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Generalized contact formalism

The 2-body short range correlations (SRCs) are successfully
described by the generalized contact formalism (GCF)!

The GCF is based on the factorization ansatz

lim W =" (ry) Aj (RE'M', {rk}k;éi,j) ij € pp, np, nn
@

I’,'j-)O

® ¢ is a universal zero-energy two-body wave-function and

obeys I:Icp =0

® Ais the regular part, the "wave-function" of rest of the
spectators

! Ronen Weiss, Betzalel Bazak, and Nir Barnea. In: Phys. Rev.

C92.5 (2015).
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The GCF is based on the factorization ansatz

lim W =" (ry) Aj (RE'M', {rk}k;éi,j) ij € pp, np, nn
@
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® ¢ is a universal zero-energy two-body wave-function and
obeys Hp =0

® Ais the regular part, the "wave-function" of rest of the
spectators

i)

! Ronen Weiss, Betzalel Bazak, and Nir Barnea. In: Phys. Rev.
C92.5 (2015).

The contact is defined by Ci = 7= 3 (A¢




Research goals & motivation

Present a systematic approach for:

® The factorization ansatz
® Higher-body SRCs
® Derive the universal function ¢

® Calculation of the contacts



Research goals & motivation

Present a systematic approach for:

® The factorization ansatz
® Higher-body SRCs
® Derive the universal function ¢

® Calculation of the contacts

To achieve these goals we use the coupled-cluster (CC) method

The CC method describes correlations naturally



Coupled cluster?

The wave-function is expanded in clusters

\U:er) ."\_::,\_1+7\_2+7\_3+'”

A

T, operator excites n particles from the Slater determinant ®

) 71 |®) T, 71 |®)

2 Rodney J. Bartlett and Monika Musiat. In: Rev. Mod. Phys. 79 (1
2007).




A bit of notations

From now on

® The subscripts /, j, k, | and the momentum k will denote a
hole state (k < k¢) which is contained in |®)

® The superscripts a, b, ¢, d, e and the momentum p will denote
a particle state (p > k¢) which is an excitation from |®)

® T; = 0 due to momentum conservation

® > .p; =~ 0 for the pair or triplet



The wave-function in coupled cluster

The cluster operator is

and t,-j?,b,j" is the corresponding cluster amplitude



The wave-function in coupled cluster

The cluster operator is

ZS 1 cent 2t %
n: ab-- ,ije--

and t,j?,b,j” is the corresponding cluster amplitude

Define

Then, W is written as (W = e?'CD = [1 4 'i'+ o0 ] )

W) = |®)+3 t2°

b b
PPN+ tabe

abc 1 ab rcd abcd
b >+§Ztij tel | Pl >+



Coupled cluster as a natural formalism to
factorization

Consider W4 (p,ppky - - ), there are only 2 excited particles and
therefore only T, will contribute (W = eTd = [1 + T+ ] )

WA (papbkk . ) = (tA)Z-b ¢A (k,‘kjkk ° 0 )
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Coupled cluster as a natural formalism to
factorization

Consider W4 (p,ppky - - ), there are only 2 excited particles and
therefore only T will contribute (VW = eT® = [1 + T+ ] D)

Va(p.ppki--) = (tA),J P (kikjky )

o If (tA)U o (tA)OO, then we would get factorization
o Let Wy (p,py) = (t2)]° &2 (kikj),

if (£a)7 o< (£2) o< ()30 then

Va(p.poki---) < V2 (p,ps)



The complete 2- and 3-body CC equations

2-body:
~ PPN PPN 1 ~ &~ &
0= (3| U+ [, Tal + [V, o] + 5[V, Tal, To)
+[V, T3]+ [V, Ta] |#)
3-body:
0 = (@3¢ [, Ts] + [V, T2]+—[[V ), Tl + [V, T3]

+ [[V7 T2]7 T3] + [Vv T4] + [Va T5] |¢>

The equations are coupled and non-linear



High-momentum approximations
The approximations follow after 2 principals

e W can be normalized, hence T, — 0 for high energy
excitations

® Momentum conservation, e.g. t,-j?b x 83 (p, + pyp — ki — kj)



High-momentum approximations
The approximations follow after 2 principals

e W can be normalized, hence T, — 0 for high energy
excitations

® Momentum conservation, e.g. t,-j?b x 83 (p, + pyp — ki — kj)

0= <<b;3.b

A A & A & 1 ~ 4 A
V + [H07 T2] —+ [V7 T2] =+ 5[[\/7 T2]7 T2]
+ [V, Ts] + [V, Ta] o)

The effects on the 2-body eq. (pa > ks, E,-}?b =E,+E,— E —E))

/T 1
. E,.jbtgb>> v,.gktﬁd = [V, T2]H§v;§t,§.’e

o Epbtit> Viltdetdb = [fy, To] > L[V, Tal, T
° tﬁ(tl)d7 tijllzlde ~ tg(t)) = [f:l'o, 7\_2] > [\A/a 7\—3]7 [\"/? 7\_4]
o Eb > FU = E—E®*



Solution of the asymptotic eq.

2-body:
N A A ~oa 1o, 212
0= <(leajb V + [Ho, T2] A [V, T2] + 5[[\/’ T2]a T2]
+[V, T3] + [V, Tu] o)
0= Eab ab Vab 1 Vabtde
= ti + Vi + 5 Vde lij

In the CC jargon the equation is called

"The particle-particle ladder approximation"



Solution of the asymptotic eq.
2-body:

. A A Ao 1.~ o~ 2
0= <q>;:;.b Vit [Fo, o] + [V, Tal + S IV, Tal, To

+ [V, Ts] + [V, Ta] o)
!

0 = Eabtgb + VU@b + Vab de

The solution, 75°, of the asymptotic equation takes the form
A 1 A A AR
T5° = ————5—= @G VP £°)2b ~ ¢3b
? 1-QGV : () ’

_ 1
isfl:lo
® () is the projection operator into the particle subspace

e Gy is the zero-energy Green's function Go =

o Pis the projection operator into the hole subspace



Relation to the zero-energy Schrodinger equation
2-body:
The T5° is the Bloch-Horowitz operator in disguise!3
. 1

T5° = < AP,
2 Q0+ ic — H)Q>

Q2 [Vo) = T5° |Wy) H{wy) =0

3 Claude Bloch and Jules Horowitz. In: Nuclear Physics 8 (1958).



Relation to the zero-energy Schrodinger equation
2-body:
The T5° is the Bloch-Horowitz operator in disguise!3
. 1

T5° = < AP,
2 Q0+ ic — H)Q>

Q2 [Vo) = T5° |Wy) H{wy) =0

Implications at high energies:

o T, is related to |Wy)
e T, depends only on the potential - universality

3 Claude Bloch and Jules Horowitz. In: Nuclear Physics 8 (1958).



Relation to the zero-energy Schrodinger equation
3-body:
The asymptotic equation is

1 .
0 = E2betabe 4 \yabpde 4 ~abycde | hermutations
ijk id “jk de “ijk

2
The solution of the asymptotic equation is
00 1 A~ \/J0 0 ocoyabe . Labc

The 3-body relation to |W3) is more complicated but T5° admits *

T5° |as) ~ Qs [W3) H|wvs) =0 P3|az) = |as)

*For kg — 0, kr large and any kr when considering the asymptotic
high-momentum contribution



The requirement for factorization
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Not all potentials admit wave-function factorization!



The requirement for factorization
Recall that
Y (papoki--) = t5°0 (kikjky )
For factorization to occur we must demand:
5 o< ()50
This must be seen as a demand on the potential! i.e.
Not all potentials admit wave-function factorization!

The simplest counter example is a Gaussian potential (e.g. 7EFT)
for which

corab V’ib e—RZ(p§—2pak,-+kj2
(t )U — —Fadb X — Eab

) o (1) 0k



Factorization with AV18 potential®

T5° dependence and it’s ratios. left 1=0, right 1=0

For AV18, (tx‘)zb x (t*)2 already from ~ 2.5 fm™*

4 R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla. In: Phys. Rev. C
1 (1 1995).




Invert the relation, get T, in terms of W,

To get the factorization in terms of W5, the relation

Vo (p.ps) = (Paps| T5° [W2) o< > (ppy| T5°10,0;) Vo (kik;)

y

must be inverted.
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Invert the relation, get T, in terms of W,

To get the factorization in terms of W5, the relation

Vo (p.ps) = (Paps| T5° [W2) o< > (ppy| T5°10,0;) Vo (kik;)

y

must be inverted.
This can be done by considering all channels of W5 and then

(Paps| T5°100) =~ caV5 (p.ps)

Thus

Va(p.pokic =)~ Y VS (p,py) A5 (ki)



The contacts: Ci7 = (5) (A%|AD)

The regular functions and hence the contacts can be calculated
from first principles

C,?ﬁz--- v



The contacts: Ci7 = (5) (A%|AD)

The regular functions and hence the contacts can be calculated
from first principles

C,?ﬁz--- v

The contacts at "zeroth-order approximation" are as expected

67 (3) s [ 4, ,, Vi (kikika--) i (K{kghs )
af ki kS kiKY



Summary

Used the CC method to obtain the equations governing
2,3-body SRCs

The relation to the zero-energy Schrédinger equation has
been shown

The AV18 potential admits factorization already from

~ 25 fm?

Computation of the regular functions and the contacts can be
done from first principals






Decomposition of the cluster amplitudes

@~ g

The factorization is true even if k; > k¢



The recipe for obtaining the CC equations

1. Define [6W) = e T

¢fj’b> which is orthogonal to W

(W1v) = (o3| e TeT |g) = (43 |6) = 0
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The recipe for obtaining the CC equations
1. Define [6W) = e 1! ’¢Zb> which is orthogonal to W
vlw) = (g3 | e Te Ig) = (3 |0) = 0
2. For any H|W) = E |W)
0= E(5W|W) = <q>3.’?_t-) e’?ltle?‘d>>

3. Use Baker-Campbell-Hausdorff formula (H is a 2-body
operator)

0= (o3| o+ [A 7] + o [ 7], 7]+
o5 (#7171 7+ ([0 771,70, ] fo)



Factorization in a zero-range theory

For zero-range theory

R—0 R < pt

® R is the range of the interaction

® pis the momentum transfer



Factorization in a zero-range theory

For zero-range theory

R—0 R < pt

® R is the range of the interaction

® pis the momentum transfer

In this limit
(£%°)3 o (£)30 e2R°Paki s (10)30

and factorization occurs



Generalized contact formalism - example®

o (K)]

2 _ ~d
kII_T,O nP (k) _ Cpn

2 2 Ews, —— Full VMC Calculation ,. 4 10
T Coalibn (K 4 Coplep (P E 2\ P
100\ ge "0
A l“’Ca
The contacts were Wb L T
derived from the 2-body I
momentum distribution s RN
i d d 2 104E_ ke E— I
kIL,moo Mpn (krel) = Con|Ppn (Krel) Eh \ - \\ //\
; ===
2 Tgh b
+ Con|@pn (Krel)| ST T \&4/\2

: 2
lim npp (krel) = Cgp|<pgp (kre|)’

k—00

° R. Weiss et al. In: Phys. Lett. B 780 (2018).
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