3N SRC Kinematics

Andrew Denniston MIT February 1st, 2023

3N SRCs with CLAS12

3N SRCs with CLAS12

Target	Channel	Event Estimate
LD2	e'p	47,000
LHe	e'p	130,000
	e'pp	5,500
Cx4	e'p	161,000
	e'pp	5,600
Snx4	e'p	9,900
	e'pp	430
40Ca	e'p	67,000
	e'pp	3,600

 $\frac{d}{d^{11}X^{\mu}} = \mathcal{J}\sigma_{eN} * |\phi_{\alpha}(\vec{p}_{1}, \vec{p}_{2}, \vec{p}_{3})|^{2} * n(p_{cm}) * \delta(E_{f} - E_{i})$

$$x_B, Q^2, p_{miss}$$

$$x_B, Q^2, p_{miss}$$

3×3 particles
-4 conservation laws
-2 Euler angle
3 free parameters

 x_B, Q^2, p_{miss}

3×3 particles
-4 conservation laws
-2 Euler angle
3 free parameters

 x_B, Q^2, p_{miss}

2N Wavefunction

3 momenta \times 2 particles

3 center of mass momenta

- 2 Euler angles
- 1 NN Interaction Variable

3N Wavefunction

3 momenta \times 3 particles

3 center of mass momenta

3 Euler angles

3 NN Interaction Variable

3N Wavefunction

3N Wavefunction

2 Shape Parameters: $\frac{p_1}{p_{tot}}, \frac{p_2}{p_{tot}}$

3N Wavefunction

- Helium-3 (ppn)
- AV8 Potential
- Summed over L and S configurations
- Look at shape for fixed total momentum
- Look at total momentum for fixed shapes

Fix
$$p_{tot}$$
 and plot ψ^2 vs. $\frac{p_1}{p_{tot}}, \frac{p_2}{p_{tot}}$

Fix
$$p_{tot}$$
 and plot ψ^2 vs. $\frac{p_1}{p_{tot}}, \frac{p_2}{p_{tot}}$

Fix p_{tot} and plot ψ^2 vs. $\frac{p_1}{p_{tot}}, \frac{p_2}{p_{tot}}$

Fix
$$p_{tot}$$
 and plot ψ^2 vs. $\frac{p_1}{p_{tot}}, \frac{p_2}{p_{tot}}$

Defining a Cross Section

Full Cross Section Kinematics

 $\begin{array}{l} 0.3 \; GeV < p_{miss}, p_p, p_n \\ \\ 1.5 \; GeV^2 < Q^2 \end{array}$

Lead Nucleon Kinematics

Lead Nucleon Kinematics

Lead Nucleon Kinematics

Going to Parallel Kinematics

Going to Parallel Kinematics

Full Cross Section 3N Distributions

 $0.3 \; GeV < p_{miss}, p_p, p_n$

Full Cross Section 3N Distributions

 $0.3 \ GeV < p_{miss}, p_p, p_n$ $1.5 \ GeV^2 < Q^2$

The Search for Observables

 $\underbrace{\frac{d^{11}\sigma}{d^{11}X^{\mu}}} = \mathcal{J}\sigma_{eN} * |\phi_{\alpha}(\vec{p}_{1}, \vec{p}_{2}, \vec{p}_{3})|^{2} * n(p_{cm}) * \delta(E_{f} - E_{i})$

Looking at Missing Momentum Distributions

Looking at Missing Momentum Distributions

 $\begin{array}{l} 0.3 \; GeV < p_{miss}, p_p, p_n \\ \\ 1.5 \; GeV^2 < Q^2 \end{array}$

FSI to Come

• Kinematics of 3N SRCs

- Kinematics of 3N SRCs
- ³*He* wavefunction

- Kinematics of 3N SRCs
- ³*He* wavefunction
- 3N SRC Cross Section

$$\frac{d^{11}\sigma}{d^{11}X^{\mu}} = \mathcal{J}\sigma_{eN} * |\phi_{\alpha}(\vec{p}_{1}, \vec{p}_{2}, \vec{p}_{3})|^{2} * n(p_{cm}) * \delta(E_{f} - E_{i})$$

- Kinematics of 3N SRCs
- ³*He* wavefunction
- 3N SRC Cross Section
- We are in the market for Observables!

Understanding the Kinematics

Understanding the Kinematics

Full Cross Section Kinematics

Full Cross Section Kinematics

3×5 particles <u>-4 conservation laws</u> 11 Parameters

- Introduction
 - 3N Interaction and motivation
 - CLAS12 and RGM is the highest SRC statistics experiment ever, it is currently our best bet for 3N SRC searches.
 - We need to develop a model to know where to search
 - We can look at "exotic" interactions or the "traditional" interactions
- The traditional Interaction for SRCs
 - Starting with the 2N Diagram we can move to 3N
 - We can also generalize the cross section
 - This results in an 11 dimensional cross section
 - There are 2 things that have changed, the kinematics and the 3N wavefunction (and we only have ppn right now (but it is also the best))
- Kinematics
 - Start by simplifying (remove cm and 2 Euler angles)
 - We remain with 4 variables (+1 to describe the shape)
 - 4 Configurations of interest
 - Show the Results. Figure +
- 3N Wavefunction
 - Variables that define shape and scale
 - Compare pp, pn, ppn over scale Figure
 - Show dalitz plot for given scale Figure
- First Checks of the Generator
 - Compare Kinematics xB vs. pmiss Figure
 - Compare to 3N wavefunction (Dalitz plot) Figure
 - Lead Nucleon Direction (Mention that the proton needs to be the lead because lead nucleon cuts are important) Figure
- Looking for 3N Observables
 - It will likely involve (e,e'ppn) and (e,e'pp)N
 - Show your observable Figure
 - Show Misak's Pbservable Figure I don't have yet
 - Mention FSI calculations would be helpful