperatures. During the time-evolution of an initial
collective state, this term takes into account the tem-
perature increase of the fissioning system. We express
Eq. (19) in the form:
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(20)
with T, T ) = T, T /dT
In the present study we employ the self-consistent

multidimensionally-constrained (MDC) relativistic
tree-Bogoliubov (RHB) model [34, 35] at finite

temperature [12, 29, 30]. In a grand-canonical ensemble,

the expectation value of an operator is given by the
ensemble average

= Tr (21)

where is the density operator

(22)

is the partition function, = 1/k is the inverse

temperature with the Boltzmann constant is the
iltonian of the system, denotes the chemical po-

tential, and is the particle number operator. The en-
tropy of the nuclear system is ln . The
intrinsic level density is calculated in the saddle-point
approximation [40]
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where is the determinant of a 3 3 matrix that contains
the second derivatives of the entropy with respect to
and p, n) at the saddle point.
The finite temperature relativistic Hartree-Bogoliubov

(FT-RHB) equations are obtained by minimizing the

grand-canonical potential TS . In this
work the particle-hole channel is specified by the choice
of the relativistic energy density functional DD-PC1 [31],
while pairing correlations are taken into account in the
Bardeen-Cooper-Schrie er (BCS) approximation with a
finite-range separable pairing force [32]. The parameters
of the pairing interaction have been adjusted to repro-
duce the empirical pairing gaps in the mass region con-
sidered in this study [13]. The nuclear shape is parame-
terized by the deformation parameters

AR
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The shape is assumed to be invariant under the exchange
of the and axes, and all deformation parameters
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ILLUSTRATIVE CALCULATION: INDUCED FISSION DYNAMICS OF 228Th 

2D TDGCM+GOA calculation at fixed temperatures T.

The data for photo-induced fission correspond to 

photon energies in the interval 8 − 14 MeV, and a 

peak value of Eγ = 11 MeV. 



2D projections on the (β2, β3) plane of the probability distribution 

of the initial wave packet, at different T. The excitation energy of 

the initial state is E∗ = 11 MeV.

The collective potential:

self-consistent relativistic mean-field (RMF+BCS) equa-
tions are solved by an expansion in the axially deformed
harmonic oscillator (ADHO) basis [33]. In the present
study calculations have been performed in an ADHO ba-
sis truncated to = 20 oscillator shells.
The internal excitation energy ) of a nucleus at tem-

perature is defined as the di erence between the total
binding energy of the equilibrium RMF+BCS minimum
at temperature and at = 0. The thermodynamical
potential relevant for deformation e ects is the Helmholtz
free energy ) = TS, evaluated at constant
temperature , where ) is the binding energy of
the deformed nucleus, and the deformation-dependent
energy landscape is obtained in a self-consistent finite-
temperature mean-field calculation with constraints on

the mass multipole moments

In the present case the collective coordinates corre-
spond to the quadrupole 20 and octupole 30 mass
multipole moments. The collective potential is, there-
fore, V (q, T ) = ǫ(T ) + F (q, T ), where , T ) is the
Helmholtz free energy normalized to the corresponding
value at the equilibrium RMF+BCS minimum at tem-
perature . The mass tensor , T ) is calculated in
the finite-temperature perturbative cranking approxima-
tion [36, 37]

Cp
(1) (3) (1) (25)

with

ij,T
〉〈 tanh tanh

)]}

〉〈 tanh + tanh

)]}
(26)

are the two-quasiparticle states with the correspond-
ing quasiparticle energies and are the BCS

occupation probabilities, and = 1

Equation (20) describes nuclear collective motion with
dissipation. In addition to the non-dissipative potential
and kinetic energy terms, the dissipative channel cou-
pling is proportional to the momentum of the collec-
tive wave function. Even though the dissipation func-
tion ) = (1) could, in principle, be
determined in a fully microscopic way, in practice this
is extremely di cult. Namely, if one considers even-
even nuclei and the collective space consists of purely
static deformations, the generator states are time-even,
and the time-odd linear term (1) ) vanishes be-
cause of time-reversal invariance [41, 42]. To obtain a
non-vanishing contribution on the microscopic level, one
would have to consider generator states on a dynamic
path that includes the collective momentum conjugate
to (dynamical GCM [41]). However, this doubles the
dimension of the collective space and a TDGCM calcu-
lation in the space of quadrupole and octupole collec-
tive coordinates is no longer feasible. This is why, in an
exploratory study, we will approximate the dissipation
function with a phenomenological ansatz. As explained
in Ref. [1], for complicated nuclear many-body configu-
rations, the sign of the Hamiltonian kernel
changes randomly with variation of the internal excita-
tion energies and . Following the central limit theo-
rem, one would expect that the values of the dissipation
function T, T ) are random variables whose probabil-
ity density corresponds to a Gaussian distribution cen-
tered around zero. Thus we choose the dissipation func-

tion T, T ) to be of the form

T, T ) =
T, T

(27)

where the matrix elements T, T ) are Gaussian random
variables. is set to 1 5, which is slightly beyond the
second fission barrier for the example of fission of 228Th,
that will be considered in the next section. The cut-o
value is introduced, because for induced nuclear fis-
sion one only expects significant dissipation e ects in the
saddle to scission phase. Similar to Ref. [1], the root-
mean-square value of the Gaussian distribution of the

T, T ) random variables reads log[ )] log[ )].
In this expression ) is the intrinsic nuclear level den-
sity calculated at the RMF+BCS equilibrium minimum
at temperature T, while is an adjustable parameter.

e that in Ref. [1] the ansatz ) was used.
However, in the realistic example considered here the
level density is much higher, and using the expression
without the log functions leads to numerical instabilities.
The precise value of is not crucial but, of course, its
strength must be such to produce a noticeable e ect.
To model the dynamics of the fission process we follow

the time-evolution of an initial wave packet , T, t
0), built as a Gaussian superposition of quasi-bound
states

, T, t = 0) = , T (28)

where the value of the parameter is set to 0.5 MeV.
The collective states , T and the corresponding

3D calculation of fission dynamics of 228Th in the space of axial shape variables (β2, β3) and temperature T 
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The dissipation function:

Gaussian random variables 



Time-integrated collective flux B(T) through the 

scission contour, as a function of temperature. 
3D extended TDGCM charge yields.



Total Kinetic Energy Distribution Zhao, Nikšić, Vretenar, arXiv:2210.00460
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The time-evolution is described by Eq. (1), in which
the temperature is e ectively treated as the third col-
lective coordinate. The solution is evolved in small time
steps by applying an explicit and unitary propagator
built as a Krylov approximation of the exponential of
the Hamiltonian. The time step is = 5 10 zs (1
zs = 10 21 s), and the charge and mass distributions
are calculated after 4 10 time steps, which correspond
to 20 zs. As in our recent calculations of Refs. [12–16],
the parameters of the additional imaginary absorption
potential that takes into account the escape of the col-
lective wave packet in the domain outside the region of
calculation [7] are: the absorption rate = 20 1022

and the width of the absorption band = 1 0.
The deformation collective space is divided into an in-

ner region with a single nuclear density distribution, and
an external region that contains the two separate fis-
sion fragments. The scission hyper-surface that divides
the inner and external regions is determined by calculat-
ing the expectation value of the Gaussian neck operator

= exp[ /a ], where = 1 fm and is
the position of the neck [31]. We define the pre-scission

domain by 3, and consider the frontier of this do-
main as the scission surface. The flux of the probability
current

, T ) = ij , T )Im
∂ψ

(6)

through the scission hyper-surface provides a measure of
the probability of observing a given pair of fragments at
time . Each infinitesimal surface element is associ-
ated with a given pair of fragments ( , A ) at temper-
ature , where and denote the lighter and heavier
fragment, respectively. From the density profile obtained
in the corresponding MDC-RHB calculation, we obtain
the deformation parameters of each fragment and

. By performing finite-temperature deformation-
constrained RHB calculations for each fragment, the to-
tal binding energy at given deformations and tempera-
ture is obtained for this pair of fragments: , T
and , T ). From the energy balance at scis-
sion [32], the TKE for this specific pair of fragments can
be calculated as

TKE(ξ) =(EFS
B + E∗

coll)

−
[

EL(βL
2 ,β

L
3 , T ) + EH(βH

2 ,βH
3 , T )

] (7)

where FS refers to the total binding energy of the fis-
sioning nucleus at equilibrium minimum, and coll is the
corresponding excitation energy of the collective initial
state. The integrated flux ) for a given surface ele-
ment is defined as [7]

) = dt
,T

, T (8)

where , T ) denotes the current Eq. (6). The TKE

for the fission fragment with mass is defined by

TKE(A) = lim
→∞

F( ; t)TKE(

F( ; t)
(9)

The set ) contains all elements belonging to the scis-
sion hyper-surface such that one of the fragments has
mass number

III. ILLUSTRATIVE CALCULATION:

INDUCED FISSION DYNAMICS OF
228

TH

In a first step, a large scale MDC-RMF calculation of
228Th is performed to generate the deformation energy
surfaces, single-nucleon wave functions and occupation
factors in the ( , T ) space, that determine the col-
lective non-dissipative potential and mass tensor. The in-
tervals for the collective variables are: 7 with
a step = 0 5 with a step = 0
and the temperature is varied in the range 0
MeV, with a step = 0 1 MeV.
Panel (a) in Fig. 1 displays the scission contours in the

) plane for several values of the temperature
The contours generally do not di er much, especially for
asymmetric fission. At higher temperature, the scission
contour is shifted towards smaller quadrupole deforma-
tions values for nearly symmetric fission events. The
Coulomb repulsion for a particular pair of fission frag-
ments can be evaluated from the relation

Cou
ch

(10)

where is the proton charge, ) the charge of the
heavy (light) fragment, and ch the distance between
fragment centers of charge at scission. This expres-
sion has typically been used to approximate the TKE
of fragments in TDGCM calculations of fission dynam-
ics [14, 17, 18, 33]. In Fig. 1 (b), we plot the distribu-
tions of Coulomb energy Cou at various temperatures,
in comparison with the experimental TKEs obtained in
photo-induced fission [21]. One notices that although
the calculated Cou qualitatively reproduce the trend of
the data for they generally overestimate the
TKEs. For that is, close to symmetric fission,
the calculated Coulomb energies lie considerably below
the experimental points. The values of Cou obtained at
di erent temperatures are rather similar, except those at

48 and near symmetric fission. The di erences are
obviously related to changes in the scission contours at
di erent temperatures, shown in panel (a) of Fig. 1. In
general, irrespective of the temperature of the fissioning
nucleus, the TKEs calculated from Eq. (10) are very sim-
ilar since the e ect of dissipation on TKEs are not taken
into account.
Assuming there is no evaporation of any kind before

scission, the total energy of the fissioning system is stored

The integrated flux F (ξ; t) for a given scission surface element ξ is defined:
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built as a Krylov approximation of the exponential of
the Hamiltonian. The time step is = 5 10 zs (1
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the inner and external regions is determined by calculat-
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where FS refers to the total binding energy of the fis-
sioning nucleus at equilibrium minimum, and coll is the
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sion has typically been used to approximate the TKE
of fragments in TDGCM calculations of fission dynam-
ics [14, 17, 18, 33]. In Fig. 1 (b), we plot the distribu-
tions of Coulomb energy Cou at various temperatures,
in comparison with the experimental TKEs obtained in
photo-induced fission [21]. One notices that although
the calculated Cou qualitatively reproduce the trend of
the data for they generally overestimate the
TKEs. For that is, close to symmetric fission,
the calculated Coulomb energies lie considerably below
the experimental points. The values of Cou obtained at
di erent temperatures are rather similar, except those at

48 and near symmetric fission. The di erences are
obviously related to changes in the scission contours at
di erent temperatures, shown in panel (a) of Fig. 1. In
general, irrespective of the temperature of the fissioning
nucleus, the TKEs calculated from Eq. (10) are very sim-
ilar since the e ect of dissipation on TKEs are not taken
into account.
Assuming there is no evaporation of any kind before

scission, the total energy of the fissioning system is stored



The TKE for the fission fragment with mass A: The time-evolution is described by Eq. (1), in which
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, T ) = ij , T )Im
∂ψ

(6)
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TKE( ) =( FS
coll

, T ) + , T
(7)
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) = dt
,T

, T (8)

where , T ) denotes the current Eq. (6). The TKE
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TKE(A) = lim
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∑

ξ∈A
F(ξ; t)TKE(ξ)

∑

ξ∈A
F(ξ; t)

. (9)

The set ) contains all elements belonging to the scis-
sion hyper-surface such that one of the fragments has
mass number

III. ILLUSTRATIVE CALCULATION:

INDUCED FISSION DYNAMICS OF
228

TH

In a first step, a large scale MDC-RMF calculation of
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Panel (a) in Fig. 1 displays the scission contours in the

) plane for several values of the temperature
The contours generally do not di er much, especially for
asymmetric fission. At higher temperature, the scission
contour is shifted towards smaller quadrupole deforma-
tions values for nearly symmetric fission events. The
Coulomb repulsion for a particular pair of fission frag-
ments can be evaluated from the relation

Cou
ch
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where is the proton charge, ) the charge of the
heavy (light) fragment, and ch the distance between
fragment centers of charge at scission. This expres-
sion has typically been used to approximate the TKE
of fragments in TDGCM calculations of fission dynam-
ics [14, 17, 18, 33]. In Fig. 1 (b), we plot the distribu-
tions of Coulomb energy Cou at various temperatures,
in comparison with the experimental TKEs obtained in
photo-induced fission [21]. One notices that although
the calculated Cou qualitatively reproduce the trend of
the data for they generally overestimate the
TKEs. For that is, close to symmetric fission,
the calculated Coulomb energies lie considerably below
the experimental points. The values of Cou obtained at
di erent temperatures are rather similar, except those at

48 and near symmetric fission. The di erences are
obviously related to changes in the scission contours at
di erent temperatures, shown in panel (a) of Fig. 1. In
general, irrespective of the temperature of the fissioning
nucleus, the TKEs calculated from Eq. (10) are very sim-
ilar since the e ect of dissipation on TKEs are not taken
into account.
Assuming there is no evaporation of any kind before

scission, the total energy of the fissioning system is stored
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. 1. Scission contours for 228Th in the ( ) deformation

plane for several values of the nuclear temperature , plotted on

the deformation energy surface calculated at zero temperature (a).

The values of the free energy (b), the heavy-fragment charge num-

ber (c), and the Coulomb energy (d), along the frontier of the

domain defined by 0 at different temperatures. Coulomb

repulsive energies between the nascent fission fragments of 228Th,

as functions of the fragment’s charge, calculated at different tem-

perature , compared to the experimental values of the total kinetic

energy [21] (e).

. 2. Density profile of 228Th at the scission point (

2), the vertical line denotes the position of the neck

(a). The binding energy of the heavy fragment 137Xe ( ) as

a function of temperature , with the deformation constrained to

(0 08 10) (b). The binding energy of the light fragment
91Kr ( ) as a function of temperature , with the deformation

constrained to ( (0 56 38) (c). The total kinetic energy as

a function of temperature, calculated with the energy balance relation

Eq. ( ) (d).

as the temperature increases [cf. panel (a) in Fig. ],

the total energies of the fragments eq

TXE and eq TXE , increase quadrat-

ically with temperature , as shown in Fig. 2(b) and 2(c)

Figure 2(d) shows that the TKE calculated with the en-

ergy balance relation Eq. ( ), decreases quadratically as

increases. We note, however, that in actual calculations de-

scribed below, the fragment deformation at scission varies

with

In practical three-dimensional (3D) calculations, the two-

dimensional (2D) scission contour is embedded in the 3D

space ( ). For each scission point on this 2D scis-

sion surface, we have determined the temperature-dependent

deformations ( ) and ( ), from the corresponding

density profiles obtained in MDC-RHB calculations, and the

temperature of the fission fragments is the temperature at

the corresponding scission point. The TKE for each pair of

fission fragments at temperature [cf. panel (a) in Fig. ], is

calculated using the energy balance relation Eq. ( ). In total,

the energies of close to 2 10 pairs of fission fragments have

been calculated.

In the next step, a full 3D calculation of induced fission

dynamics of 228Th is carried out in the space ( ), in-

cluding the dissipative coupling between deformation energy

surfaces at different temperatures, as described in Ref. [19].

The average excitation energy of the initial state is coll 11

MeV. Making use of the resulting integrated flux ( ), the final

TKEs are obtained from Eq. ( ) and plotted in Fig. . The the-

oretical values are compared with the data for photoinduced

fission of 228Th with photon energies in the interval 8–14

MeV, and a peak value of 11 MeV [21]. For comparison,

Scission contours for 228 Th in the (β2 , β3 ) 

deformation plane for several values of the 

nuclear temperature T, plotted on the 

deformation energy surface calculated at 

zero temperature.  
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Nucleon localization functions:

scission, the system at scission is treated as a micro-
canonical ensemble where all available configurations are
equiprobable. The random neck rupture model relies on a
sequence of instabilities [21], and assumes that the neck
snaps at some random points along its length. In mi-
croscopic approaches, both geometrical and dynamical
definitions of the scission configuration have been con-
sidered. Geometrical definitions include the criterion of
vanishing density between the fragments, and the expec-
tation value of a neck operator that gives a measure of
the number of particles in the neck [22]. In a dynam-
ical approach, the scission configuration can be defined
in terms of the ratio of the nuclear and Coulomb inter-
action energies in the neck region [23], as well as using
a quantum localization method based on the partition
of orbital wave functions into two sets belonging to the
pre-fragments [24].

In this work, the dynamics of neck formation and
nuclear scission is studied within the TDDFT frame-
work. For the details of the particular implementation
of TDDFT that we employ to model induced fission, we
refer the reader to the supplemental material (SM).

In the left panel of Fig. 1, we display the self-consistent
deformation energy surface of 240Pu. It is calculated
with the relativistic energy density functional PC-PK1
[25] and a monopole pairing interaction (cf. SM for de-
tails), and shown as function of the two collective coor-
dinates: the axial quadrupole ( 20) and octupole ( 30

deformation parameters, that correspond to the nuclear
elongation and mass asymmetry, respectively. The equi-
librium minimum is located at 20 3 and 30 = 0,
and it appears slightly soft in the octupole direction. We
also note the isomeric minimum at 20 9 and 30 = 0,
as well as the two fission barriers, and the fission valley
at large deformations.

The dots in the left panel of Fig. 1 denote three charac-
teristic initial points on the energy surface for calculation
of fission trajectories. Since TDDFT e ectively describes
the classical evolution of independent nucleons in self-
consistent mean-field potentials, this approach cannot be
applied to fission dynamics in the classically forbidden
region of the collective space [9, 11, 12, 14]. The initial
point for the TDDFT evolution is usually taken below the
outer barrier [17, 26], and the three points shown in the
left panel of Fig. 1 correspond to energies approximately
1 MeV below the equilibrium minimum. Given the initial
single-nucleon quasiparticle wave functions and occupa-
tion probabilities, TDDFT models a single fission events
by propagating the nucleons independently toward scis-
sion and beyond. At each step in time the single-nucleon

iltonian is determined from the time-dependent den-
sities, currents and pairing tensor (cf. SM for details)
and, therefore, the time-evolution includes the one-body
dissipation mechanism.

For the three fission trajectories, the panel on the right
of Fig. 1 displays the corresponding isodensities (in units

of fm ) in the coordinate plane, at times immedi-
ately prior to the scission event. Even though the lengths
of the fission trajectories in the collective space of de-
formation parameters are not dramatically di erent, the
time it takes to reach the scission configuration varies
from 1650 fm/c (trajectory 1), to 1150 fm/c (trajectory
2) and, finally, 700 fm/c (trajectory 3). The large dif-
ferences in time can be attributed to the self-consistent
potentials in which the system evolves toward scission
along the three trajectories and to dynamical pairing cor-
relations [17]. These times should be compared with the
average time-scale for the evolution of a nucleus from
the compound system in equilibrium to the formation of
fragments: (6 10 fm/c [27]. The isodensities in
Fig. 1 exhibit a typical mass asymmetry of the nascent
fragments, and also the low-density neck region charac-
terized by the competition between the repulsive long-
range Coulomb interaction and the short-range nuclear
attraction.
These findings are consistent with previous studies of

fission dynamics but a surprising result is obtained when,
instead of the isodensities at pre-scission times, one con-
siders the corresponding nucleon localization functions
[28, 29]:
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(1)

for the spin or ) and isospin or ) quantum

numbers. , and denote the nucleon
density, kinetic energy density, current density, and den-

sity gradient, respectively. TF (6 is the
Thomas-Fermi kinetic energy density.
For homogeneous nuclear matter TF, the second

and third term in the numerator vanish, and = 1 2.
In the other limit 1 indicates that the prob-
ability of finding two nucleons with the same spin and
isospin at the same point is very small. This is the case
for the -cluster of four particles: , and
for which all four nucleon localization functions 1.
The nucleon localization functions have been used to an-
alyze -cluster structures in light nuclei [29–31], to char-
acterize shell structures of nascent fragments in fissioning
nuclei [26, 32], and cluster structures in complex precom-
pound states formed in heavy-ion fusion reactions [33].
In Fig. 2, we plot the proton (left) and total

(right) localization functions in the coordinate plane
for the three fission trajectories discussed above, at times
that immediately precede scission. Here, the proton and
neutron total localization functions are averaged over the
spin: = ( 2. In all three cases we notice
that, while the localization functions generally exhibit
shell structures in the fragments, their values 0 6 are
consistent with homogeneous nuclear matter. In the neck
region, however, values close to 1 are obtained, character-
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scission, the system at scission is treated as a micro-
canonical ensemble where all available configurations are
equiprobable. The random neck rupture model relies on a
sequence of instabilities [21], and assumes that the neck
snaps at some random points along its length. In mi-
croscopic approaches, both geometrical and dynamical
definitions of the scission configuration have been con-
sidered. Geometrical definitions include the criterion of
vanishing density between the fragments, and the expec-
tation value of a neck operator that gives a measure of
the number of particles in the neck [22]. In a dynam-
ical approach, the scission configuration can be defined
in terms of the ratio of the nuclear and Coulomb inter-
action energies in the neck region [23], as well as using
a quantum localization method based on the partition
of orbital wave functions into two sets belonging to the
pre-fragments [24].
In this work, the dynamics of neck formation and

nuclear scission is studied within the TDDFT frame-
work. For the details of the particular implementation
of TDDFT that we employ to model induced fission, we
refer the reader to the supplemental material (SM).
In the left panel of Fig. 1, we display the self-consistent

deformation energy surface of 240Pu. It is calculated
with the relativistic energy density functional PC-PK1
[25] and a monopole pairing interaction (cf. SM for de-
tails), and shown as function of the two collective coor-
dinates: the axial quadrupole ( 20) and octupole ( 30

deformation parameters, that correspond to the nuclear
elongation and mass asymmetry, respectively. The equi-
librium minimum is located at 20 3 and 30 = 0,
and it appears slightly soft in the octupole direction. We
also note the isomeric minimum at 20 9 and 30 = 0,
as well as the two fission barriers, and the fission valley
at large deformations.
The dots in the left panel of Fig. 1 denote three charac-

teristic initial points on the energy surface for calculation
of fission trajectories. Since TDDFT e ectively describes
the classical evolution of independent nucleons in self-
consistent mean-field potentials, this approach cannot be
applied to fission dynamics in the classically forbidden
region of the collective space [9, 11, 12, 14]. The initial
point for the TDDFT evolution is usually taken below the
outer barrier [17, 26], and the three points shown in the
left panel of Fig. 1 correspond to energies approximately
1 MeV below the equilibrium minimum. Given the initial
single-nucleon quasiparticle wave functions and occupa-
tion probabilities, TDDFT models a single fission events
by propagating the nucleons independently toward scis-
sion and beyond. At each step in time the single-nucleon

iltonian is determined from the time-dependent den-
sities, currents and pairing tensor (cf. SM for details)
and, therefore, the time-evolution includes the one-body
dissipation mechanism.

For the three fission trajectories, the panel on the right
of Fig. 1 displays the corresponding isodensities (in units

of fm ) in the coordinate plane, at times immedi-
ately prior to the scission event. Even though the lengths
of the fission trajectories in the collective space of de-
formation parameters are not dramatically di erent, the
time it takes to reach the scission configuration varies
from 1650 fm/c (trajectory 1), to 1150 fm/c (trajectory
2) and, finally, 700 fm/c (trajectory 3). The large dif-
ferences in time can be attributed to the self-consistent
potentials in which the system evolves toward scission
along the three trajectories and to dynamical pairing cor-
relations [17]. These times should be compared with the
average time-scale for the evolution of a nucleus from
the compound system in equilibrium to the formation of
fragments: (6 10 fm/c [27]. The isodensities in
Fig. 1 exhibit a typical mass asymmetry of the nascent
fragments, and also the low-density neck region charac-
terized by the competition between the repulsive long-
range Coulomb interaction and the short-range nuclear
attraction.
These findings are consistent with previous studies of

fission dynamics but a surprising result is obtained when,
instead of the isodensities at pre-scission times, one con-
siders the corresponding nucleon localization functions
[28, 29]:

) = 1 +
TF

(1)

for the spin σ (↑ or ↓) and isospin or ) quantum

numbers. , and denote the nucleon
density, kinetic energy density, current density, and den-

sity gradient, respectively. TF (6 is the
Thomas-Fermi kinetic energy density.
For homogeneous nuclear matter TF, the second

and third term in the numerator vanish, and = 1 2.
In the other limit 1 indicates that the prob-
ability of finding two nucleons with the same spin and
isospin at the same point is very small. This is the case
for the -cluster of four particles: , and
for which all four nucleon localization functions 1.
The nucleon localization functions have been used to an-
alyze -cluster structures in light nuclei [29–31], to char-
acterize shell structures of nascent fragments in fissioning
nuclei [26, 32], and cluster structures in complex precom-
pound states formed in heavy-ion fusion reactions [33].
In Fig. 2, we plot the proton (left) and total

(right) localization functions in the coordinate plane
for the three fission trajectories discussed above, at times
that immediately precede scission. Here, the proton and
neutron total localization functions are averaged over the
spin: = ( 2. In all three cases we notice
that, while the localization functions generally exhibit
shell structures in the fragments, their values 0 6 are
consistent with homogeneous nuclear matter. In the neck
region, however, values close to 1 are obtained, character-

scission, the system at scission is treated as a micro-
canonical ensemble where all available configurations are
equiprobable. The random neck rupture model relies on a
sequence of instabilities [21], and assumes that the neck
snaps at some random points along its length. In mi-
croscopic approaches, both geometrical and dynamical
definitions of the scission configuration have been con-
sidered. Geometrical definitions include the criterion of
vanishing density between the fragments, and the expec-
tation value of a neck operator that gives a measure of
the number of particles in the neck [22]. In a dynam-
ical approach, the scission configuration can be defined
in terms of the ratio of the nuclear and Coulomb inter-
action energies in the neck region [23], as well as using
a quantum localization method based on the partition
of orbital wave functions into two sets belonging to the
pre-fragments [24].

In this work, the dynamics of neck formation and
nuclear scission is studied within the TDDFT frame-
work. For the details of the particular implementation
of TDDFT that we employ to model induced fission, we
refer the reader to the supplemental material (SM).

In the left panel of Fig. 1, we display the self-consistent
deformation energy surface of 240Pu. It is calculated
with the relativistic energy density functional PC-PK1
[25] and a monopole pairing interaction (cf. SM for de-
tails), and shown as function of the two collective coor-
dinates: the axial quadrupole ( 20) and octupole ( 30

deformation parameters, that correspond to the nuclear
elongation and mass asymmetry, respectively. The equi-
librium minimum is located at 20 3 and 30 = 0,
and it appears slightly soft in the octupole direction. We
also note the isomeric minimum at 20 9 and 30 = 0,
as well as the two fission barriers, and the fission valley
at large deformations.

The dots in the left panel of Fig. 1 denote three charac-
teristic initial points on the energy surface for calculation
of fission trajectories. Since TDDFT e ectively describes
the classical evolution of independent nucleons in self-
consistent mean-field potentials, this approach cannot be
applied to fission dynamics in the classically forbidden
region of the collective space [9, 11, 12, 14]. The initial
point for the TDDFT evolution is usually taken below the
outer barrier [17, 26], and the three points shown in the
left panel of Fig. 1 correspond to energies approximately
1 MeV below the equilibrium minimum. Given the initial
single-nucleon quasiparticle wave functions and occupa-
tion probabilities, TDDFT models a single fission events
by propagating the nucleons independently toward scis-
sion and beyond. At each step in time the single-nucleon

iltonian is determined from the time-dependent den-
sities, currents and pairing tensor (cf. SM for details)
and, therefore, the time-evolution includes the one-body
dissipation mechanism.

For the three fission trajectories, the panel on the right
of Fig. 1 displays the corresponding isodensities (in units

of fm ) in the coordinate plane, at times immedi-
ately prior to the scission event. Even though the lengths
of the fission trajectories in the collective space of de-
formation parameters are not dramatically di erent, the
time it takes to reach the scission configuration varies
from 1650 fm/c (trajectory 1), to 1150 fm/c (trajectory
2) and, finally, 700 fm/c (trajectory 3). The large dif-
ferences in time can be attributed to the self-consistent
potentials in which the system evolves toward scission
along the three trajectories and to dynamical pairing cor-
relations [17]. These times should be compared with the
average time-scale for the evolution of a nucleus from
the compound system in equilibrium to the formation of
fragments: (6 10 fm/c [27]. The isodensities in
Fig. 1 exhibit a typical mass asymmetry of the nascent
fragments, and also the low-density neck region charac-
terized by the competition between the repulsive long-
range Coulomb interaction and the short-range nuclear
attraction.
These findings are consistent with previous studies of

fission dynamics but a surprising result is obtained when,
instead of the isodensities at pre-scission times, one con-
siders the corresponding nucleon localization functions
[28, 29]:

) = 1 +
TF
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for the spin or ) and isospin q (n or p) quantum

numbers. , and denote the nucleon
density, kinetic energy density, current density, and den-

sity gradient, respectively. TF (6 is the
Thomas-Fermi kinetic energy density.
For homogeneous nuclear matter TF, the second

and third term in the numerator vanish, and = 1 2.
In the other limit 1 indicates that the prob-
ability of finding two nucleons with the same spin and
isospin at the same point is very small. This is the case
for the -cluster of four particles: , and
for which all four nucleon localization functions 1.
The nucleon localization functions have been used to an-
alyze -cluster structures in light nuclei [29–31], to char-
acterize shell structures of nascent fragments in fissioning
nuclei [26, 32], and cluster structures in complex precom-
pound states formed in heavy-ion fusion reactions [33].
In Fig. 2, we plot the proton (left) and total

(right) localization functions in the coordinate plane
for the three fission trajectories discussed above, at times
that immediately precede scission. Here, the proton and
neutron total localization functions are averaged over the
spin: = ( 2. In all three cases we notice
that, while the localization functions generally exhibit
shell structures in the fragments, their values 0 6 are
consistent with homogeneous nuclear matter. In the neck
region, however, values close to 1 are obtained, character-
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scission, the system at scission is treated as a micro-
canonical ensemble where all available configurations are
equiprobable. The random neck rupture model relies on a
sequence of instabilities [21], and assumes that the neck
snaps at some random points along its length. In mi-
croscopic approaches, both geometrical and dynamical
definitions of the scission configuration have been con-
sidered. Geometrical definitions include the criterion of
vanishing density between the fragments, and the expec-
tation value of a neck operator that gives a measure of
the number of particles in the neck [22]. In a dynam-
ical approach, the scission configuration can be defined
in terms of the ratio of the nuclear and Coulomb inter-
action energies in the neck region [23], as well as using
a quantum localization method based on the partition
of orbital wave functions into two sets belonging to the
pre-fragments [24].

In this work, the dynamics of neck formation and
nuclear scission is studied within the TDDFT frame-
work. For the details of the particular implementation
of TDDFT that we employ to model induced fission, we
refer the reader to the supplemental material (SM).

In the left panel of Fig. 1, we display the self-consistent
deformation energy surface of 240Pu. It is calculated
with the relativistic energy density functional PC-PK1
[25] and a monopole pairing interaction (cf. SM for de-
tails), and shown as function of the two collective coor-
dinates: the axial quadrupole ( 20) and octupole ( 30

deformation parameters, that correspond to the nuclear
elongation and mass asymmetry, respectively. The equi-
librium minimum is located at 20 3 and 30 = 0,
and it appears slightly soft in the octupole direction. We
also note the isomeric minimum at 20 9 and 30 = 0,
as well as the two fission barriers, and the fission valley
at large deformations.

The dots in the left panel of Fig. 1 denote three charac-
teristic initial points on the energy surface for calculation
of fission trajectories. Since TDDFT e ectively describes
the classical evolution of independent nucleons in self-
consistent mean-field potentials, this approach cannot be
applied to fission dynamics in the classically forbidden
region of the collective space [9, 11, 12, 14]. The initial
point for the TDDFT evolution is usually taken below the
outer barrier [17, 26], and the three points shown in the
left panel of Fig. 1 correspond to energies approximately
1 MeV below the equilibrium minimum. Given the initial
single-nucleon quasiparticle wave functions and occupa-
tion probabilities, TDDFT models a single fission events
by propagating the nucleons independently toward scis-
sion and beyond. At each step in time the single-nucleon

iltonian is determined from the time-dependent den-
sities, currents and pairing tensor (cf. SM for details)
and, therefore, the time-evolution includes the one-body
dissipation mechanism.

For the three fission trajectories, the panel on the right
of Fig. 1 displays the corresponding isodensities (in units

of fm ) in the coordinate plane, at times immedi-
ately prior to the scission event. Even though the lengths
of the fission trajectories in the collective space of de-
formation parameters are not dramatically di erent, the
time it takes to reach the scission configuration varies
from 1650 fm/c (trajectory 1), to 1150 fm/c (trajectory
2) and, finally, 700 fm/c (trajectory 3). The large dif-
ferences in time can be attributed to the self-consistent
potentials in which the system evolves toward scission
along the three trajectories and to dynamical pairing cor-
relations [17]. These times should be compared with the
average time-scale for the evolution of a nucleus from
the compound system in equilibrium to the formation of
fragments: (6 10 fm/c [27]. The isodensities in
Fig. 1 exhibit a typical mass asymmetry of the nascent
fragments, and also the low-density neck region charac-
terized by the competition between the repulsive long-
range Coulomb interaction and the short-range nuclear
attraction.
These findings are consistent with previous studies of

fission dynamics but a surprising result is obtained when,
instead of the isodensities at pre-scission times, one con-
siders the corresponding nucleon localization functions
[28, 29]:
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Thomas-Fermi kinetic energy density.
For homogeneous nuclear matter TF, the second

and third term in the numerator vanish, and = 1 2.
In the other limit 1 indicates that the prob-
ability of finding two nucleons with the same spin and
isospin at the same point is very small. This is the case
for the -cluster of four particles: , and
for which all four nucleon localization functions 1.
The nucleon localization functions have been used to an-
alyze -cluster structures in light nuclei [29–31], to char-
acterize shell structures of nascent fragments in fissioning
nuclei [26, 32], and cluster structures in complex precom-
pound states formed in heavy-ion fusion reactions [33].
In Fig. 2, we plot the proton (left) and total

(right) localization functions in the coordinate plane
for the three fission trajectories discussed above, at times
that immediately precede scission. Here, the proton and
neutron total localization functions are averaged over the
spin: = ( 2. In all three cases we notice
that, while the localization functions generally exhibit
shell structures in the fragments, their values 0 6 are
consistent with homogeneous nuclear matter. In the neck
region, however, values close to 1 are obtained, character-
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scission, the system at scission is treated as a micro-
canonical ensemble where all available configurations are
equiprobable. The random neck rupture model relies on a
sequence of instabilities [21], and assumes that the neck
snaps at some random points along its length. In mi-
croscopic approaches, both geometrical and dynamical
definitions of the scission configuration have been con-
sidered. Geometrical definitions include the criterion of
vanishing density between the fragments, and the expec-
tation value of a neck operator that gives a measure of
the number of particles in the neck [22]. In a dynam-
ical approach, the scission configuration can be defined
in terms of the ratio of the nuclear and Coulomb inter-
action energies in the neck region [23], as well as using
a quantum localization method based on the partition
of orbital wave functions into two sets belonging to the
pre-fragments [24].

In this work, the dynamics of neck formation and
nuclear scission is studied within the TDDFT frame-
work. For the details of the particular implementation
of TDDFT that we employ to model induced fission, we
refer the reader to the supplemental material (SM).

In the left panel of Fig. 1, we display the self-consistent
deformation energy surface of 240Pu. It is calculated
with the relativistic energy density functional PC-PK1
[25] and a monopole pairing interaction (cf. SM for de-
tails), and shown as function of the two collective coor-
dinates: the axial quadrupole ( 20) and octupole ( 30

deformation parameters, that correspond to the nuclear
elongation and mass asymmetry, respectively. The equi-
librium minimum is located at 20 3 and 30 = 0,
and it appears slightly soft in the octupole direction. We
also note the isomeric minimum at 20 9 and 30 = 0,
as well as the two fission barriers, and the fission valley
at large deformations.

The dots in the left panel of Fig. 1 denote three charac-
teristic initial points on the energy surface for calculation
of fission trajectories. Since TDDFT e ectively describes
the classical evolution of independent nucleons in self-
consistent mean-field potentials, this approach cannot be
applied to fission dynamics in the classically forbidden
region of the collective space [9, 11, 12, 14]. The initial
point for the TDDFT evolution is usually taken below the
outer barrier [17, 26], and the three points shown in the
left panel of Fig. 1 correspond to energies approximately
1 MeV below the equilibrium minimum. Given the initial
single-nucleon quasiparticle wave functions and occupa-
tion probabilities, TDDFT models a single fission events
by propagating the nucleons independently toward scis-
sion and beyond. At each step in time the single-nucleon

iltonian is determined from the time-dependent den-
sities, currents and pairing tensor (cf. SM for details)
and, therefore, the time-evolution includes the one-body
dissipation mechanism.

For the three fission trajectories, the panel on the right
of Fig. 1 displays the corresponding isodensities (in units

of fm ) in the coordinate plane, at times immedi-
ately prior to the scission event. Even though the lengths
of the fission trajectories in the collective space of de-
formation parameters are not dramatically di erent, the
time it takes to reach the scission configuration varies
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2) and, finally, 700 fm/c (trajectory 3). The large dif-
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relations [17]. These times should be compared with the
average time-scale for the evolution of a nucleus from
the compound system in equilibrium to the formation of
fragments: (6 10 fm/c [27]. The isodensities in
Fig. 1 exhibit a typical mass asymmetry of the nascent
fragments, and also the low-density neck region charac-
terized by the competition between the repulsive long-
range Coulomb interaction and the short-range nuclear
attraction.
These findings are consistent with previous studies of

fission dynamics but a surprising result is obtained when,
instead of the isodensities at pre-scission times, one con-
siders the corresponding nucleon localization functions
[28, 29]:
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In the other limit 1 indicates that the prob-
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nuclei [26, 32], and cluster structures in complex precom-
pound states formed in heavy-ion fusion reactions [33].
In Fig. 2, we plot the proton (left) and total

(right) localization functions in the coordinate plane
for the three fission trajectories discussed above, at times
that immediately precede scission. Here, the proton and
neutron total localization functions are averaged over the
spin: = ( 2. In all three cases we notice
that, while the localization functions generally exhibit
shell structures in the fragments, their values 0 6 are
consistent with homogeneous nuclear matter. In the neck
region, however, values close to 1 are obtained, character-

scission, the system at scission is treated as a micro-
canonical ensemble where all available configurations are
equiprobable. The random neck rupture model relies on a
sequence of instabilities [21], and assumes that the neck
snaps at some random points along its length. In mi-
croscopic approaches, both geometrical and dynamical
definitions of the scission configuration have been con-
sidered. Geometrical definitions include the criterion of
vanishing density between the fragments, and the expec-
tation value of a neck operator that gives a measure of
the number of particles in the neck [22]. In a dynam-
ical approach, the scission configuration can be defined
in terms of the ratio of the nuclear and Coulomb inter-
action energies in the neck region [23], as well as using
a quantum localization method based on the partition
of orbital wave functions into two sets belonging to the
pre-fragments [24].

In this work, the dynamics of neck formation and
nuclear scission is studied within the TDDFT frame-
work. For the details of the particular implementation
of TDDFT that we employ to model induced fission, we
refer the reader to the supplemental material (SM).

In the left panel of Fig. 1, we display the self-consistent
deformation energy surface of 240Pu. It is calculated
with the relativistic energy density functional PC-PK1
[25] and a monopole pairing interaction (cf. SM for de-
tails), and shown as function of the two collective coor-
dinates: the axial quadrupole ( 20) and octupole ( 30

deformation parameters, that correspond to the nuclear
elongation and mass asymmetry, respectively. The equi-
librium minimum is located at 20 3 and 30 = 0,
and it appears slightly soft in the octupole direction. We
also note the isomeric minimum at 20 9 and 30 = 0,
as well as the two fission barriers, and the fission valley
at large deformations.

The dots in the left panel of Fig. 1 denote three charac-
teristic initial points on the energy surface for calculation
of fission trajectories. Since TDDFT e ectively describes
the classical evolution of independent nucleons in self-
consistent mean-field potentials, this approach cannot be
applied to fission dynamics in the classically forbidden
region of the collective space [9, 11, 12, 14]. The initial
point for the TDDFT evolution is usually taken below the
outer barrier [17, 26], and the three points shown in the
left panel of Fig. 1 correspond to energies approximately
1 MeV below the equilibrium minimum. Given the initial
single-nucleon quasiparticle wave functions and occupa-
tion probabilities, TDDFT models a single fission events
by propagating the nucleons independently toward scis-
sion and beyond. At each step in time the single-nucleon

iltonian is determined from the time-dependent den-
sities, currents and pairing tensor (cf. SM for details)
and, therefore, the time-evolution includes the one-body
dissipation mechanism.

For the three fission trajectories, the panel on the right
of Fig. 1 displays the corresponding isodensities (in units

of fm ) in the coordinate plane, at times immedi-
ately prior to the scission event. Even though the lengths
of the fission trajectories in the collective space of de-
formation parameters are not dramatically di erent, the
time it takes to reach the scission configuration varies
from 1650 fm/c (trajectory 1), to 1150 fm/c (trajectory
2) and, finally, 700 fm/c (trajectory 3). The large dif-
ferences in time can be attributed to the self-consistent
potentials in which the system evolves toward scission
along the three trajectories and to dynamical pairing cor-
relations [17]. These times should be compared with the
average time-scale for the evolution of a nucleus from
the compound system in equilibrium to the formation of
fragments: (6 10 fm/c [27]. The isodensities in
Fig. 1 exhibit a typical mass asymmetry of the nascent
fragments, and also the low-density neck region charac-
terized by the competition between the repulsive long-
range Coulomb interaction and the short-range nuclear
attraction.
These findings are consistent with previous studies of

fission dynamics but a surprising result is obtained when,
instead of the isodensities at pre-scission times, one con-
siders the corresponding nucleon localization functions
[28, 29]:

) = 1 +
TF

(1)

for the spin or ) and isospin or ) quantum

numbers. , and denote the nucleon
density, kinetic energy density, current density, and den-

sity gradient, respectively. TF (6 is the
Thomas-Fermi kinetic energy density.
For homogeneous nuclear matter TF, the second

and third term in the numerator vanish, and = 1 2.
In the other limit Cqσ("r) ≈ 1 indicates that the prob-
ability of finding two nucleons with the same spin and
isospin at the same point is very small. This is the case
for the -cluster of four particles: , and
for which all four nucleon localization functions 1.
The nucleon localization functions have been used to an-
alyze -cluster structures in light nuclei [29–31], to char-
acterize shell structures of nascent fragments in fissioning
nuclei [26, 32], and cluster structures in complex precom-
pound states formed in heavy-ion fusion reactions [33].
In Fig. 2, we plot the proton (left) and total

(right) localization functions in the coordinate plane
for the three fission trajectories discussed above, at times
that immediately precede scission. Here, the proton and
neutron total localization functions are averaged over the
spin: = ( 2. In all three cases we notice
that, while the localization functions generally exhibit
shell structures in the fragments, their values 0 6 are
consistent with homogeneous nuclear matter. In the neck
region, however, values close to 1 are obtained, character-



Trajectory 2

Proton localization Density

When are these light clusters formed? 

What is their structure? 

What is their role in the scission mechanism? 

Ren, Vretenar, Nikšić, Zhao, Zhao, Meng, Phys. Rev. Lett. 128, 172501 (2022).



Generalized time-dependent generator coordinate method 

Li, Vretenar, Nikšić, Zhao, Meng, Phys. Rev. C 108, 014321 (2023).

II. THEORETICAL FRAMEWORK: GENERALIZED TIME-DEPENDENT GCM

WITH PAIRING INTERACTIONS

The Gri n-Hill-Wheeler (GHW) ansatz for the TD-GCM correlated nuclear wave func-

tion reads [15 18 19

(1)

where the vector denotes the continuous real erator coordinates that parametrize the

collective degrees of freedom. This wave function is a linear superposition of, general-

ly non-orthogonal, many-body erator states , and ) are the corresponding

complex-valued functions. The generalized TD-GCM without the inclusion of pair-

ing correlations has been implemented in the first part of this work [ ]. In this study, pairing

is also taken into account, and the discretized generator coordinates are the mass multipole

moments (axial quadrupole and octupole) of the nucleon density distribution. Thus, the

nuclear wave function

|Ψ(t)〉 =
∑
q

fq(t)|Φq(t)〉, (2)

is the solution of the time-dependent equation

(3)

where is the Hamiltonian of the nuclear system. From a time-dependent variational

principle [19], one obtains the equation of motion for the weight functions

= ( MF f, (4)

which, in the discretized collective space, reads

) + MF ) = (5)

The time-dependent kernels

) = (6a)

) = (6b)

MF ) = (6c)

include the overlap, the Hamiltonian, and the time derivative of the generator states, re-

spectively.
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where ˙ ,k ) and ˙ ,k ) can be derived from Eq. (12), and ,k can be obtained

by the Pfa an algorithms [24 25].

E. Collective wave function

Equation ( ) is not a collective Schrödinger equation, and the weight function

is not a probability amplitude of finding the system at the collective coordinate . The

corresponding collective wave function ) is defined by the transformation [27

g = N 1/2f, (28)

where is the square root of the overlap kernel matrix. Inserting Eq. (28) into Eq. ( ),

the time evolution of the collective wave function is governed by the equation [19
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FIG. 1. (color online). Self-consistent deformation energy surface of 240Pu in the plane of

quadrupole-octupole axially-symmetric deformation parameters, calculated with the relativistic

density functional PC-PK1 and a monopole pairing interaction. Contours join points on the sur-

face with the same energy, and the open dots correspond to points on the iso-energy curve at 1

MeV below the energy of the equilibrium minimum. In the panel on the right, the normalized

probability that the initial TD-GCM wave packet reaches a particular point after 30 zs, is plotted

as function of the octupole deformation parameter. The curves correspond to self-consistent TD-

DFT fission trajectories from the initial points, to be used as generator states of the generalized

TD-GCM.

superposition of 5 TD-DFT trajectories from region 1 (green trajectories in Fig. ). When

these trajectories are used as generator states of the generalized TD-GCM, their initial

overlaps are relatively large, as shown by the eigenvalues of the overlap kernel in the top

panel of Fig. . One notices that the eigenvalues approach 1 asymptotically with time,

which means that the trajectories become orthogonal. This is because after scission they

correspond to distinct pairs of fragments with di erent particle numbers. The second panel

of Fig. displays the evolution of the five components of the collective TD-GCM wave

function. One notices considerable mixing and, therefore, pronounced quantum fluctuations

in the period before scission, while the contributions of the square moduli of components are

constant after scission, reflecting the orthogonality of the TD-DFT basis trajectories. In the

11

FIG. 2. (color online). Fission of 240Pu with the five TD-DFT trajectories that start in region

1. The initial point for the generalized GCM evolution is at 20 = 2 91 and 30 = 2 08 on the

deformation energy surface. The top panel displays the eigenvalues of the overlap kernel, and the

square moduli of components of the TD-GCM collective wave function are shown in the second

panel. The time evolution of the quadrupole and octupole deformations on the way to scission and

beyond, is compared to the single TD-DFT trajectory starting from the same point, in the two

lower panels.

lower two panels, we plot the time dependence of the quadrupole and octupole deformations

on the way to scission and beyond, in comparison to the single TD-DFT trajectory that

also starts at 20 = 2 91 and 30 = 2 08. The interesting result here is that, while the single

TD-DFT trajectory eventually gets trapped in local minima and does not lead to scission

20 and 30 decrease with time), quantum fluctuations induced by admixing configurations

that correspond to the other four TD-DFT trajectories are su cient to produce a scission

12

Superposition of 5 TD-DFT 

trajectories from region 1. 

The initial point for the generalized GCM 

evolution is at β20 = 2.91 and β30 = 2.08. 
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Superposition of 5 TD-DFT 

trajectories from region 3. 

FIG. 3. (color online). Same as in the caption to Fig. but for the five TD-DFT trajectories that

start in region 3 on Fig. . The initial point for the generalized GCM evolution is at 20 = 2 30

and 30 = 1 13 on the deformation energy surface. The vertical dashed line denotes the instant of

scission.

event.

In the next example, we examine the superposition of 5 fission trajectories that start

in region 3 on Fig. . This is, of course, not an optimal choice as obviously one ex-

pects pronounced admixtures of TD-DFT trajectories from regions 2 and 4 as well, but

at present we cannot evolve in time a collective wave function expanded in a much larg-

er TD-DFT basis. The evolution of the correlated GCM wave function starts at the point

13

FIG. 4. (color online). Probability distributions of charge yields for the TD-DFT trajectories that

start in region 3 on the deformation energy surface in Fig. . In each panel, from top to bottom, the

blue bars denote the charge of the light and heavy fragments calculated for the TD-DFT trajectory

that starts from the initial points: ( 20 30) = (2 41 (2 33 (2 30 (2 36

and (2 50 , respectively. The red bars, normalized to 1 for the light and heavy fragments,

correspond to the charge yields obtained for the generalized TD-GCM trajectory that starts from

the same initial point as the TD-DFT one, but is a superposition of all five basis trajectories.
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and (2 50 , respectively. The red bars, normalized to 1 for the light and heavy fragments,

correspond to the charge yields obtained for the generalized TD-GCM trajectory that starts from

the same initial point as the TD-DFT one, but is a superposition of all five basis trajectories.
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correspond to the charge yields obtained for the generalized TD-GCM trajectory that starts from

the same initial point as the TD-DFT one, but is a superposition of all five basis trajectories.
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✔ …accurate microscopic description of universal collective phenomena (fission) 

that reflect the organisation of nucleonic matter in finite nuclei.

Methods (TDGCM, TDDFT) based on the framework of universal  

Energy Density Functionals

• Finite temperature effects 

• Energy dissipation and TKE of fragments 

• Neck formation and scission mechanism 

• Ternary fission 

• Fragment angular momentum generation 

• Symmetry restoration 


