Microscopic Analysis of Induced Nuclear Fission Dynamics

Dario Vretenar
University of Zagreb

Two basic microscopic approaches to the description of induced fission dynamics:

The time-dependent generator coordinate method (TDGCM)

$$
|\Psi(t)\rangle=\int_{\boldsymbol{q} \in E} \mathrm{~d} \boldsymbol{q}|\phi(\boldsymbol{q})\rangle f(\boldsymbol{q}, t) . \quad \begin{aligned}
& \Rightarrow \text { represents the nuclear wave function by a superposition of } \\
& \text { generator states that are functions of collective coordinates. }
\end{aligned}
$$

\Rightarrow a fully quantum mechanical approach but only takes into account collective degrees of freedom in the adiabatic approximation.
\Rightarrow no dissipation mechanism.

TDGCM in the Gaussian overlap approximation (TDGCM+GOA)

Example

Time-dependent Schroedinger-like equation for fission dynamics (axial quadrupole and octupole deformation parameters as collective degrees of freedom):

$$
i \hbar \frac{\partial}{\partial t} g\left(\beta_{2}, \beta_{3}, t\right)=\left\lceil-\frac{\hbar^{2}}{2} \sum_{k l} \frac{\partial}{\partial \beta_{k}} B_{k l}\left(\beta_{2}, \beta_{3}\right) \frac{\partial}{\partial \beta_{l}}+V\left(\beta_{2}, \beta_{3}\right)\right\rceil g\left(\beta_{2}, \beta_{3}, t\right)
$$

RMF + BCS quadrupole and octupole constrained deformation energy surface of 226 Th in the $\beta_{2}-\beta_{3}$ plane.
TAO, ZHAO, LI, NIKŠIĆ, AND VRETENAR PHYSICAL REVIEW C 96, 024319 (2017)

\rightarrow includes static correlations: deformations \& pairing
\rightarrow does not include dynamic (collective) correlations that arise from symmetry restoration and quantum fluctuations around mean-field minima

PC-PKI plus $\bar{\delta}$-force pairing

A triple-humped fission barrier is predicted along the static fission path, and the calculated heights are 7.10, 8.58, and 7.32 MeV from the inner to the outer barrier.

The height of the fission barriers (in MeV) with respect to the corresponding ground-state minima:

$$
B_{I} \quad B_{I I}^{\text {asy }} B_{I I I}^{\text {asy }} B_{I I}^{\mathrm{sym}} B_{I I I}^{\mathrm{sym}}
$$

90\% pairing $8.239 .47 \quad 7.7415 .64 \quad 6.38$
100% pairing $7.10 \quad 8.58 \quad 7.32 \quad 14.21 \quad 5.72$
110% pairing $5.92 \quad 7.78 \quad 7.09 \quad 12.72 \quad 5.17$

N. SCHUNCK, D. DUKE, AND H. CARR PHYSICAL REVIEW C 91, 034327 (2015)

Finite temperature effects:
$i \hbar \frac{\partial g(\boldsymbol{q}, t)}{\partial t}=\hat{H}_{\mathrm{coll}}(\boldsymbol{q}) g(\boldsymbol{q}, t)$
$\hat{H}_{\text {coll }}(\boldsymbol{q})=-\frac{\hbar^{2}}{2} \sum_{i j} \frac{\partial}{\partial q_{i}} B_{i j}(\boldsymbol{q}) \frac{\partial}{\partial q_{j}}+V(\boldsymbol{q})$
Helmholtz free energy: $\mid F=E(T)-T S$
... entropy of the compound nuclear system:

$$
S=-k_{B} \sum_{k}\left[f_{k} \ln f_{k}+\left(1-f_{k}\right) \ln \left(1-f_{k}\right)\right]
$$

... thermal occupation probabilities:

$$
f_{k}=\frac{1}{1+e^{\beta E_{k}}}
$$

Dynamics of induced fission

Charge yields:

Experimental results photon energies in the interval $8-14 \mathrm{MeV}$, and a peak value $\mathrm{E} \boldsymbol{\gamma}=11 \mathrm{MeV}$.
$\mathrm{T}=0.5, \mathbf{0 . 7 5}, \mathbf{1 . 0}$, and 1.25 MeV corresponding internal excitation energies E* are: 2.58, 8.71, 16.56, and 27.12 MeV, respectively.

*The temperature is adjusted so that the intrinsic excitation energy corresponds to the experimental exc. energy.

Induced fission: dynamical pairing degree of freedom

Zhao, Nikšić, Vretenar
Phys. Rev. C 104, 044612 (2021).
SCMF deformation energy surface menstraints on the mass multipole moments and the particle-number dispersion operator: $\quad \Delta \hat{N}^{2}=\hat{N}^{2}-\langle\hat{N}\rangle^{2}$.
... the Routhian:

$$
E^{\prime}=E_{\mathrm{RMF}}+\sum_{\lambda \mu} \frac{1}{2} C_{\lambda \mu} Q_{\lambda \mu}+\underbrace{\lambda_{2} \Delta \hat{N}^{2}}
$$

isoscalar dynamical pairing

2D projections of the deformation-energy manifold of ${ }^{228}$ Th on the quadrupoleoctupole axially symmetric plane, for selected values of the pairing coordinate λ_{2}.

$$
\hat{H}_{\mathrm{coll}}(\boldsymbol{q})=-\frac{\hbar^{2}}{2} \sum_{i j} \frac{\partial}{\partial q_{i}} B_{i j}(\boldsymbol{q}) \frac{\partial}{\partial q_{j}}+V(\boldsymbol{q})
$$

Charge yields calculated in the 3D collective space \rightarrow deformation $\beta 2, \beta 3$ and dynamical pairing $\lambda 2$ coordinates.

Effect of dynamical pairing on the flux of the probability current through the scission hyper-surface:

$$
B\left(\lambda_{2}\right) \propto \sum_{\xi \in \mathcal{B}} \lim _{t \rightarrow \infty} F\left(\xi, \lambda_{2}, t\right)
$$

\rightarrow time-integrated flux through the scission contour in the $(\beta 2, \beta 3)$ plane, for a given value of the pairing collective coordinate $\lambda 2$.

Adiabatic evolution and dissipative dynamics

Ren, Zhao, Vretenar, Nikšić, Zhao, Meng


```
Time-dependent density functional theory (TDDFT)
```

$$
\begin{array}{ll}
i \frac{\partial}{\partial t} \psi_{k}(\boldsymbol{r}, t)=\left[\hat{h}(\boldsymbol{r}, t)-\varepsilon_{k}(t)\right] \psi_{k}(\boldsymbol{r}, t), & \begin{array}{l}
\Rightarrow \text { classical evolution of independent nucleons } \\
\text { in mean-field potentials, cannot be applied in }
\end{array} \\
\text { classically forbidden regions of the collective }
\end{array}
$$

\Rightarrow automatically includes the one-body dissipation mechanism, but can only simulate a single fission event by propagating the nucleons independently.

Negele et al. (1978) use an adiabatic model for the time interval in which the fissioning nucleus evolves from the quasi-stationary initial state to the saddle point, and a non-adiabatic method for the saddle-to-scission and beyond-scission dynamics.

Ren, Zhao, Vretenar, Nikšić, Zhao, Meng Phys. Rev. C 105, 044313 (2022).

4 MeV below the minimum

Total kinetic energies (TKEs) of the fragments

TDGCM+GOA

$$
E_{\mathrm{TKE}}=\frac{e^{2} Z_{H} Z_{L}}{d_{\mathrm{ch}} \rightarrow \text { distance between centers of charge at the point of scission. }}
$$

TDDFT

$$
E_{\mathrm{TKE}}=\frac{1}{2} m A_{\mathrm{H}} \boldsymbol{v}_{\mathrm{H}}^{2}+\frac{1}{2} m A_{\mathrm{L}} \boldsymbol{v}_{\mathrm{L}}^{2}+E_{\mathrm{Coul}},
$$

($\approx 25 \mathrm{fm}$, at which shape relaxation brings the fragments to their equilibrium shapes)

Extended TDGCM - dissipation effects

Zhao, Nikšić, Vretenar Phys. Rev. C 105, 054604 (2022).
Extended TDGCM many-body wave function: $|\Phi(t)\rangle=\sum_{n} \int d \boldsymbol{q} f_{n}(\boldsymbol{q}, t)|n \boldsymbol{q}\rangle$
... excited states at each value of the collective coordinate \mathbf{q}
\Rightarrow the matrix integral Hill-Wheeler equation:

$$
\begin{aligned}
& \sum_{n^{\prime}} \int d \boldsymbol{q}^{\prime}\left\{\mathcal{H}_{n n^{\prime}}\left(\boldsymbol{q}, \boldsymbol{q}^{\prime}\right) f_{n^{\prime}}\left(\boldsymbol{q}^{\prime}, t\right)\right. \\
& \left.-\mathcal{N}_{n n^{\prime}}\left(\boldsymbol{q}, \boldsymbol{q}^{\prime}\right)\left[i \hbar \partial_{t} f_{n^{\prime}}\left(\boldsymbol{q}^{\prime}, t\right)\right]\right\}=0
\end{aligned}
$$

... the level density for each value of \mathbf{q} is high even at low excitation energies \Rightarrow the discrete label n can be separated into a continuous excitation energy variable ε, and a degeneracy label λ :

$$
\begin{gathered}
\sum_{\lambda, \text { fixed } \epsilon}=\rho(\boldsymbol{q}, \epsilon) d \epsilon \\
i \hbar \frac{\partial}{\partial t} \psi(\boldsymbol{q}, \epsilon ; t)=\int d \boldsymbol{q}^{\prime} h\left(\boldsymbol{q}, \boldsymbol{q}^{\prime} ; \epsilon, \epsilon\right) \psi\left(\boldsymbol{q}^{\prime}, \epsilon ; t\right) \\
+\sum_{\lambda^{\prime} \neq \lambda} \iint d \boldsymbol{q}^{\prime} d \epsilon^{\prime} h\left(\boldsymbol{q}, \boldsymbol{q}^{\prime} ; \epsilon, \epsilon^{\prime}\right) \psi\left(\boldsymbol{q}^{\prime}, \epsilon^{\prime} ; t\right)
\end{gathered}
$$

... expansion of the Hamiltonian kernel in a power series in collective momenta: $\quad \boldsymbol{P}=-i \hbar(\partial / \partial \boldsymbol{q})$,

$$
\begin{aligned}
& i \hbar \partial_{t} \psi(\boldsymbol{q}, \epsilon ; t)= {\left[V(\boldsymbol{q}, \epsilon)+\boldsymbol{P} \frac{1}{2 \mathcal{M}(\boldsymbol{q}, \epsilon)} \boldsymbol{P}\right] \psi(\boldsymbol{q}, \epsilon ; t) } \\
&+\frac{i}{2} \int\left\{\boldsymbol{P}, \boldsymbol{\eta}\left(\boldsymbol{q} ; \epsilon, \epsilon^{\prime}\right)\right\} \psi\left(\boldsymbol{q}, \epsilon^{\prime} ; t\right) d \epsilon^{\prime} . \\
& \ldots \\
& \ldots \text {..dissipation function: } \boldsymbol{\eta}\left(\boldsymbol{q} ; \epsilon, \epsilon^{\prime}\right)=h^{(1)}\left(\boldsymbol{q} ; \epsilon, \epsilon^{\prime}\right) / \hbar
\end{aligned}
$$

... excitation energy \rightarrow nuclear temperature $\quad \eta\left(\boldsymbol{q} ; T, T^{\prime}\right) \equiv \eta\left(\boldsymbol{q} ; \epsilon(T), \epsilon\left(T^{\prime}\right)\right)$

Extended TDGCM

$$
\begin{aligned}
i \hbar \partial_{t} \psi(\boldsymbol{q}, T ; t)= & {\left[V(\boldsymbol{q}, T)+\boldsymbol{P} \frac{1}{2 \mathcal{M}(\boldsymbol{q}, T)} \boldsymbol{P}\right] \psi(\boldsymbol{q}, T ; t) } \\
& +\frac{i}{2} \int\left\{\boldsymbol{P}, \boldsymbol{\mathcal { O }}\left(\boldsymbol{q} ; T, T^{\prime}\right)\right\} \psi\left(\boldsymbol{q}, T^{\prime} ; t\right) d T^{\prime} \\
\underset{\mathcal{O}\left(\boldsymbol{q} ; T, T^{\prime}\right)=\boldsymbol{\eta}\left(\boldsymbol{q} ; T, T^{\prime}\right) d \epsilon(T) / d T .}{ } &
\end{aligned}
$$

2D TDGCM+GOA calculation at fixed temperatures T.

The data for photo-induced fission correspond to photon energies in the interval $8-14 \mathrm{MeV}$, and a peak value of $E_{Y}=11 \mathrm{MeV}$.

2 D projections on the ($\beta 2, \beta 3$) plane of the probability distribution of the initial wave packet, at different T . The excitation energy of the initial state is $\mathrm{E}^{*}=11 \mathrm{MeV}$.

The collective potential:

$$
V(\boldsymbol{q}, T)=\epsilon(T)+F(\boldsymbol{q}, T)
$$

The dissipation function:

$$
\boldsymbol{\eta}\left(\boldsymbol{q} ; T, T^{\prime}\right)=\left\{\begin{array}{ll}
0 & \beta_{2}<\beta_{2}^{0} \\
\boldsymbol{\eta}\left(T, T^{\prime}\right) & \beta_{2} \geq \beta_{2}^{0},
\end{array}\right. \text { Gaussian random variables }
$$

3D extended TDGCM charge yields.

Time-integrated collective flux $B(T)$ through the scission contour, as a function of temperature.

The integrated flux $F(\xi ; \dagger)$ for a given scission surface element ξ is defined:

$$
F(\xi ; t)=\int_{t_{0}}^{t} d t^{\prime} \int_{(\boldsymbol{q}, T) \in \xi} \boldsymbol{J}\left(\boldsymbol{q}, T ; t^{\prime}\right) \cdot d \boldsymbol{S}
$$

Scission contours for 228 Th in the ($\beta 2, \beta 3$) deformation plane for several values of the nuclear temperature T, plotted on the deformation energy surface calculated at zero temperature.

The TKE for the fission fragment with mass A:

$$
\operatorname{TKE}(\mathrm{A})=\lim _{\mathrm{t} \rightarrow \infty} \frac{\sum_{\xi \in \mathcal{A}} \mathrm{F}(\xi ; \mathrm{t}) \operatorname{TKE}(\xi)}{\sum_{\xi \in \mathcal{A}} \mathrm{F}(\xi ; \mathrm{t})}
$$

Zhao, Nikšić, Vretenar
Phys. Rev. C 106, 054609 (2022).

Dynamical synthesis of 4 He in the scission phase of nuclear fission

TDDFT fission trajectories

Density profiles at times immediately prior to the scission event.

[^0]Nucleon localization functions:
$\sigma(\uparrow$ or $\downarrow)$
$q(n$ or $p)$

$$
C_{q \sigma}(\vec{r})=\left[1+\left(\frac{\tau_{q \sigma} \rho_{q \sigma}^{\prime}-\frac{1}{4}\left|\vec{\nabla} \rho_{q \sigma}\right|^{2}-\vec{j}_{q \sigma}^{2}}{\rho_{q \sigma} \tau_{q \sigma}^{\mathrm{TF}}}\right)^{2}\right]^{\text {kinetic energy density }} \tau_{q \sigma}^{\mathrm{TF}}=\frac{3}{5}\left(6 \pi^{2}\right)^{2 / 3} \rho_{q \sigma}^{5 / 3}
$$

For homogeneous nuclear matter: $\quad C_{q \sigma}=1 / 2$
For the a-cluster of four particles: $\quad C_{q \sigma}(\vec{r}) \approx 1$

When are these light clusters formed?

What is their structure?

What is their role in the scission mechanism?

Ren, Vretenar, Nikšić, Zhao, Zhao, Meng, Phys. Rev. Lett. 128, 172501 (2022).

Generalized time-dependent generator coordinate method

$$
\text { Li, Vretenar, Nikšić, Zhao, Meng, Phys. Rev. C 108, } 014321 \text { (2023). }
$$

The nuclear wave function: $|\Psi(t)\rangle=\sum_{\boldsymbol{q}} f_{\boldsymbol{q}}(t)\left|\Phi_{\boldsymbol{q}}(t)\right\rangle \quad \Longrightarrow \quad i \hbar \partial_{t}|\Psi(t)\rangle=\hat{H}|\Psi(t)\rangle$
\Rightarrow equation of motion for the weight functions: $\quad \sum_{q} i \hbar \mathcal{N}_{\boldsymbol{q}^{\prime} \boldsymbol{q}}(t) \partial_{t} f_{\boldsymbol{q}}(t)+\sum_{q} \mathcal{H}_{\boldsymbol{q}^{\prime} \boldsymbol{q}}^{M F}(t) f_{\boldsymbol{q}}(t)=\sum_{q} \mathcal{H}_{\boldsymbol{q}^{\prime} \boldsymbol{q}}(t) f_{\boldsymbol{q}}(t)$

$$
\ldots \text {..time-dependent kernels: } \quad\left\{\begin{array}{l}
\mathcal{N}_{\boldsymbol{q}^{\prime} \boldsymbol{q}}(t)=\left\langle\Phi_{\boldsymbol{q}^{\prime}}(t) \mid \Phi_{\boldsymbol{q}}(t)\right\rangle, \\
\mathcal{H}_{\boldsymbol{q}^{\prime} \boldsymbol{q}}(t)=\left\langle\Phi_{\boldsymbol{q}^{\prime}}(t)\right| \hat{H}\left|\Phi_{\boldsymbol{q}}(t)\right\rangle \\
\mathcal{H}_{\boldsymbol{q}^{\prime} \boldsymbol{q}}^{M F}(t)=\left\langle\Phi_{\boldsymbol{q}^{\prime}}(t)\right| i \hbar \partial_{t}\left|\Phi_{\boldsymbol{q}}(t)\right\rangle
\end{array}\right.
$$

The time-dependent generator states are independent TDDFT fission trajectories on the PES.
...collective wave function: $\quad g=\mathcal{N}^{1 / 2} f$

$$
i \hbar \dot{g}=\mathcal{N}^{-1 / 2}\left(H-H^{M F}\right) \mathcal{N}^{-1 / 2} g+i \hbar \dot{\mathcal{N}}^{1 / 2} \mathcal{N}^{-1 / 2} g
$$

Superposition of 5 TD-DFT trajectories from region 3.

(2.41, 1.30)
$(2.33,1.20)$
$(2.30,1.13)$
(2.36, 1.00)
$(2.50,0.96)$

Methods (TDGCM, TDDFT) based on the framework of universal Energy Density Functionals

\checkmark...accurate microscopic description of universal collective phenomena (fission) that reflect the organisation of nucleonic matter in finite nuclei.

- Finite temperature effects
- Energy dissipation and TKE of fragments
- Neck formation and scission mechanism
- Ternary fission
- Fragment angular momentum generation
- Symmetry restoration

[^0]: Ren, Vretenar, Nikšić, Zhao, Zhao, Meng, Phys. Rev. Lett. 128, 172501 (2022).

