Nuclear Orbital Entanglement Entropy of Short Range Correlations

4-th International Workshop on Quantitative Challenges in Short-Range Correlations and the EMC Effect Research

> CEA Paris-Saclay February 1st

Ehoud Pazy NRCN

Outline-Introduction

Entanglement

Entanglement entropy / Area law

Short Range Correlated (SRC) pairs

Orbital Entanglement

Outreach John F. Clauser

entrc

Outreach Alain Aspect

Outreach Anton Zeilinger

Outline-Introduction

A Secret Ingredient The Generalized Contact Formalism (GCF)

Calculating Entanglement Entropy for SRC:

- Calculating the entanglement entropy of a single SRC pair in term of the contact.
- Summing up the Entanglement Entropy of SRC pairs.
- Comparing results with the ⁴He calculations.

The Main Questions

How to calculate the entanglement entropy of the SRC?

Does it obey an Area Law?

Is most of the entanglement entropy in SRC?

Entanglement

Entanglement describes the non-local, purely quantum correlations of a system

The Nobel Prize in Physics 2022

III. Niklas Elmehed © Nobel Prize Outreach Outreach John F. Clauser Prize III. Niklas Elmehed © Nobel Prize Outreach Anton Zeilinger

Entanglement at short distance, when particles have overlapping wave functions:

ex: nucleons in the nucleus

Caroline Robin

Fakultät für Physik, Universität Bielefeld, Germany GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany

Entanglement Entropy

Arises due to tracing out some part of the system

- In contrast to thermal states this entropy does not originate from a lack of knowledge about the microstate of the system.
- In quantum mechanics positive entropies may arise even without an objective lack of information.
- Even at zero temperature we will encounter a non-zero entropy!
- This entropy arises because of a very fundamental property of Guerry, M. Cramer, and M.B. Plenio, Reviews of Modern Physics (2010)

Entanglement Entropy: Product verses Entangled

Definition of Entanglement Entropy Divide a given quantum system into two parts A and B.

Then the total Hilbert space becomes factorized

 $H_{tot} = H_A \otimes H_B$. We define the reduced density matrix ρ_A for A by

$$\rho_A = \mathrm{Tr}_B \rho_{tot} ,$$

Tracing over the Hilbert space of **B**.

Now the entanglement entropy S_A is defined by the von Neumann entropy

$$S_A = -\mathrm{Tr}_A \rho_A \log \rho_A$$
.

Simple example of Entanglement Entropy $|\Psi\rangle = \sum_{ab} \Psi_{ab} |a\rangle \otimes |b\rangle \rightarrow \underline{\Psi} = \begin{bmatrix} \Psi_{\uparrow\uparrow} & \Psi_{\uparrow\downarrow} \\ \Psi_{\downarrow\uparrow} & \Psi_{\downarrow\downarrow} \end{bmatrix}$

where the basis vectors $|a\rangle$ and $|b\rangle$ are either $|\uparrow\rangle$ or $|\downarrow\rangle$

Non Entangled case

$$|\Psi\rangle = |\uparrow\downarrow\rangle \rightarrow \underline{\Psi} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \qquad \underline{\rho}_1 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \qquad S_{12} = S(\rho_1) = -(1\ln(1) + 0\ln(0)) = 0.$$

 $S_{pn} = -\sum_{i} \gamma_i^2 \, \ln(\gamma_i^2)$

Entangled case

Entangled Entropy Area Law

"At first sight one might be tempted to think that the entropy of a distinguished region **B**, will always possess an **extensive character**. Such a behavior is referred to as a volume scaling and is observed for thermal states.

Intriguingly, for typical ground states, however, this is not at all what one encounters:

Instead, one typically finds an area law, or an area law with a small (often logarithmic) correction: This means that if one distinguishes a region, the scaling of the entropy is merely linear in the boundary area of the region."

J. Eisert, M. Cramer, and M.B. Plenio, Reviews of Modern Physics (2010)

The Holographic Principle and Black Hole Entropy "It has been suggested that the area law of the geometric entropy for a discrete version of

"It has been suggested that the area law of the geometric entropy for a discrete version of a massless free scalar field— then numerically found for an imaginary sphere in a radial symmetry—could be related to the physics of black holes, in particular the Bekenstein-Hawking entropy of a black hole which is proportional to its boundary surface.

It has been noted that the holographic principle—the conjecture that the information contained

in a volume of space can be represented by a theory which lives in the boundary of that region—could be related to the Areadalogy eventific lock the temperature entropy in

Why is the Nuclear Structure Entanglement Entropy Important?

- Computational- efficiency.
- Physics- dynamics of reactions:

Why is Entanglement Entropy Important?

Nuclear physics:

Is there a simple picture in which we can understand nuclear properties?

Is there an efficient scheme in which to model nuclear structure for applications?

$$|\Psi\rangle = \sum_{\mu\nu} c_{\mu\nu} |p_{\mu}\rangle |n_{\nu}\rangle$$

$$|01101000...\rangle |10010100...\rangle$$

$$\left|\Psi\right\rangle = \sum_{\mu\nu} c_{\mu\nu} \left|p_{\mu}\right\rangle \left|n_{\nu}\right\rangle$$

Can we truncate for just a few components?

APS DNP Meeting Oct 12, 2021

Computational Impossibility

Contributed talk FM 8: Johnson

Despite advances, it is easy to get to model spaces^{RSITY} beyond our reach:

shells between 50 and 82 (0g_{7/2} 2s1d 0h_{11/2}) ¹²⁸Te: dim 13 million (laptop) ¹²⁷I: dim 1.3 billion (small supercomputer) ¹²⁸Xe: dim 9.3 billion (supercomputer) ¹²⁹Cs: dim 50 billion (haven't tried!)

Why is Entanglement Entropy Important for Nuclear Structure?

Entropy, single-particle occupation probabilities, and short-range correlations

Aurel Bulgac^{1, *}

¹Department of Physics, University of Washington, Seattle, Washington 98195–1560, USA (Dated: June 9, 2022)

Both theoretical and experimental studies have shown that the fermion momentum distribution has a generic behavior $n(k) = C/k^4$ at momenta larger than the Fermi momentum, due to their short-range interactions, with approximately 20% of the particles having momenta larger than the Fermi momentum. It is shown here that short-range correlations, which induce high-momentum tails of the single-particle occupation probabilities, increase the entropy of fermionic systems, which in its turn will affect the dynamics of many reactions, such as heavy-ion collisions and nuclear fission.

It is shown here that short-range correlations, which induce high-momentum tails of the single-particle occupation probabilities, increase the entropy of fermionic systems, which in its turn will affect the dynamics of many reactions, such as heavy-ion collisions and nuclear fission.

A Complication Orbital Entanglement

Entanglement in systems with distinguishable particles: Well understood – Hilbert Space has a tensor like structure

 $H_{tot} = H_A \otimes H_B$.

Entanglement in systems with indistinguishable particles: Not well understood-under debate

 $\mathcal{H} = S(\mathcal{H}_A \otimes \mathcal{H}_B)$ (bosons) or $\mathcal{H} = \mathcal{A}(\mathcal{H}_A \otimes \mathcal{H}_B)$ (fermions)

Define entanglement between modes Rather than particles (second quantization)

Orbital Entanglement

Calculating Orbital Entanglement

$$\begin{split} |\Psi\rangle &= \sum_{\eta} \mathcal{A}_{\eta} |\phi_{\eta}\rangle \longrightarrow \rho^{(i)} = \begin{pmatrix} 1 - \gamma_{ii} & 0\\ 0 & \gamma_{ii} \end{pmatrix} & \text{One Orbital Density Matrix}\\ \gamma_{ii} &= \langle \Psi | a_{i}^{\dagger} a_{i} | \Psi \rangle \end{split}$$
Slater determinant
$$|\phi_{\eta}\rangle &= \prod_{i \in \eta}^{A} a_{i}^{\dagger} | 0 \rangle$$

$$\begin{split} S_{i}^{(1)} &= -Tr[\rho^{(i)} \ln \rho^{(i)}] = -\sum_{k=1}^{2} \omega_{k}^{(i)} \ln \omega_{k}^{(i)} \end{aligned}$$

The ω_k are eignevalues of $\rho_{\mathtt{i}}$

Entanglement in the Nucleus

= Z protons + N neutrons $|\Psi\rangle = \sum_{\pi\nu} C_{\pi\nu} |\phi_{\pi}\rangle \otimes |\phi_{\nu}\rangle$ $= \sum_{n_{\pi_{1}} n_{\pi_{2}} \dots n_{\nu_{1}} n_{\nu_{2}} \dots} C_{n_{\pi_{1}} n_{\pi_{2}} \dots n_{\nu_{1}} n_{\nu_{2}} \dots} |n_{\pi_{1}} n_{\pi_{2}} \dots n_{\nu_{1}} n_{\nu_{2}} \dots\rangle$

occupation numbers $n_i = 0$ or 1

 $n_{\pi_1} + n_{\pi_2} ... + n_{\nu_1} + n_{\nu_2} ... = Z + N$

Several types of entanglement are present in the nucleus:

* Entanglement between proton and neutron subsystems (distinguishable)

see e.g.: Papenbrock & Dean PRC 67, 051303(R) (2003), in the framework of DMRG; Gorton & Johnson (Gorton Master thesis 2018), in the traditional Shell Model

Fakultät für Physik, Universität Bielefeld, Germany GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany

What has been Calculated for Nuclear Structure?

* application to 4He with a bare chiral interaction (2-body force, provided by P. Navrátil)

Here: mode entanglement in (very) light nuclei with chiral EFT interaction C. Robin, M. J. Savage, N. Pillet, PRC 103, 034325 (2021), arXiv:2007.09157 [nucl-th] (2020)

Single-Orbital Entanglement in ⁴He

• Entanglement of the s states are decreased: (1s)_{VNAT} contains most important information

 $(1s)_{VNAT} = a_1(1s)_{HO} + a_2(2s)_{HO} + a_3(3s)_{HO} \dots$

Limited to light nuclei

A Different Approach Based on the General Contact Formalism (GCF)

- Universal in some sense.
- Simple to calculate.

A Different Approach Based on the General Contact Formalism (GCF)

The two particle state is Universal

- It can be viewed as a further "orbital" particles can occupy.
- It's "occupancy" is given by the contact.
- The entanglement of the SRC can be given as a simple formula based on the contact.

General Contact Formalism (GCF)

$$\langle A|A\rangle = \int d^3 R_{ij} \prod_{k\neq i,j} d^3 r_k A^{\dagger} \left(\mathbf{R}_{ij}, \{\mathbf{r}_k\}_{k\neq i,j} \right) A\left(\mathbf{R}_{ij}, \{\mathbf{r}_k\}_{k\neq i,j} \right)$$

The contact traces over all of the degrees of freedom aside from the pair

SRC Momentum Distribution in GCF

Given the following normalization

$$\int_{k_F}^{\infty} d^3q |\varphi_{ab}^{\alpha}(q)|^2 = 1$$

The Contact can be viewed as the probability for obtaining a SRC in the nucleus / The occupation of the universal two state "orbital"

$$F_{pn}(\mathbf{q}) = \rho_{pn}^{\alpha_1}(\mathbf{q})C_{pn}$$

$$\rho_{pn}^{\alpha_1}(\mathbf{q}) = |\varphi_{pn}^{\alpha_1}(\mathbf{q})|^2$$

Calculating the SRC Entanglement Entropy

- The Universal two-particle wave function can be viewed as a further "orbital".
- The occupation probability of this orbital is given by the contact.

SRC Entanglement Entropy is a sum of the Entanglement Entropy of Single SRC

Assumption: the total SRC entanglement entropy is the sum of the number of SRC pairs-Meaning assuming SRC pairs are not entangled

$$C_{pn} = N(A, Z) \langle A_{pn}^{\alpha_1} | A_{pn}^{\alpha_1} \rangle \quad N(A, Z = A/2) = \frac{A}{2} \quad \frac{\int_{k_F}^{\infty} n(k) dk}{\int_0^{\infty} n(k) dk} = C_{pn}/(A/2)$$

$$c_{pn} \equiv \frac{C_{pn}}{(A/2)} \qquad \qquad \gamma_{SRC} = c_{pn}$$

The Normalized Contact

The probability for obtaining a single SRC pair

Calculations for the single SRC entanglement entropy will be done with the normalized contact which is A independent

Ronen Weiss^{a,*}, Axel Schmidt^b, Gerald A. Miller^c, Nir Barnea^a Physics Letters B 790 (2019) 484-489

Calculating the SRC Entanglement Entropy

$$\rho^{(i)} = \begin{pmatrix} 1 - \gamma_{ii} & 0\\ 0 & \gamma_{ii} \end{pmatrix} \longrightarrow S_i^{(1)} = -Tr[\rho^{(i)} \ln \rho^{(i)}] = -\sum_{k=1}^2 \omega_k^{(i)} \ln \omega_k^{(i)}$$

One Orbital Density Matrix

$$\begin{split} \gamma_{ii} &= \langle \Psi | a_i^{\dagger} a_i | \Psi \rangle & \int_{k_F}^{\infty} d^3 q | \varphi_{ab}^{\alpha}(q) |^2 = 1 \\ & \int_{k_F}^{\infty} d^3 q | \varphi_{ab}^{\alpha}(q) |^2 = 1 \\ \rho^{(\alpha_1)} &= \sum_{\phi_{\eta'}} \langle \phi_{\eta'} | \langle \tilde{\varphi}_q^{\alpha_1} | \Psi \rangle \langle \Psi | \tilde{\varphi}_q^{\alpha_1} \rangle | \phi_{\eta'} \rangle & \gamma^{\alpha_1} &= \int_{k_F}^{\infty} d^3 q \rho_{pn}^{\alpha_1}(q) c_{pn} = c_{pn} \int_{k_F}^{\infty} d^3 q \rho_{pn}^{\alpha_1}(q) = c_{pn} \\ \rho^{(\alpha_1)} &= \begin{pmatrix} 1 - \gamma_{SRC} & 0 \\ 0 & \gamma_{SRC} \end{pmatrix} & \longrightarrow \\ S_{pn}^{SRC} &= - \left[c_{pn} \ln \left(\frac{c_{pn}}{1 - c_{pn}} \right) + \ln (1 - c_{pn}) \right] \end{split}$$

SRC Entanglement Entropy is a Sum of the Entanglement Entropy of Single SRC

Assumption: the total SRC entanglement entropy is the sum of the number of SRC pairs-

Meaning assuming SRC pairs are not entangled between themselves

$$S_A^{SRC} = \sum_i^N S_i^{SRC}$$

The probability for obtaining a single SRC pair is given by the normalized contact $C_{pn} = \frac{C_{pn}}{C_{pn}}$

$$c_{pn} \equiv \frac{C_{pn}}{(A/2)}$$

The Normalized Contact

The probability for obtaining a single SRC pair

This normalization of the contact Gives the fraction of the one body

 $c_{pn} \equiv$

momentum density above KF

Calculations for the single SRC entanglement entropy will be done with the normalized contact which is A independent

Ronen Weiss^{a,*}, Axel Schmidt^b, Gerald A. Miller^c, Nir Barnea^a Physics Letters B 790 (2019) 484-489

Calculating the Single SRC Entanglement Entropy

$$\rho^{(i)} = \begin{pmatrix} 1 - \gamma_{ii} & 0\\ 0 & \gamma_{ii} \end{pmatrix} \longrightarrow S_i^{(1)} = -Tr[\rho^{(i)} \ln \rho^{(i)}] = -\sum_{k=1}^2 \omega_k^{(i)} \ln \omega_k^{(i)}$$

One Orbital Density Matrix

$$\gamma_{ii} = \langle \Psi | a_i^{\dagger} a_i | \Psi \rangle$$

SRC

The probability an SRC is occupied

 $\gamma_{\scriptscriptstyle SRC} = c_{pn}$

$$\rho^{(\alpha_1)} = \begin{pmatrix} 1 - \gamma_{SRC} & 0\\ 0 & \gamma_{SRC} \end{pmatrix}$$

$$S_{pn}^{SRC} = -\left[c_{pn}\ln\left(\frac{c_{pn}}{1-c_{pn}}\right) + \ln\left(1-c_{pn}\right)\right]$$

Calculating the SRC Entanglement Entropy

$$S_A^{SRC} = -\frac{A}{2} \left[c_{pn} \ln \left(\frac{c_{pn}}{1 - c_{pn}} \right) + \ln \left(1 - c_{pn} \right) \right].$$

The SRC Entanglement Entropy is extensive ~A

E. Pazy, Orbital Entanglement Entropy of Short Range Correlated Pairs in Nuclear Structure arXiv:2206.10702

Comparing to Previous Results for ⁴He $S_{tot}^{(1)} = \sum S_{i}^{(1)}$ $S_{sRC}^{SRC} = A \left[c \ln \left(\frac{c_{pn}}{c_{pn}} \right) + \ln \left(1 - c_{pn} \right) \right]$

$S_A^{SRC} = -\frac{A}{2}$	$c_{pn} \ln$	$\left(\frac{c_{pn}}{1-c_{pn}}\right)$	$+\ln\left(1-c_{pn}\right)$	
----------------------------	--------------	--	-----------------------------	--

	Ntot	но	HF	NAT	VINAL
2	shells	0.596	0.270	0.596	0.441
3	shells	1.143	0.487	0.929	0.746
4	shells	1.065	0.686	0.928	1.063
5	shells	1.348	2.327	1.036	1.042
6	shells	1.264	3.434	0.972	0.963
7	shells	1.217	1.069	1.006	1.006

TTO

. .

- Proton-Proton and Neutron –Neutron pairs were not considered.
- Two orbital entanglement was not considered.

Quite a good agreement with previous results

E. Pazy, Orbital Entanglement Entropy of Short Range Correlated Pairs in Nuclear Structure arXiv:2206.10702

What has been Calculated for Nuclear structure

Entropy, single-particle occupation probabilities, and short-range correlations

Aurel Bulgac^{1, *}

¹Department of Physics, University of Washington, Seattle, Washington 98195–1560, USA (Dated: June 9, 2022)

Both theoretical and experimental studies have shown that the fermion momentum distribution has a generic behavior $n(k) = C/k^4$ at momenta larger than the Fermi momentum, due to their short-range interactions, with approximately 20% of the particles having momenta larger than the Fermi momentum. It is shown here that short-range correlations, which induce high-momentum tails of the single-particle occupation probabilities, increase the entropy of fermionic systems, which in its turn will affect the dynamics of many reactions, such as heavy-ion collisions and nuclear fission.

$$S = -g \int \frac{d^3k}{(2\pi)^3} n(k) \ln n(k) -g \int \frac{d^3k}{(2\pi)^3} [1 - n(k)] \ln[1 - n(k)], \quad (5)$$

The Entropy in Terms of the Canonical momentum occupation function

Canonical Momentum Occupation Function

$$S = -g \int \frac{d^3k}{(2\pi)^3} n(k) \ln n(k) -g \int \frac{d^3k}{(2\pi)^3} [1 - n(k)] \ln[1 - n(k)], \quad (5)$$
$$n(k) = \eta(k_0) \begin{cases} n_{\rm mf}(k), & \text{if} \quad k \le k_0 \\ n_{\rm mf}(k_0) k_0^4 \frac{1}{k^4}, & \text{if} \quad k_0 < k < \Lambda \end{cases}, \quad (9)$$

$$n(k) = C/k^4$$

where

$$C(k_0) = \eta(k_0) n_{\rm mf}(k_0) k_0^4 \tag{10}$$

Canonical Momentum Occupation

$$S = -g \int \frac{d^{3}k}{(2\pi)^{3}} n(k) \ln n(k) \qquad n(k) = \eta(k_{0}) \begin{cases} n_{\rm mf}(k), & \text{if } k \leq k_{0} \\ n_{\rm mf}(k_{0})k_{0}^{4}\frac{1}{k^{4}}, & \text{if } k_{0} < k < \Lambda \end{cases}$$
(9)
$$-g \int \frac{d^{3}k}{(2\pi)^{3}} [1 - n(k)] \ln[1 - n(k)], \qquad (5) \end{cases} \qquad \text{where} \qquad (10)$$

$$n(k) = C/k^4$$

$$S \approx -\frac{g}{2\pi^2} \left[\frac{C}{k_F} \ln \left(\frac{\frac{C}{k_F^4}}{1 - \frac{C}{k_F^4}} \right) + k_F^3 \ln \left(1 - \frac{C}{k_F^4} \right) \right].$$

ssociating the reduced contact with $c_{pn} = C/k_F^4$ one obtains

$$S \approx -3A \left[c_{pn} \ln \left(\frac{c_{pn}}{1 - c_{pn}} \right) + \ln \left(1 - c_{pn} \right) \right]$$

Summary

- A general expression was obtained for the SRC Entanglement Entropy.
- The SRC Entanglement Entropy was found to be extensive.
- The SRC entanglement entropy seems to fit previous ⁴He calculations.

Thank You for your Attention and Bonne Appetit

