3N SRCs, irreducible 3N forces and their implication on neutron star EOS

Misak Sargsian Florida International University, Miami

4th Intl Workshop on Quantitative Challenges in SRC and EMC Effect Research January 30-February 3, 2023 CEA Paris-Saclay

Nuclear Dynamics at Short Distances

Probing NN and NNN Interactions at < 1fm and their influence on the nuclear structure at short distances.

For NN interactions

-Identification of NN interaction in the nuclear dynamics

- Intermediate short distance tensor forces
- Isospin dependence of the tensor forces
- NN repulsive core
- Hadron-quark transition in the core
- non-nucleonic components, hidden color, gluons

For NNN interactions

- -Identification of NNN interaction in the nuclear dynamics
- Evaluation of irreducible 3N forces
- Evaluation of non-nucleonic component in NNN interactions

Modern NN Potentials

$$V^{2N} = V^{2N}_{EM} + V^{2N}_{\pi} + V^{2N}_{R}$$
$$V^{2N}_{R} = V^{c} + V^{l2}L^{2} + V^{t}S_{12} + V^{ls}L \cdot S + v^{ls2}(L \cdot S)^{2}$$
$$V^{i} = V_{int,R} + V_{core}$$

$$V_{core} = \left[1 + e^{\frac{r-r_0}{a}}\right]^{-1}$$

Hans Bethe 1961: More intellectual energy is spent on nuclear physics than on all other issues taken together during entire human history.

$$\Psi_{T=0,S=1}^{6q} = \sqrt{\frac{1}{9}}\Psi_{NN} + \sqrt{\frac{4}{45}}\Psi_{\Delta\Delta} + \sqrt{\frac{4}{5}}\Psi_{CC}$$

$$\Psi_{CC} \equiv \Psi_{N_C N_C}$$

The NN core can be due to the orthogonality of

$$\langle \Psi_{N_c,N_c} \mid \Psi_{N,N} \rangle = 0$$

From NN Interaction to Nuclear & Nuclear Matter Structure

"Standard" Nuclear Physics Approach

A-body Schroedinger equation interacting through NN -potential

$$\begin{bmatrix} -\sum_{i} \frac{\nabla_{i}^{2}}{2m} + \frac{1}{2} \sum_{ij} V(x_{i} - x_{j}) + \sum_{ijk} V(x_{i}, x_{j}, x_{k}) \cdots \end{bmatrix} \psi(x_{1}, \cdots, x_{A}) = E\psi(x_{1}, \cdots, x_{A})$$
Mean Field Approximation

$$\left[-\frac{\nabla_N^2}{2m} + V_{HF}(x)\right]\psi_N(x) = E_N\psi_N(x)$$

Hartree-Fock potential will smear out main properties NN potential 1990s

From NN Interaction to Nuclear & Nuclear Matter Structure

"Standard" Nuclear Physics Approach

A-body Schroedinger equation interacting through NN -potential

$$\left[-\sum_{i}\frac{\nabla_i^2}{2m} + \frac{1}{2}\sum_{ij}V(x_i - x_j) + \sum_{ijk}V(x_i, x_j, x_k)\cdots\right]\psi(x_1, \cdots, x_A) = E\psi(x_1, \cdots, x_A)$$

Ab Initio Calculations

NonRelativistic

Little Predictive Power

Conceptually: How to probe nuclei at short nucleon separations

- Probe bound nucleons at large internal momenta
- Need high energy probes to resolve such nucleons in nuclei in high energy nuclear processes

Theory of High Energy eA Scattering:

- I. High-Energy approximations small parameter
- II. Emergence of Effective Theory diagrammatic method

III. Light-Front Wave Function of Nucleus – relativism

IV. From Schroedinger Equation to LF Diagrams – LF-wavefunction + scattering

V. Emergence of small distance nuclear dynamics – predictions

I. High Energy Approximations:

 $ert ec q ert = q_3 \sim p_{f3} \gg p \sim M_N$ $Q^2 \geq few \; {
m GeV^2}$ Both for QE/DIS

- Emergence of the small parameter

$$\frac{q_{-}}{q_{+}} = \frac{q_{0} - q_{3}}{q_{0} + q_{3}} \ll 1 \quad \mathcal{O}(\frac{q_{-}}{q_{+}})$$

 $\frac{p_{f-}}{p_{f+}} = \frac{E_f - p_{f3}}{E_f + p_{f3}} \ll 1 \qquad \mathcal{O}(\frac{p_{f-}}{p_{f+}})$

II. Emergence of "effective" theory

Effective Feynman Diagrammatic Rules

M.S. IJMS 2001

Wave function?

III. Light-Front Wave Function of the Nucleus

- Emergence of the light- front dynamics

- non relativistic case: due to Galilean relativity
 observer X can probe all n-nucleons at the same time
- relativistic case: observer X probes all n-nucleons at different n times
- observer riding the light-front X probes all n-nucleons at same light-cone time:

$$\tau = t_1 - z_1 = t_2 - z_2 = \dots = t_n - z_n$$

$$\Psi(z_1, z_2, z_3, \cdots, z_n, t)$$

$$\Psi(z_1, t_1; z_2, t_2; z_3, t_3 \cdots; z_n, t_n)$$

$$\Psi_{LF}(\mathcal{Z}_1, \mathcal{Z}_2, \mathcal{Z}_3, \cdots, \mathcal{Z}_n, \tau)$$

$$\overline{\mathcal{Z}_i = t_i + z_i}$$

 $\Psi_{LF}(\mathcal{Z}_1, \mathcal{Z}_2, \mathcal{Z}_3, \cdots, \mathcal{Z}_n, \tau)$

- in the momentum space
- $\Psi_{LF}(\alpha_1, p_{1\perp}; \alpha_2, p_{2\perp}; \alpha_3, p_{3\perp}; \cdots, \alpha_n, p_{n\perp})$

$$lpha_i = rac{p_{i-}}{p_{A-}/A}$$
 , $p_{i,\perp}$

- How the LF wave function appears in the scattering process

Frank Vera, M.S. PRC 2018

IV From Schroedinger Equation -> Light-Front Wave Function

 \rightarrow

Schroedinger eq.
$$\rightarrow$$

$$-\sum_{i} \frac{\nabla_{i}^{2}}{2m} + \frac{1}{2} \sum_{i,j} V(x_{i} - x_{j}) \psi(x_{1}, \cdots, x_{A}) = E\psi(x_{1}, \cdots, x_{A})$$

Lipmann–Schwinger Eq
$$\rightarrow$$

 $\left(\sum_{i} \frac{k_{i}^{2}}{2m} - E_{b}\right) \Phi(k_{1}, \cdots, k_{A}) = -\frac{1}{2} \sum_{i,j} \int U(q) \Phi(k_{1}, \cdots, k_{i} - q, \cdots, k_{j} + q, \cdots, k_{A}) d^{3}q$

$$\Phi(k_1, \cdots k_A) = \frac{1}{\sum \frac{k_i^2}{2m} - E_b} \Gamma_{A \to N, A-1}$$

Lipmann-Schwinger Eq.

$$\left(\sum_{i}\frac{k_i^2}{2m}-E_b\right)\Phi(k_1,\cdots,k_A)=-\frac{1}{2}\sum_{i,j}\int U(q)\,\Phi(k_1,\cdots,k_i-q,\cdots,k_j+q,\cdots,k_A)d^3q$$

t- ordered diagrammatic method

au – ordered diagrammatic method

$$\left(\sum \frac{k_{i\perp}^2 + m^2}{\alpha_i} - M_A^2\right) \Phi_{LF}(k_1, \cdots, k_A) = \frac{1}{2} \sum_{i,j} \int U_{LF}(q) \Phi_{LF}(k_1, \cdots, k_A) \prod \frac{d\alpha_i}{\alpha_i} d^2 k_{i\perp}$$

$$\Phi_{LF}(k_1, \cdots k_A) = \frac{1}{\sum \frac{k_{i\perp}^2 + m^2}{\alpha_i} - M_A^2} \Gamma_{A \to N, A-1}$$

Weinberg Eq

Spectral Function Calculations

$$S_A^{MF} = -Im \int \chi_A^{\dagger} \Gamma_{A,N,A-1}^{\dagger} \frac{\not{p}_1 + m}{p_1^2 - m^2 + i\varepsilon} \hat{V}^{MF} \frac{\not{p}_1 + m}{p_1^2 - m^2 + i \times \varepsilon} \left[\frac{G_{A-1}(p_{A-1})}{p_{A-1}^2 - M_{A-1}^2 + i\varepsilon} \right]^{on} \Gamma_{A,N,A-1} \chi_A \frac{d^4 p_{A-1}}{i(2\pi)^4} \frac{d$$

$$\hat{V}^{MF} = ia^{\dagger}(p_1, s_1)\delta^3(p_1 + p_{A-1})\delta(E_m - E_{\alpha})a(p_1, s_1)$$

$$\psi_{N/A}(p_1, s_1, s_A, E_\alpha) = \frac{\bar{u}(p_1, s_1)\Psi_{A-1}^{\dagger}(p_{A-1}, s_{A-1}, E_\alpha)\Gamma_{A,N,A-1}\chi_A}{(M_{A-1}^2 - p_{A-1}^2)\sqrt{(2\pi)^3 2E_{A-1}}}$$

$$S_A^{MF}(p_1, E_m) = \sum_{\alpha} \sum_{s_1, s_{A-1}} |\psi_{N/A}(p_1, s_1, s_A, E_\alpha)|^2 \,\delta(E_m - E_\alpha)$$

V. Emergence of small distance nuclear dynamics

-start with A-body Lipman Schwinger/Weinberg type equation for nuclear wave function interacting through NN -potential

 $\phi_A(k_1,\cdots,k_n,\cdots,k_A) = \frac{-\frac{1}{2}\int\sum_{i\neq j}V_{ij}(q)\phi_A(k_1,\cdots,k_i-q,\cdots,k_j+q,\cdots,k_A)\frac{d^3q}{(2\pi)^3}}{(2\pi)^3}$ $\sum_{i=1}^{A} \frac{k_i^2}{2m_N} - E_B$ $k = p, \quad \frac{p^2}{2m} \gg E_B, \quad k_i - q = p - q \approx 0 \rightarrow q \approx p, \quad k_j + q \approx k_j + p \approx 0 \rightarrow \left|k_i \approx -k_j \approx p\right|$ $\phi_A^{(1)}(k_1,\cdots,k_i=p,\cdots,k_j\approx -p,\cdots,k_A)\sim \frac{V_{NN}(p)}{p^2}f(k_1,\cdots,\cdots,\cdots)$ $\phi_A^{(2)}(\cdots p, \cdots) \sim \frac{1}{n^2} \int \frac{V_{NN}(q)V_{NN}(p)}{(n-q)^2} d^3q$ - IF: $V_{NN} = q^{-n}$ with n > 1 and is finite range Q_{min} $\phi_A^{(2)}(\cdots p,\cdots) \sim \frac{V(p)}{n^2} \int \frac{dq}{d^n}$ Frankfurt, Strikman 1988 $\phi^{(2)}_{\Lambda} \ll \phi^{(1)}_{\Lambda}$ Frankfurt, MS, Strikman 2008 q_{min}

$$\begin{aligned} & \underbrace{P_{A,2N}^{N}(\alpha_{1},p_{1,\perp},\tilde{M}_{N}^{2}) = \sum_{s_{2},s_{NN},s_{A-2}} \int \chi_{A}^{\dagger} \Gamma_{A\to NN,A-2}^{\dagger} \chi_{A-2}(p_{A-2},s_{A-2})}_{NN} \\ & \times \frac{\chi_{NN}(p_{NN},s_{NN})\chi_{NN}^{\dagger}(p_{NN},s_{NN})}{p_{NN}^{2} - M_{NN}^{2}} \Gamma_{NN\to NN}^{\dagger} \frac{u(p_{1},s_{1})u(p_{2},s_{2})}{p_{1}^{2} - M_{N}^{2}}} \\ & \times \left[2\alpha_{1}^{2}\delta(\alpha_{1} + \alpha_{2} + \alpha_{A-2} - A)\delta^{2}(p_{1,1} + p_{2,1} + p_{A-2,1})\delta(\tilde{M}_{N}^{2} - \tilde{M}_{N}^{(2N),2}) \right] \frac{u(p_{1},s_{1})u(p_{2},s_{2})}{p_{1}^{2} - M_{N}^{2}} \\ & \times \left[2\alpha_{1}^{2}\delta(\alpha_{1} + \alpha_{2} + \alpha_{A-2} - A)\delta^{2}(p_{1,1} + p_{2,1} + p_{A-2,1})\delta(\tilde{M}_{N}^{2} - \tilde{M}_{N}^{(2N),2}) \right] \frac{u(p_{1},s_{1})u(p_{2},s_{2})}{p_{1}^{2} - M_{N}^{2}} \\ & \times \Gamma_{NN\to NN} \frac{\chi_{NN}(p_{NN},s_{NN})\chi_{NN}^{\dagger}(p_{NN},s_{NN})}{p_{NN}^{2} - M_{NN}^{2}} \chi_{A-2}^{\dagger}(p_{A-2,1},s_{A-2})\Gamma_{A,NN,A-2}\chi_{A}} \\ & \times \frac{d\alpha_{2}}{\alpha_{2}} \frac{d^{2}p_{2,1}}{2(2\pi)^{3}} \frac{d\alpha_{A-2}}{\alpha_{A-2}} \frac{d^{2}p_{A-2,1}}{2(2\pi)^{3}}. \\ & 0. \text{ Artiles & M.S. Phys. Rev. C 2016} \\ p_{A}(\alpha_{N},p_{N,1}) = \int P_{A}(\alpha_{N},p_{N,1},\tilde{M}_{N}^{2}) \frac{1}{2}d\tilde{M}_{N}^{2} \\ \psi_{2N}^{S_{NN}}(\beta_{1},k_{1,\perp},s_{1},s_{2}) = -\frac{1}{\sqrt{2(2\pi)^{3}}} \frac{\tilde{u}(p_{1,s_{1}})\tilde{u}(p_{2,s_{2}})\Gamma_{NN\to NN'}\chi_{NN}(p_{NN,s_{NN}})}{\frac{1}{2}[M_{NN}^{2} - 4(M_{N}^{2}+k_{1}^{2}]} \\ \psi_{CM}(\alpha_{NN},k_{NN,\perp}) = -\frac{1}{\sqrt{\frac{4-2}{2^{2}}}} \frac{1}{\sqrt{2(2\pi)^{3}}} \frac{\chi_{NN}(p_{NN,s_{NN}})\chi_{A-2}^{\dagger}(p_{A-2,s_{A-2}})\Gamma_{A\to NN,A-2}\chi_{A}^{s_{A}}}{\frac{2}{A}[M_{A}^{2} - s_{NN,A-2}(k_{CM})]} \\ \end{array}$$

2N SRC model Non Relativistic Approximation

Predictions made within the described approach

- Different location for maximum of FSI compared to Glauber model PRC 1997, MS PRC 2010
- Nuclear scaling due to 2N SRCs at: Frankfurt, Strikman Phys Rep.88 Frankfurt, Day, Strikman, MS PRC1993
- pn dominance in 2N SRCs: Piasetzky, MS, Frankfurt, Strikman, Watson PRL2006
- High momentum sharing in asymmetric nuclei MS PRC2014, ArXiv2012
- New Structure in the deuteron and non-nucleonic components MS & F.Vera ArXiV2022
- Nuclear scaling for 3N SRCs

MS, Day, Frankfurt, Strikman PRC2019 Frankfurt, Day, MS, Strikman PRC2023

- Relation between 3N and 2N SRCs

Different location for maximum of FSI compared to Glauber model

$$e + d \rightarrow e' + p_s + X$$

W.Cosyn & M.Sargsian, PRC 2011

Nuclear scaling due to 2N SRCs at:

$$\sigma_{eA} = \sum \sigma_{eN} \cdot \rho_A(\alpha) \quad \text{where} \quad \rho_A(\alpha) = \int \rho_A(\alpha, p_\perp) d^2 p_\perp$$
 $\alpha_{2N} = 2 - rac{q_- + 2m_N}{2m_N} \left(1 + rac{\sqrt{W_{2N}^2 - 4m_N^2}}{W_{2N}}
ight) \quad 1.3 \le \alpha_{2N} \le 1.5 \quad {
m Brankfurt, Strikman, MS, Phys. Rev. C 1993}$
 $ho_A(\alpha) pprox a_2(A, z)
ho_{NN}(\alpha)$

 $\frac{2\sigma_{eA}}{A\sigma_{ed}} \approx a_2(A, Z) \quad 1.3 \le \alpha_{2N} \le 1.5$

Egiyan et al, 2002,2006 Fomin et al, 2011

1.2 1.4 1.6 1.8

×

1

2

х

a₂'s as relative probability of 2N SRCs

Table 1: The results for $a_2(A, y)$						
А	У	This Work	Frankfurt et al	Egiyan et al	Famin et al	
$^{3}\mathrm{He}$	0.33	$2.07{\pm}0.08$	$1.7{\pm}0.3$		2.13 ± 0.04	
$^{4}\mathrm{He}$	0	$3.51{\pm}0.03$	$3.3{\pm}0.5$	$3.38{\pm}0.2$	$3.60 {\pm} 0.10$	
$^{9}\mathrm{Be}$	0.11	$3.92{\pm}0.03$			$3.91{\pm}0.12$	
$^{12}\mathrm{C}$	0	$4.19 {\pm} 0.02$	$5.0{\pm}0.5$	$4.32 {\pm} 0.4$	$4.75 {\pm} 0.16$	
^{27}Al	0.037	$4.50 {\pm} 0.12$	$5.3{\pm}0.6$			
$^{56}\mathrm{Fe}$	0.071	$4.95{\pm}0.07$	$5.6{\pm}0.9$	$4.99{\pm}0.5$		
$^{64}\mathrm{Cu}$	0.094	$5.02 {\pm} 0.04$			$5.21{\pm}0.20$	
$^{197}\mathrm{Au}$	0.198	$4.56 {\pm} 0.03$	$4.8 {\pm} 0.7$		$5.16 {\pm} 0.22$	

- pn dominance in 2N SRCs:

for large $k > k_{Fermi}$

Theoretical analysis of BNL Data A(p, 2p)X reaction E. Piasetzky, MS, L. Frankfurt,

M. Strikman, J. Watson PRL, 2006

Factor of 20 Expected 4 (Wigner counting)

Direct Measurement at JLab R.Subdei, et al Science, 2008

 $P_{pp/pn} = 0.056 \pm 0.018$

 $\leq \frac{1}{2}(1-P_{pn/pX}) = 0.04^{+0.09}_{-0.04}$

O. Hen, MS, L, Weinstein et.al. Science, 2014

High momentum sharing in asymmetric nuclei

- Dominance of pn Correlations Two properties were predicted MS,arXiv:1210.3280. 2012 (neglecting pp and nn SRCs) Phys. Rev. C 2014 First Property: Approximate Scaling Relation $x_p \cdot n_p^A(p) \approx x_n \cdot n_n^A(p) = \frac{a_{pn}}{2} (A, Z) n_d(p)$ where $x_p = \frac{Z}{4}$ and $x_n = \frac{A-Z}{4}$. Second Property: Inverse Fractional Dependence of High Momentum Component $n_{p/n}^{A}(p) \approx \frac{1}{2x_{p/n}} a_{2}(A, y) \cdot n_{d}(p) \qquad n_{p/n}^{A}(p) \approx \frac{1}{2(x_{p/n})^{\gamma}} a_{2}(A, y) \cdot n_{d}, \gamma \leq 1$ $\gamma \approx 0.85$ for ${}^{3}He$ $\gamma \approx 1.00$ for ${}^{9}Be$, ${}^{10}B$

Minority component has more high momentum fraction

$$P_{p/n}(A, y) = \frac{1}{2x_{p/n}} a_2(A, y) \int_{k_F}^{\infty} n_d(p) d^3p$$

First Property:
$$x_p \cdot n_p^A(p) pprox x_n \cdot n_n^A(p)$$

³He

Be9,B10 Variational Monte Carlo Calculation: Robert Wiringa 2013 http://www.phy.anl.gov/theory/research/momenta/

Predictions: High Momentum Fractions MS,arXiv:1210.3280,2012 Phys. Rev. C 2014

$$P_{p/n}(A, y) = \frac{1}{2x_{p/n}} a_2(A, y) \int_{k_F}^{\infty} n_d(p) d^3 p$$

А	P _p (%)	P _n (%)
12	20	20
27	23	22
56	27	23
197	31	20

Table 1: Kinetic energies (in MeV) of proton and neutron

А	У	E_{kin}^p	E_{kin}^n	$\overline{E^p_{kin} - E^n_{kin}}$
$^{8}\mathrm{He}$	0.50	30.13	18.60	11.53
$^{6}\mathrm{He}$	0.33	27.66	19.06	8.60
$^{9}\mathrm{Li}$	0.33	31.39	24.91	6.48
$^{3}\mathrm{He}$	0.33	14.71	19.35	-4.64
$^{3}\mathrm{H}$	0.33	19.61	14.96	4.65
$^{8}\mathrm{Li}$	0.25	28.95	23.98	4.97
$^{10}\mathrm{Be}$	0.2	30.20	25.95	4.25
$^{7}\mathrm{Li}$	0.14	26.88	24.54	2.34
$^{9}\mathrm{Be}$	0.11	29.82	27.09	2.73
$^{11}\mathrm{B}$	0.09	33.40	31.75	1.65

- Experimental Verification of Momentum Sharing Effects

- pn dominance persist for heavy nuclei

O. Hen, MS, L, Weinstein et.al. Science, 2014

Duer et al, Nature 2018

Asymmetric Nuclear Matter Calculations

A.Rios, A. Polls and W. H. Dickhoff, Phys. Rev. C 2014

 k^2]

MS & F. Vera ArXiV2022

Monday's talk

$$\begin{split} \psi_{d}^{\lambda_{d}}(\alpha_{1},k_{t},\lambda_{1},\lambda_{2}) &= \sum_{\lambda_{1}^{\prime}} \phi_{\lambda_{2}}^{\dagger} \sqrt{E_{k}} \left[\frac{U(k)}{\sqrt{4\pi}} \sigma \mathbf{s}_{\mathbf{d}}^{\lambda_{\mathbf{d}}} - \frac{W(k)}{\sqrt{4\pi}\sqrt{2}} \left(\frac{3(\sigma \mathbf{k})(\mathbf{k}\mathbf{s}_{\mathbf{d}}^{\lambda})}{k^{2}} - \sigma \mathbf{s}_{\mathbf{d}}^{\lambda} \right) + \\ & \left(-1 \right)^{\frac{1+\lambda_{d}}{2}} P(k) Y_{1}^{\lambda_{d}}(\theta,\phi) \delta^{1,|\lambda_{d}|} \right] \frac{\epsilon_{\lambda_{1},\lambda_{1}^{\prime}}}{\sqrt{2}} \phi_{\lambda_{1}^{\prime}} \end{split}$$

$$U(k) = \frac{2\sqrt{4\pi}\sqrt{E_k}}{3} \left[\Gamma_1(2+\frac{m_N}{E_k}) + \Gamma_2\frac{k^2}{m_N E_k}\right]$$

$$W(k) = \frac{2\sqrt{4\pi}\sqrt{2E_k}}{3} \left[\Gamma_1(1-\frac{m_N}{E_k}) - \Gamma_2\frac{k^2}{m_N E_k}\right]$$

$$P(k) = \sqrt{4\pi}\frac{\Gamma_5(k)\sqrt{E_k}}{\sqrt{3}}\frac{k^3}{m_N^3}$$

$$n_d(k,k_{\perp}) = \frac{1}{3}\sum_{\lambda_d=-1}^{1} |\psi_d^{\lambda_d}(\alpha,k_{\perp})|^2 = \frac{1}{4\pi} \left(U(k)^2 + W(k)^2 + \frac{k_{\perp}^2}{k^2}P^2(k)\right)$$

mat

Nuclear scaling for 3N SRCs &

Relation between 3N and 2N SRCs

Looking for the Plateau in Inclusive Cross Section Ratios $\underline{x>2}$ For 1 < x < 2 $R \approx \frac{a_2(A_1)}{a_2(A_2)}$ For 2 < x < 3 $R \approx \frac{a_3(A_1)}{a_3(A_2)}$ 2N SRCs 3N SRCs

Three Nucleon Short Range CorrelationsZ. Ye, at al, 2017Looking for the Plateau in Inclusive Cross Section Ratios x>2

Do we really measure momentum fractions: α relevant for 3N SRCs?

Remember for 2N SRCs the onset of scaling was related to lpha

Three Nucleon Short Range CorrelationsZ. Ye, at al, 2017Looking for the Plateau in Inclusive Cross Section Ratios x>2

Do we really measure momentum fractions: α relevant for 3N SRCs?

3N SRCs:

Proper Variables of 3N SRC are

- the Light Front Momentum Fraction: $\alpha = \frac{p_N^+}{p_n^+ N}$
 - transverse momentum: p_{\perp}

3N SRCs in Inclusive A(e,e')X Reactions $\sigma_{eA} = \sum \sigma_{eN} \cdot \rho_A(\alpha) \text{ where } \rho_A(\alpha) = \int \rho_A(\alpha, p_\perp) d^2 p_\perp$

3N SRC model $\sigma_{eA} = \sum \sigma_{eN} \cdot \rho_A(\alpha)$ where $\rho_A(\alpha) = \int \rho_A(\alpha, p_\perp) d^2 p_\perp$ $1.6 \le \alpha_{3N} < 3$

3N SRCs
$$\sigma_{eA} = \sum \sigma_{eN} \cdot \rho_A(\alpha)$$
 where $\rho_A(\alpha) = \int \rho_A(\alpha, p_\perp) d^2 p_\perp$
 $1.6 \le \alpha_{3N} < 3$

JLab - E02019 - Data

3N SRC model $\sigma_{eA} = \sum \sigma_{eN} \cdot \rho_A(\alpha)$ where $\rho_A(\alpha) = \int \rho_A(\alpha, p_\perp) d^2 p_\perp$ $1.6 \le \alpha_{3N} < 3$

JLab - E02019 - Data

3N SRC: Light-Cone Momentum Fraction Distribution

 $-\rho_{3N} \sim a_2(A,z)^2$

- For A(e,e') X reactions: $\sigma_{eA} = \sum_N \sigma_{eN}
ho_{3N}(lpha_{3N})$

- Observable: $R_3(A,Z) = \frac{3\sigma_{eA}}{A\sigma_{e^3He}} \mid_{\alpha_{3N} \ge \alpha_{3N}^0 = 1.6}$

- Define:
$$a_3(A,Z) = \frac{3}{A} \frac{\sigma_{eA}}{(\sigma_{e^3He} + \sigma_{e^3H})/2}$$

- Relate:
$$R_3(A,Z) = a_3(A,Z) rac{(\sigma_{ep}+\sigma_{en})/2}{(2\sigma_{ep}+\sigma_{en})/3}$$

- Using: $ho^A_{3N}(lpha)\sim a_2(A)^2~$ and charge symmetry

$$a_3(A,Z) = \frac{a_2(A)^2}{a_2^p({}^3He)a_2^n({}^3He)},$$

- using

- and

$$a_{3}(A,Z) = \frac{a_{2}(A)^{2}}{a_{2}^{p}(^{3}He)a_{2}^{n}(^{3}He)},$$

 $n_{p/n}^{A}(p) \approx \frac{1}{2(x_{p/n})^{\gamma}} a_{2}(A, y) \cdot n_{d}, \, \gamma \leq 1$ form MS: PRC2014

obtains:
$$a_2^n({}^{3}He) = \frac{a_2({}^{3}He)}{2(1/3)^{\gamma}}$$
 and $a_2^p({}^{3}He) = \frac{a_2({}^{3}He)}{2(2/3)^{\gamma}}$,

- **Relate:**
$$R_3(A,Z) = a_3(A,Z) \frac{(\sigma_{ep} + \sigma_{en})/2}{(2\sigma_{ep} + \sigma_{en})/3} = 4\left(\frac{2}{9}\right)^{\gamma} \frac{(\sigma_{ep} + \sigma_{en})/2}{(2\sigma_{ep} + \sigma_{en})/3} \left(\frac{a_2(A,Z)}{a_2(^3He)}\right)^2 = 4\left(\frac{2}{9}\right)^{\gamma} \frac{(\sigma_{ep} + \sigma_{en})/2}{(2\sigma_{ep} + \sigma_{en})/3} R_2^2(A,Z)$$

- Where:
$$R_2(A, Z) = \frac{3}{A} \frac{\sigma_{eA}}{\sigma_{e^3 H}} \mid_{1.3 < \alpha_{3N} < 1.5} = \frac{a_2(A)}{a_2(^3He)}$$

for $Q^2 \sim 3 \text{ GeV}^2$, $\sigma_{ep} \approx 3\sigma_{en}$ and for $3He \ \gamma \approx 0.85$.

 $R_3(A,Z)|_{\alpha_{3N}>1.6} \approx 0.96R_2(A,Z)^2 \approx R_2(A,Z)^2|_{1.3 \le \alpha_{3N} \le 1.5}.$

 $\alpha_{3N} \approx \alpha_{2N}$

0

3N SRC model

2

1

0.6

0.8

1.4

1.6

1.8

2

1.2

3N SRC model

 $R_2 = rac{3\sigma_{eA}(lpha_{3N})}{A\sigma_{3A}(lpha_{3N})} \ \ 1.3 \le lpha_{3N} \le 1.5$

 $R_3 = \frac{3\sigma_{eA}(\alpha_{3N})}{A\sigma_{3A}(\alpha_{3N})} \quad 1.6 \le \alpha_{3N} \le 1.8$

 $1.6 \le lpha_{3N} < 3$ $R_3(A) = R_2(A)^2$

3N SRC model Defining: $a_3(A, Z) = \frac{3}{A} \frac{\sigma_{eA}}{(\sigma_{e^3He} + \sigma_{e^3H})/2}$

One relates: $a_3(A, Z) = \frac{(2\sigma_{ep} + \sigma_{en})/3}{(\sigma_{ep} + \sigma_{en})/2} R_3(A, Z)$

3N SRC model Defining: $a_3(A, Z) = \frac{3}{A} \frac{\sigma_{eA}}{(\sigma_{e^3He} + \sigma_{e^3H})/2}$

One relates: $a_3(A, Z) = \frac{(2\sigma_{ep} + \sigma_{en})/3}{(\sigma_{ep} + \sigma_{en})/2} R_3(A, Z)$

A	a_2	R_2	$R_3^{ m exp}$	a_3
3	2.13 ± 0.04	1	NA	NA
4	3.57 ± 0.09	1.68 ± 0.03	2.74 ± 0.24	3.20 ± 0.28
9	3.91 ± 0.12	1.84 ± 0.04	3.23 ± 0.29	3.77 ± 0.34
12	4.65 ± 0.14	2.18 ± 0.04	4.89 ± 0.43	$5.71\pm0,50$
64	5.21 ± 0.20	2.45 ± 0.04	5.94 ± 0.52	6.94 ± 0.77
197	5.13 ± 0.21	2.41 ± 0.05	6.15 ± 0.55	7.18 ± 0.64

3N SRC Summary & Outlook

- Proper variable for studies of 2N and 3N SRS are Light-Cone momentum fractions: α_{2N} , α_{3N}
- It seems we observed first signatures of 3N SRCs in the form of the "scaling"
- Existing data in agreement with the prediction of: $R_3(A,Z) pprox R_2(A,Z)^2$
- Unambiguous verification will require larger Q2 data to cover larger α_{3N} region
- Reaching Q2 > 5 GeV2 will allow to reach: $lpha_{3N}>2$

3N SRC Outlook

What about type II 2N SRCs

P_{r2} P_m P_{r3}

 $p_m > 700 MeV/c$ $E_m > 300 MeV$

Irreducible 3N-Force

- Introduced first to describe binding energy of ³H Wigner Phys. Rev. 1933
- In ordinary cases accuracy of 1% needed to disentangle
 the 3N-Force effects in low energy phenomena Friar Nucl.Phys.A 2001
- Significant contribute to the equation of state of dense nuclear matter.
 Heiselberg & Pandharipande ARNPS 2000

"Unreasonable" Persistence of Nucleons

Calculation of $e + 3He \rightarrow e'p_f + p_{r1} + p_{r2}$ In high Q2 kinematics

Wave functions

MS, Abrahamyan, Frankfurt Strikman, PRC 2005

Nogga, Kievsky, Kamada, Gloeckle et al, PRC2003

Outlook - on 3N-Forces

- Detailed exploration of triple-coincidence scattering on ³He may allow to isolate and measure the strength of the 3N-Forces

3N SRC: Light-Cone Momentum Fraction Distribution

O. Artiles M.S. Phys. Rev. C 2016

