Electron-Nucleus Scattering and Short Range Correlations: Introduction and Overview

Or Hen (MIT)

Hen Lab

Laboratory for Nu

Science @

4th International Workshop on Quantitative Challenges in SRC & EMC Effect Research, CEA France, Jan 30th (2023)

Described by protons and neutrons, but made of quarks and gluons

➔ To understand the visible universe from the Standard Model we must understand nuclei from QCD

Described by protons and neutrons, but made of quarks and gluons

➔ To understand the visible universe from the Standard Model we must understand nuclei from QCD

Described by protons and neutrons, but made of quarks and gluons

➔ To understand the visible universe from the Standard Model we must understand nuclei from QCD

Described by protons and neutrons, but made of quarks and gluons

➔ To understand the visible universe from the Standard Model we must understand nuclei from QCD

Short-Range Correlations (SRC)

Fluctuations of closeproximity nucleon pairs

<u>Goal:</u> Understand SRCs Across Nuclear Scales

<u>Goal:</u> Understand SRCs Across Nuclear Scales and Along the Nuclear Chart

Weapon of Choice: Electron Scattering

- Probe structure understood (point particle)
- Electromagnetic interaction understood (QED)
- Interaction is weak ($\alpha = 1/137$)
 - Theory works!

(First Born Approximation / one photon exchange)

- Probe interacts only once
- Study the entire nuclear volume

But....

- Small cross section
- Radiative effects

1 – 12 GeV >80% polarization

a)

esource D

e

-

Α

С

B

Key Point: It's all photons!

Electrons interacts with nuclei by exchanging a single virtual photon

(This is just energy conservation at fixed momentum transfer)

Kinematics Tell Us A Lot!

... Everything is Interesting 😳

Focus On Two Regimes

1. Quasielastic (QE)

- Shell structure
 - Momentum distributions
 - Occupancies
- Short Range Correlations
- Nuclear transparency and color transparency

2. Deep Inelastic Scattering (DIS)

- The EMC Effect and Nucleon modification
- Quark hadronization in color medium

Lab frame kinematics

<u>Invariants</u>:

$$p^{\mu}p_{\mu} = M^{2} \qquad p_{\mu}q^{\mu} = M\omega$$
$$Q^{2} = -q^{\mu}q_{\mu} = |\vec{q}|^{2} - \omega^{2} \qquad W^{2} = (q^{\mu} + p^{\mu})^{2} = p'_{\mu}p'^{\mu}$$

Elastic e-p Scattering

Ignoring polarization, cross-section given by two form-factors and kinematic factors:

$$\frac{d\sigma}{d\Omega} = \sigma_M \frac{E}{E} \left\{ \left[F_1^2(Q^2) + \frac{Q^2}{4M^2} \kappa^2 F_2^2(Q^2) \right] + \frac{Q^2}{2M^2} [F_1(Q^2) + \kappa F_2(Q^2)]^2 \tan^2 \frac{\theta}{2} \right\}$$
Recoil factor
Form factors
$$Mott \ cross \ section: \qquad \sigma_M = \frac{\alpha^2 \cos^2 \left(\frac{\theta_e}{2}\right)}{4E^2 \sin^4 \left(\frac{\theta_e}{2}\right)}$$

Elastic e-p Scattering

Ignoring polarization, cross-section given by two form-factors and kinematic factors:

$$\frac{d\sigma}{d\Omega} = \sigma_{M} \frac{E'}{E} \left\{ \begin{bmatrix} F_{1}^{2}(Q^{2}) + \frac{Q^{2}}{4M^{2}} \kappa^{2} F_{2}^{2}(Q^{2}) \end{bmatrix} + \frac{Q^{2}}{2M^{2}} [F_{1}(Q^{2}) + \kappa F_{2}(Q^{2})]^{2} \tan^{2} \frac{\theta}{2} \right\}$$
Recoil factor
Form factors
$$Mott \ cross \ section:$$

$$\sigma_{M} = \frac{\alpha^{2} \cos^{2} \left(\frac{\theta_{e}}{2}\right)}{4E^{2} \sin^{4} \left(\frac{\theta_{e}}{2}\right)}$$

Very interesting physics! But not our focus...
 We will assume known nucleon form-factors and ask what's going on in the nucleus?

Fermi-distribution from (e,e') data

Expect $\sigma(\nu)$ to: •Peak at $\nu = q^2/2m_p + \varepsilon$ •With peak width $2qp_{\text{fermi}} / m_p$ •And Integral $Z \sigma_{\text{ep}} + N \sigma_{\text{en}}$

Initial nucleon energy: Final nucleon energy:

Energy transfer: v=

$$KE_{i} = p_{i}^{2} / 2m_{p}$$

$$KE_{f} = p_{f}^{2} / 2m_{p} = (\vec{q} + \vec{p}_{i})^{2} / 2m_{p}$$

$$v = KE_{f} - KE_{i} = \frac{\vec{q}^{2}}{2m_{p}} + \frac{\vec{q} \cdot \vec{p}_{i}}{m_{p}}$$

500 MeV, 60° $\vec{q} \simeq 500 MeV/c$

→ getting the bulk features!

R.R. Whitney et al., PRC 9, 2230 (1974)

Step Further: y-Scaling

Assuming scattering from a quasi-free nucleon in the nucleus.

Momentum of struck nucleon in momentum transfer direction: $y \approx -q/2 + mv/q$ (nonrelativistically)

IF the scattering is quasifree, then F(y) is the <u>integral</u> over all perpendicular nucleon momenta

F(y) is the integral \rightarrow we can extract from it the momentum distribution n(k):

$$F(y) = rac{\sigma^{ ext{exp}}}{(Z ilde{\sigma}_p + N ilde{\sigma}_n)} \cdot K$$
 $n(k) = -rac{1}{2\pi y} rac{dF(y)}{dy}$

It Works Well!

$$n(k) = -rac{1}{2\pi y} rac{dF(y)}{dy}$$

Impressive results for an 'energy conservation' formalism! But...

- No Final State Interactions (FSI)
- No internal excitation of (A-1)
- Full strength of Spectral function can be integrated over at finite *q*
- No inelastic processes (choose y<0)
- No medium modifications

What about the Shell Model? (e,e'p)!

Four response functions

(Including electron and nucleon spin, there are 18!)

(If polarized spin-1 target, there are 41)

What about the Shell Model? (e,e'p)!

Four response functions

(Including electron and nucleon spin, there are 18!)

(If polarized spin-1 target, there are 41)

Detecting the proton = complicating the reaction

But... we access new kinematic information!

Missing momentum
 Missing energy

Missing Energy Peaks = Shells

¹⁶O(e,e'p)

Missing Energy Peaks = Shells

Missing Momentum

1p_{1/2}, 1p_{3/2} and 1s_{1/2} shells visible Momentum distribution as expected Absolute scale is off!

Fissum et al, PRC 70, 034606 (2003)

Missing Strength below k_F

NIKHEF

Short-Range Correlations (SRC)

Fluctuations of closeproximity nucleon pairs

From Single-Nucleons to Pairs

4-Momentum $\vec{p}_{miss} = \vec{p}_p - \vec{q}$ Conservation: $E_{miss} = E_p - q_0$

From Single-Nucleons to Pairs

Probing SRCs

Probing SRCs

Short-Range Correlations (SRC)

- Produce high-momentum states(>k_F)
- Predominantly neutron-proton pairs
- Universal Deuteron-like Scaling
- Scale separated from residual system

- Produce high-momentum states(>k_F)
- Predominantly neutron-proton pairs
- Universal Deuteron-like Scaling
- Scale separated from residual system

Korover et al., Phys. Lett. B (2021)

- Produce high-momentum states(>k_F)
- Predominantly neutron-proton pairs
- Universal Deuteron-like Scaling
- Scale separated from residual system

Korover PLB '21; Duer PRL '19; Duer Nature '18; Hen Science '14; Korover PRL '14; Subedi Science '08; Shneor PRL '07; Piasetzky PRL '06; Tang PRL '03; <u>Review:</u> Hen RMP '17

- Produce high-momentum states(>k_F)
- Predominantly neutron-proton pairs
- Universal Deuteron-like Scaling
- Scale separated from residual system

Theory example: Weiss et al., PRC Lett '21

26

n

D

- Produce high-momentum states(>k_F)
- Predominantly neutron-proton pairs
- Universal Deuteron-like Scaling
- Scale separated from residual system

n

Korover and Denniston et al., Submitted (2022)

- Produce high-momentum states(>k_F)
- Predominantly neutron-proton pairs
- Universal Deuteron-like Scaling
- Scale separated from residual system

Korover and Denniston et al., Submitted (2022)

- Produce high-momentum states(>k_F)
- Predominantly neutron-proton pairs
- Universal Deuteron-like Scaling
- Scale separated from residual system

Patsyuk and Kahlbow et al., Nature Physics (2021)

- Produce high-momentum states(>k_F)
- Predominantly neutron-proton pairs
- Universal Deuteron-like Scaling
- Scale separated from residual system

Isospin Structure:

Phys. Rev. Lett. 122, 172502 (2019) Nature 560, 617 (2018) Science 346, 614 (2014)

Phys. Rev. Lett. 113, 022501 (2014)

C.M. Motion:

Phys. Rev. Lett. 121, 092501 (2018)

Hard-Reaction Dynamics:

Nature Physics 17, 693 (2021) Phys. Lett. B 797, 134792 (2019) Phys. Lett. B 722, 63 (2013)

Nuclei / Nuclear Matter Properties:

Phys. Lett. B 800, 135110 (2020) Phys. Lett. B 793, 360 (2019) Phys. Lett. B 785, 304 (2018) Phys. Rev. C 91, 025803 (2015)

Effective Theory:

Nature Physics 17, 306 (2021) Phys. Lett. B 805, 135429 (2020) Phys. Lett. B 791, 242 (2019)

<u>Quantum Numbers, Mass,</u> Asymmetry Dependence:

Phys. Rev. C 103, L031301 (2021) Phys. Lett. B 780, 211 (2018) PRC 92, 024604 (2015) PRC 92, 045205 (2015)

Theory: Scale Separation and Factorization

Cruz-Torres et al., Nature Physics (2021) Weiss et al., Phys. Lett. B 780 (2018) Weiss, Bazak, Barnea, Phys. Rev. C 92 (2015) Tropiano et al., Phys. Rev. C 104, 034311 (2021) Lynn et al., JPG 47, 045109 (2020) Chen, Detmold, Lynn, Schwenk, PRL 119 (2017) *Ryckebusch et al., Phys. Lett. B* 792, 21 (2019)

Theory: Scale Separation and Factorization

Cruz-Torres et al., Nature Physics (2021) Weiss et al., Phys. Lett. B 780 (2018) Weiss, Bazak, Barnea, Phys. Rev. C 92 (2015) Tropiano et al., Phys. Rev. C 104, 034311 (2021) Lynn et al., JPG 47, 045109 (2020) Chen, Detmold, Lynn, Schwenk, PRL 119 (2017) *Ryckebusch et al., Phys. Lett. B* 792, 21 (2019)

Scale Separation -> Cross-Section Models

 $|\rho_A^{NN,\alpha}(r)| \cong C_A^{NN,\alpha} \times |\psi_{NN}^{\alpha}(r)|^2$

Factorized ground-state → Factorized reaction model

 $\sigma^{A} \cong \mathbf{K} \times \sigma^{N} \times \sum_{NN} C_{A}^{NN,\alpha} |\psi_{NN}^{\alpha}|^{2}$

Probing the NN interaction with SRCs

Effective Nucleon-Nucleon Interactions

Models Need Experimental Constraints

- Model parameters constrained by data*
- Direct constraints below 400 MeV/c (π threshold)
- Higher momenta (shorter distance) not directly constrained / tested

*Recently also lattice QCD

Models Need Experimental Constraints

- Model parameters constrained by data*
- Direct constraints below 400 MeV/c (π threshold)
- Higher momenta (shorter distance) not directly constrained / tested

Test With Tritium & Helium-3

Exactly calculatable 🙂 Mirror nuclei: Tritium p = Helium-3 n

Editors' Suggestion Cruz Torres and Nguyen et al., Phys. Rev. Lett (2020)

Challenges: Tritium Radioactivity

Agreement Over 4 Orders of Magnitude

Next Step: Double the Reach

Short-Ranged Interactions in Nuclei

PRL 98, 10 132501 10 (2007)Pair Density np 10^{2} pp 10 10 200 400 600 800 0 Momentum [MeV/c]

np pairs = Tensor force dominance (spin-dependent)

Short-Ranged Interactions in Nuclei

PRL 98, 10 132501 10 (2007)Pair Density np np w\o Tensor 10 10 200 400 600 800 Momentum [MeV/c]

np pairs = Tensor force dominance (spin-dependent)

Short-Ranged Interactions in Nuclei

np pairs = Tensor force dominance (spin-dependent)

<u>Repulsive core transition:</u> Scalar (spin-independent) core produces more pp pairs

New: High-Precision Data

<u>Nature 2020:</u> ~500 pp-SRC events <u>New data:</u> x20 higher stat (4,000 events used above)!

New: High-Precision Data

✓ Scale Independence

Probe Independence?

Probe Independence?

✓ Probe Independence

Patsyuk and Kahlbow et al., Nature Physics (2021)

Quarks in Nuclei

Do QCD dynamics affect the identity of nucleons in nuclei?

Quark Momentum Suppression in Nuclei (EMC Effect)

Aubert et al., PLB (**1983**); Ashman et al., PLB (1988); Arneodo et al., PLB (1988); Allasia et al., PLB (1990); Gomez et al., PRD (1994); Seely et al., PRL (2009); Schmookler et al., Nature (**2019**) ₄₆

Quark Momentum Suppression

38 years, > 1000 publications, no consensus. Effect driven by nuclear structure & dynamics

Aubert et al., PLB (**1983**); Ashman et al., PLB (1988); Arneodo et al., PLB (1988); Allasia et al., PLB (1990); Gomez et al., PRD (1994); Seely et al., PRL (2009); Schmookler et al., Nature (**2019**) ₄₆

EMC – SRC Correlation

Nature (2019); RMP (2017); IJMPE (2013); PRC (2012); PRL (2011);

SRC Fraction (A/d)

SRC Universality!

Schmookler et al., Nature (2019); Segarra et al., Phys. Rev. Lett. (2020); Segarra and Pybus et al., Phys. Rev. Research (2021)

Verified Predictions!

MARATHON Data: Abrams et al., Phys. Rev. Lett. (2022) Our Prediction: Segarra et al., Phys. Rev. Lett. (2020)

Nuclear Interactions Impact Nucleon Structure

Next Generation QCD Frontier at the Electron-Ion Collider (EIC)

Electron-Ion Collider (EIC)

Polarized ep & eA collider

\$2.4M DOE project located at Brookhaven National Lab

> p: 40 – 275 GeV e: 2.5 – 18 GeV

Initial data taking 2031/32

A Tale of Three Detectors...

A Tale of Three Detectors...

Inverse Kinematics eA Machine!

160+ institutions 24 countries

500+ collaborators

A truly global pursuit for a new experiment at the EIC!

Current leadership:

Horn

Lajoie

Surrow

State-of-the-Art Technology R&D

Streaming Readout

Crystal Calorimetry

RICH & New Photon Sensor Tech

Open International Collaboration

Timeframe

- Funding secured through CD-3 (construction start)
- Initial operations planned for 2031/32

We're reducing inflation! ©

Summary: Correlations Across Scales

Thank you for the attention!

Exciting Times Ahead!