Towards High sectors Fock-space coupled-cluster theory for atomic calculations

Yuly Andrea Chamorro Mena

Martijn Reitsma
Anastasia Borschevsky, Ephraim Eliav

rijksuniversiteit groningen

Van Swinderen Institute for Particle Physics and Gravity University of Groningen, The Netherlands

June 7, 2023

Relativistic Fock-space coupled-cluster method

Post-Hartree-Fock method including
Special relativity and electron correlation
Multireference

- closed-shell systems (with quasi-degenerate levels)
- open-shell systems (such as transition metal atoms)
- excited states in general
\checkmark Single wave operator for all states
- many electronic states obtained in one calculation
- energy differences: ionization potentials, electron affinities, excitation energies
*ighty accurate and large applicability

Relativistic Fock-space coupled-cluster method

Post-Hartree-Fock method including
\checkmark Special relativity and electron correlation
\checkmark Multireference

- closed-shell systems (with quasi-degenerate levels)
- open-shell systems (such as transition metal atoms)
- excited states in general
\checkmark Single wave operator for all states
- many electronic states obtained in one calculation
- energy differences: ionization potentials, electron affinities, excitation energies

Highly accurate and large applicability

Relativistic Fock-space coupled-cluster method

Post-Hartree-Fock method including
\checkmark Special relativity and electron correlation
\checkmark Multireference

- closed-shell systems (with quasi-degenerate levels)
- open-shell systems (such as transition metal atoms)
- excited states in general
\checkmark Single wave operator for all states
- many electronic states obtained in one calculation
- energy differences: ionization potentials, electron affinities, excitation energies

Highly accurate and large applicability

Relativistic Fock-space coupled-cluster method

Post-Hartree-Fock method including
\checkmark Special relativity and electron correlation
\checkmark Multireference

- closed-shell systems (with quasi-degenerate levels)
- open-shell systems (such as transition metal atoms)
- excited states in general
\checkmark Single wave operator for all states
- many electronic states obtained in one calculation
- energy differences: ionization potentials, electron affinities, excitation energies

Highly accurate and large applicability

EXP-T
a relativistic multireference coupled cluster program

Atomic relativistic Fock space coupled-cluster method

Atomic systems
\checkmark Spherical symmetry

- Separation of angular and radial terms
- Angular momentum reduction
\rightarrow TRAFS-3C, Tel Aviv atomic computational package
E. Eliav and U. Kaldor

Atomic relativistic Fock space coupled-cluster method

Atomic systems
\checkmark Spherical symmetry

- Separation of angular and radial terms
- Angular momentum reduction
\rightarrow TRAFS-3C, Tel Aviv atomic computational package
E. Eliav and U. Kaldor

Restricted to 2 holes/particles ${ }^{1}$
Periodic Table of the Elements

${ }^{1}$ Figure from A . Borschevsky.
\rightarrow Extend scope of applicability to 4 holes/particles ${ }^{1}$
Periodic Table of the Elements

Lanthanides															
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Actinides	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

[^0]
Atomic relativistic Fock space coupled-cluster method

Atomic systems
\checkmark Spherical symmetry

- Separation of angular and radial terms
- Angular momentum reduction
\rightarrow Extend the applicability and accuracy of the atomic relativistic FSCC method
\rightarrow Triple excitations must be included in computations for HSFSCC

Part I: Derivation of the equations (this talk)
Part It: Implementation (Martijn's talk)

Atomic relativistic Fock space coupled-cluster method

Atomic systems
\checkmark Spherical symmetry

- Separation of angular and radial terms
- Angular momentum reduction
\rightarrow Extend the applicability and accuracy of the atomic relativistic FSCC method
\rightarrow Triple excitations must be included in computations for HSFSCC

> Part I: Derivation of the equations (this talk)

Part II: Implementation (Martijn's talk)

Outline

Introduction

Formalism
Effective operator and Bloch equation
Fock space

Coupled-cluster equations
Normal-ordered operators
Amplitude equations

Spherical symmetry
Coulomb matrix elements
Angular reduction

Summary

Effective operator

Schrödinger (or Dirac) equation

$$
\begin{equation*}
H\left|\Psi_{\mu}\right\rangle=E_{\mu}\left|\Psi_{\mu}\right\rangle \tag{1}
\end{equation*}
$$

H is divided in the zero-order Hamiltonian and a perturbation

$$
\begin{equation*}
H=H_{0}+V \tag{2}
\end{equation*}
$$

The zero-order Hamiltonian follows the eigenvalue equation

$$
\begin{equation*}
H_{0}\left|\phi_{\mu}\right\rangle=E_{\mu}^{0}\left|\phi_{\mu}\right\rangle \tag{3}
\end{equation*}
$$

$\left|\phi_{\mu}\right\rangle$ zero-order solutions (Slater determinants)
\checkmark known
\checkmark good approximation to the exact wave function $\left|\Psi_{\mu}\right\rangle$

Effective operator

Schrödinger (or Dirac) equation

$$
\begin{equation*}
H\left|\Psi_{\mu}\right\rangle=E_{\mu}\left|\Psi_{\mu}\right\rangle \tag{1}
\end{equation*}
$$

H is divided in the zero-order Hamiltonian and a perturbation

$$
\begin{equation*}
H=H_{0}+V \tag{2}
\end{equation*}
$$

The zero-order Hamiltonian follows the eigenvalue equation

$$
\begin{equation*}
H_{0}\left|\phi_{\mu}\right\rangle=E_{\mu}^{0}\left|\phi_{\mu}\right\rangle \tag{3}
\end{equation*}
$$

$\left|\phi_{\mu}\right\rangle$ zero-order solutions (Slater determinants)
\checkmark known
\checkmark good approximation to the exact wave function $\left|\Psi_{\mu}\right\rangle$

Effective operator

Schrödinger (or Dirac) equation

$$
\begin{equation*}
H\left|\Psi_{\mu}\right\rangle=E_{\mu}\left|\Psi_{\mu}\right\rangle \tag{1}
\end{equation*}
$$

H is divided in the zero-order Hamiltonian and a perturbation

$$
\begin{equation*}
H=H_{0}+V \tag{2}
\end{equation*}
$$

The zero-order Hamiltonian follows the eigenvalue equation

$$
\begin{equation*}
H_{0}\left|\phi_{\mu}\right\rangle=E_{\mu}^{0}\left|\phi_{\mu}\right\rangle \tag{3}
\end{equation*}
$$

$\left|\phi_{\mu}\right\rangle$ zero-order solutions (Slater determinants)
\checkmark known
\checkmark good approximation to the exact wave function $\left|\psi_{\mu}\right\rangle$

Effective operator

Schrödinger (or Dirac) equation

$$
\begin{equation*}
H\left|\Psi_{\mu}\right\rangle=E_{\mu}\left|\Psi_{\mu}\right\rangle \tag{1}
\end{equation*}
$$

H is divided in the zero-order Hamiltonian and a perturbation

$$
\begin{equation*}
H=H_{0}+V \tag{2}
\end{equation*}
$$

The zero-order Hamiltonian follows the eigenvalue equation

$$
\begin{equation*}
H_{0}\left|\phi_{\mu}\right\rangle=E_{\mu}^{0}\left|\phi_{\mu}\right\rangle \tag{3}
\end{equation*}
$$

$\left|\phi_{\mu}\right\rangle$ zero-order solutions (Slater determinants)
\checkmark known
\checkmark good approximation to the exact wave function $\left|\Psi_{\mu}\right\rangle$

Effective operator

- Wave function:

Model space $\left(L_{P}\right)$ and orthogonal space $\left(L_{Q}\right)$

$$
\begin{aligned}
& L_{p} \rightarrow \text { all functions associated with one or several configurations } \\
& \text { Example: Be: } \\
& \qquad \begin{array}{c}
\left|\Psi_{\mu}\right\rangle=a\left|1 s^{2} 2 s^{2}{ }^{1} S\right\rangle+b\left|1 s^{2} 2 p^{2}{ }^{1} S\right\rangle+\ldots \\
L_{P}: 1 s^{2} 2 s^{2}, 1 s^{2} 2 p^{2}\left({ }^{1} S\right)
\end{array} \\
& \left|\Phi_{\mu}\right\rangle=a\left|1 s^{2} 2 s^{2}{ }^{1} S\right\rangle+b\left|1 s^{2} 2 p^{2}{ }^{1} S\right\rangle
\end{aligned}
$$

- Projection operator:

$$
\begin{equation*}
P\left|\Psi_{\mu}\right\rangle=\left|\Phi_{\mu}\right\rangle \tag{4}
\end{equation*}
$$

- Wave operator:

Effective operator

- Wave function:

Model space $\left(L_{P}\right)$ and orthogonal space $\left(L_{Q}\right)$
$L_{P} \rightarrow$ all functions associated with one or several configurations
Example: Be:

- Projection operator:

$$
P\left|\Psi_{\mu}\right\rangle=\left|\Phi_{\mu}\right\rangle
$$

- Wave operator:

Effective operator

- Wave function:

$$
\text { Model space }\left(L_{P}\right) \text { and orthogonal space }\left(L_{Q}\right)
$$

$L_{P} \rightarrow$ all functions associated with one or several configurations

Example: Be:

$$
\begin{gathered}
\left|\Psi_{\mu}\right\rangle=a\left|1 s^{2} 2 s^{2}{ }^{1} S\right\rangle+b\left|1 s^{2} 2 p^{2}{ }^{1} S\right\rangle+\ldots \\
L_{P}: 1 s^{2} 2 s^{2}, 1 s^{2} 2 p^{2}\left({ }^{1} S\right) \\
\left|\Phi_{\mu}\right\rangle=a\left|1 s^{2} 2 s^{2}{ }^{1} S\right\rangle+b\left|1 s^{2} 2 p^{2}{ }^{1} S\right\rangle
\end{gathered}
$$

- Projection operator:
- Wave operator:

Effective operator

- Wave function:

Model space $\left(L_{P}\right)$ and orthogonal space $\left(L_{Q}\right)$
$L_{P} \rightarrow$ all functions associated with one or several configurations
Example: Be:

$$
\begin{gathered}
\left|\Psi_{\mu}\right\rangle=a\left|1 s^{2} 2 s^{2}{ }^{1} S\right\rangle+b\left|1 s^{2} 2 p^{2}{ }^{1} S\right\rangle+\ldots \\
L_{P}: 1 s^{2} 2 s^{2}, 1 s^{2} 2 p^{2}\left({ }^{1} S\right) \\
\left|\Phi_{\mu}\right\rangle=a\left|1 s^{2} 2 s^{2}{ }^{1} S\right\rangle+b\left|1 s^{2} 2 p^{2}{ }^{1} S\right\rangle
\end{gathered}
$$

- Projection operator:

$$
\begin{equation*}
P\left|\Psi_{\mu}\right\rangle=\left|\Phi_{\mu}\right\rangle \tag{4}
\end{equation*}
$$

- Wave operator:

Effective operator

- Wave function:

Model space $\left(L_{P}\right)$ and orthogonal space $\left(L_{Q}\right)$
$L_{P} \rightarrow$ all functions associated with one or several configurations
Example: Be:

$$
\begin{gathered}
\left|\Psi_{\mu}\right\rangle=a\left|1 s^{2} 2 s^{2}{ }^{1} S\right\rangle+b\left|1 s^{2} 2 p^{2}{ }^{1} S\right\rangle+\ldots \\
L_{P}: 1 s^{2} 2 s^{2}, 1 s^{2} 2 p^{2}\left({ }^{1} S\right) \\
\left|\Phi_{\mu}\right\rangle=a\left|1 s^{2} 2 s^{2}{ }^{1} S\right\rangle+b\left|1 s^{2} 2 p^{2}{ }^{1} S\right\rangle
\end{gathered}
$$

- Projection operator:

$$
\begin{equation*}
P\left|\Psi_{\mu}\right\rangle=\left|\Phi_{\mu}\right\rangle \tag{4}
\end{equation*}
$$

- Wave operator:

$$
\begin{equation*}
\Omega\left|\Phi_{\mu}\right\rangle=\left|\Psi_{\mu}\right\rangle \tag{5}
\end{equation*}
$$

Effective operator

Schrödinger (or Dirac) equation,

$$
\begin{equation*}
H\left|\Psi_{\mu}\right\rangle=E_{\mu}\left|\Psi_{\mu}\right\rangle \tag{6}
\end{equation*}
$$

replacing $\left|\Psi_{\mu}\right\rangle=\Omega\left|\Phi_{\mu}\right\rangle$ and operating on the left with $P_{\text {, }}$

$$
\begin{equation*}
P H \Omega\left|\Phi_{\mu}\right\rangle=E_{\mu}\left|\Phi_{\mu}\right\rangle \tag{7}
\end{equation*}
$$

Effective Hamiltonian

$$
\begin{equation*}
\tilde{H}\left|\Phi_{\mu}\right\rangle=E_{\mu}\left|\Phi_{\mu}\right\rangle \tag{8}
\end{equation*}
$$

The effective Hamiltonian acting on the model wave function gives the exact energy of the μ state.
\rightarrow By diagonalizing \tilde{H} we obtain the electronic state energies E_{μ} and the model functions Φ_{μ}

Effective operator

Schrödinger (or Dirac) equation,

$$
\begin{equation*}
H\left|\Psi_{\mu}\right\rangle=E_{\mu}\left|\Psi_{\mu}\right\rangle \tag{6}
\end{equation*}
$$

replacing $\left|\Psi_{\mu}\right\rangle=\Omega\left|\Phi_{\mu}\right\rangle$ and operating on the left with P,

$$
\begin{equation*}
P H \Omega\left|\Phi_{\mu}\right\rangle=E_{\mu}\left|\Phi_{\mu}\right\rangle \tag{7}
\end{equation*}
$$

Effective Hamiltonian

$$
\begin{equation*}
\tilde{H}\left|\Phi_{\mu}\right\rangle=E_{\mu}\left|\Phi_{\mu}\right\rangle \tag{8}
\end{equation*}
$$

The effective Hamiltonian acting on the model wave function gives the exact energy of the μ state.
\rightarrow By diagonalizing \tilde{H} we obtain the electronic state energies E_{μ} and the model functions Φ_{μ}

Find the wave operator \rightarrow

Effective operator

Schrödinger (or Dirac) equation,

$$
\begin{equation*}
H\left|\Psi_{\mu}\right\rangle=E_{\mu}\left|\Psi_{\mu}\right\rangle \tag{6}
\end{equation*}
$$

replacing $\left|\Psi_{\mu}\right\rangle=\Omega\left|\Phi_{\mu}\right\rangle$ and operating on the left with P,

$$
\begin{equation*}
P H \Omega\left|\Phi_{\mu}\right\rangle=E_{\mu}\left|\Phi_{\mu}\right\rangle \tag{7}
\end{equation*}
$$

Effective Hamiltonian

$$
\begin{equation*}
\tilde{H}\left|\Phi_{\mu}\right\rangle=E_{\mu}\left|\Phi_{\mu}\right\rangle \tag{8}
\end{equation*}
$$

The effective Hamiltonian acting on the model wave function gives the exact energy of the μ state.
\rightarrow By diagonalizing \tilde{H} we obtain the electronic state energies E_{μ} and the model functions Φ_{μ}

Effective operator

Schrödinger (or Dirac) equation,

$$
\begin{equation*}
H\left|\Psi_{\mu}\right\rangle=E_{\mu}\left|\Psi_{\mu}\right\rangle \tag{6}
\end{equation*}
$$

replacing $\left|\Psi_{\mu}\right\rangle=\Omega\left|\Phi_{\mu}\right\rangle$ and operating on the left with P,

$$
\begin{equation*}
P H \Omega\left|\Phi_{\mu}\right\rangle=E_{\mu}\left|\Phi_{\mu}\right\rangle \tag{7}
\end{equation*}
$$

Effective Hamiltonian

$$
\begin{equation*}
\tilde{H}\left|\Phi_{\mu}\right\rangle=E_{\mu}\left|\Phi_{\mu}\right\rangle \tag{8}
\end{equation*}
$$

The effective Hamiltonian acting on the model wave function gives the exact energy of the μ state.
\rightarrow By diagonalizing \tilde{H} we obtain the electronic state energies E_{μ} and the model functions Φ_{μ}

Derivation of the generalized Bloch equation

$$
\begin{gather*}
H\left|\Psi_{\mu}\right\rangle=E_{a}\left|\Psi_{\mu}\right\rangle \tag{9}\\
\left(E_{a}-H_{0}\right)\left|\Psi_{\mu}\right\rangle=V\left|\Psi_{\mu}\right\rangle \tag{10}
\end{gather*}
$$

operating on the left with P

$$
\begin{equation*}
\left(E_{a}-H_{0}\right)\left|\Phi_{\mu}\right\rangle=P V\left|\Psi_{\mu}\right\rangle \tag{11}
\end{equation*}
$$

and operating now with Ω

$$
\begin{equation*}
E_{a}\left|\Psi_{\mu}\right\rangle-\Omega H_{0}\left|\Phi_{\mu}\right\rangle=\Omega P V\left|\Psi_{\mu}\right\rangle \tag{12}
\end{equation*}
$$

and rearranging,

$$
\begin{align*}
H\left|\Psi_{\mu}\right\rangle-\Omega H_{0}\left|\Phi_{\mu}\right\rangle & =\Omega P V\left|\Psi_{\mu}\right\rangle \\
\left(H_{0}+V\right) \Omega\left|\Phi_{\mu}\right\rangle-\Omega H_{0}\left|\Phi_{\mu}\right\rangle & =\Omega P V\left|\Psi_{\mu}\right\rangle \tag{13}\\
H_{0} \Omega\left|\Phi_{\mu}\right\rangle-\Omega H_{0}\left|\Phi_{\mu}\right\rangle & =-V \Omega\left|\Phi_{\mu}\right\rangle+\Omega P V \Omega\left|\Phi_{\mu}\right\rangle
\end{align*}
$$

Therefore,

$$
\begin{equation*}
\left[\Omega, H_{0}\right] P=(V \Omega-\Omega P V \Omega) P \tag{14}
\end{equation*}
$$

Coupled-cluster equation

$$
\begin{equation*}
\left[\Omega, H^{0}\right] P=(V \Omega-\Omega P V \Omega) P \tag{15}
\end{equation*}
$$

Expanding the wave operator in n-body parts,

$$
\begin{equation*}
\Omega=1+\Omega_{1}+\Omega_{2}+\ldots \tag{16}
\end{equation*}
$$

\rightarrow Solving the non-perturbative equations self-consistently is equivalent to summing the corresponding terms in the perturbation expansion to all orders

Exponential ansatz ${ }^{2}$

$$
\begin{equation*}
T=T_{1}+T_{2}+\ldots \tag{18}
\end{equation*}
$$

\checkmark Truncating T after the 2-body term, 4-body terms are included in $\Omega\left(T^{2}\right)$

The brackets represent the normal ordered operators: annihilation operators moved to the right of creation operators.

Coupled-cluster equation

$$
\begin{equation*}
\left[\Omega, H^{0}\right] P=(V \Omega-\Omega P V \Omega) P \tag{15}
\end{equation*}
$$

Expanding the wave operator in n-body parts,

$$
\begin{equation*}
\Omega=1+\Omega_{1}+\Omega_{2}+\ldots \tag{16}
\end{equation*}
$$

\rightarrow Solving the non-perturbative equations self-consistently is equivalent to summing the corresponding terms in the perturbation expansion to all orders

${ }^{2}$ The brackets represent the normal ordered operators: annihilation operators moved to the right of creation operators.

Coupled-cluster equation

$$
\begin{equation*}
\left[\Omega, H^{0}\right] P=(V \Omega-\Omega P V \Omega) P \tag{15}
\end{equation*}
$$

Expanding the wave operator in n-body parts,

$$
\begin{equation*}
\Omega=1+\Omega_{1}+\Omega_{2}+\ldots \tag{16}
\end{equation*}
$$

\rightarrow Solving the non-perturbative equations self-consistently is equivalent to summing the corresponding terms in the perturbation expansion to all orders

$$
\text { Exponential ansatz }{ }^{2}
$$

$$
\begin{gather*}
\Omega=\left\{e^{T}\right\}=1+T+\frac{1}{2}\left\{T^{2}\right\}+\ldots=\sum_{n}^{\infty} \frac{1}{n!}\left\{T^{n}\right\} \tag{17}\\
T=T_{1}+T_{2}+\ldots \tag{18}
\end{gather*}
$$

\checkmark Truncating T after the 2-body term, 4-body terms are included in $\Omega\left(T^{2}\right)$

[^1]
Coupled-cluster equation

$$
\begin{equation*}
\left[\Omega, H^{0}\right] P=(V \Omega-\Omega P V \Omega) P \tag{15}
\end{equation*}
$$

Expanding the wave operator in n-body parts,

$$
\begin{equation*}
\Omega=1+\Omega_{1}+\Omega_{2}+\ldots \tag{16}
\end{equation*}
$$

\rightarrow Solving the non-perturbative equations self-consistently is equivalent to summing the corresponding terms in the perturbation expansion to all orders

> Exponential ansatz²

$$
\begin{gather*}
\Omega=\left\{e^{T}\right\}=1+T+\frac{1}{2}\left\{T^{2}\right\}+\ldots=\sum_{n}^{\infty} \frac{1}{n!}\left\{T^{n}\right\} \tag{17}\\
T=T_{1}+T_{2}+\ldots \tag{18}
\end{gather*}
$$

\checkmark Truncating T after the 2-body term, 4-body terms are included in $\Omega\left(T^{2}\right)$

[^2]
Model space

Including all determinants obtained by distributing h holes over the active hole states and p particles over active particle states in all possible ways \rightarrow Complete model space

Model space

Including all determinants obtained by distributing h holes over the active hole states and p particles over active particle states in all possible ways \rightarrow Complete model space

Model space

Including all determinants obtained by distributing h holes over the active hole states and p particles over active particle states in all possible ways \rightarrow Complete model space

Model space

Including all determinants obtained by distributing h holes over the active hole states and p particles over active particle states in all possible ways \rightarrow Complete model space

Fock-space coupled-cluster sectors

\}

Fock-space coupled-cluster sectors

Fock-space coupled-cluster sectors

Fock-space coupled-cluster sectors

\}

Fock-space coupled-cluster sectors

Fock-space coupled-cluster sectors

- Model space

$$
\begin{equation*}
L_{P}=L_{P}^{00} \oplus L_{P}^{10} \oplus L_{P}^{01} \oplus L_{P}^{11} \oplus \ldots \tag{19}
\end{equation*}
$$

- Projector operator

$$
\begin{gather*}
P=P^{00}+P^{10}+P^{01}+P^{11}+\ldots \tag{20}\\
Q^{h p}=1-P^{h p} \tag{21}
\end{gather*}
$$

- Effective Hamiltonian

$$
\begin{equation*}
\tilde{H}=\tilde{H}^{00}+\tilde{H}^{10}+\tilde{H}^{01}+\tilde{H}^{11}+\ldots \tag{22}
\end{equation*}
$$

diagonalizing the $\tilde{H}^{h p}$ matrices in each (h, p) sector we obtain the corresponding electronic state energies and model functions

- Cluster operator

$$
\begin{equation*}
T=T^{00}+T^{10}+T^{01}+T^{11}+\ldots \tag{23}
\end{equation*}
$$

Fock-space coupled-cluster sectors

- Model space

$$
\begin{equation*}
L_{P}=L_{P}^{00} \oplus L_{P}^{10} \oplus L_{P}^{01} \oplus L_{P}^{11} \oplus \ldots \tag{19}
\end{equation*}
$$

- Projector operator

$$
\begin{gather*}
P=P^{00}+P^{10}+P^{01}+P^{11}+\ldots \tag{20}\\
Q^{h p}=1-P^{h p} \tag{21}
\end{gather*}
$$

- Effective Hamiltonian

$$
\begin{equation*}
\tilde{H}=\tilde{H}^{00}+\tilde{H}^{10}+\tilde{H}^{01}+\tilde{H}^{11}+\ldots \tag{22}
\end{equation*}
$$

diagonalizing the $\tilde{H}^{h p}$ matrices in each (h, p) sector we obtain the corresponding electronic state energies and model functions

- Cluster operator

$$
T=T^{00}+T^{10}+T^{01}+T^{11}+\ldots
$$

Fock-space coupled-cluster sectors

- Model space

$$
\begin{equation*}
L_{P}=L_{P}^{00} \oplus L_{P}^{10} \oplus L_{P}^{01} \oplus L_{P}^{11} \oplus \ldots \tag{19}
\end{equation*}
$$

- Projector operator

$$
\begin{gather*}
P=P^{00}+P^{10}+P^{01}+P^{11}+\ldots \tag{20}\\
Q^{h p}=1-P^{h p} \tag{21}
\end{gather*}
$$

- Effective Hamiltonian

$$
\begin{equation*}
\tilde{H}=\tilde{H}^{00}+\tilde{H}^{10}+\tilde{H}^{01}+\tilde{H}^{11}+\ldots \tag{22}
\end{equation*}
$$

diagonalizing the $\tilde{H}^{h p}$ matrices in each (h, p) sector we obtain the corresponding electronic state energies and model functions

- Cluster operator

Fock-space coupled-cluster sectors

- Model space

$$
\begin{equation*}
L_{P}=L_{P}^{00} \oplus L_{P}^{10} \oplus L_{P}^{01} \oplus L_{P}^{11} \oplus \ldots \tag{19}
\end{equation*}
$$

- Projector operator

$$
\begin{gather*}
P=P^{00}+P^{10}+P^{01}+P^{11}+\ldots \tag{20}\\
Q^{h p}=1-P^{h p} \tag{21}
\end{gather*}
$$

- Effective Hamiltonian

$$
\begin{equation*}
\tilde{H}=\tilde{H}^{00}+\tilde{H}^{10}+\tilde{H}^{01}+\tilde{H}^{11}+\ldots \tag{22}
\end{equation*}
$$

diagonalizing the $\tilde{H}^{h p}$ matrices in each (h, p) sector we obtain the corresponding electronic state energies and model functions

- Cluster operator

$$
\begin{equation*}
T=T^{00}+T^{10}+T^{01}+T^{11}+\ldots \tag{23}
\end{equation*}
$$

Fock-space coupled-cluster equation

$$
\begin{equation*}
\left[T_{n}^{h p}, H_{0}\right] P^{h p}=\left(V \Omega-\Omega P^{h p} V \Omega\right)_{\mathrm{n}, \text { conn }} P^{h p} \tag{24}
\end{equation*}
$$

\checkmark Partial decoupling according to the subsystem embedding condition ${ }^{3}$
\checkmark Linked diagram theorem \rightarrow size consistent (for energy and wave function) ${ }^{4}$

[^3]
Fock-space coupled-cluster equation

$$
\begin{equation*}
\left[T_{n}^{h p}, H_{0}\right] P^{h p}=\left(V \Omega-\Omega P^{h p} V \Omega\right)_{\mathrm{n}, \text { conn }} P^{h p} \tag{24}
\end{equation*}
$$

\checkmark Partial decoupling according to the subsystem embedding condition ${ }^{3}$
\checkmark Linked diagram theorem \rightarrow size consistent (for energy and wave function) ${ }^{4}$

[^4]
Second quantized operators

- Electronic Hamiltonian

$$
\begin{equation*}
H=-\frac{1}{2} \sum_{i=1}^{N} \nabla_{i}^{2}-\sum_{i=1}^{N} \frac{Z}{r_{i}}+\sum_{i<j}^{N} \frac{1}{r_{i j}} \tag{25}
\end{equation*}
$$

$$
H=H_{0}+V
$$

- Second quantization

$$
\begin{gather*}
H_{0}=\sum_{i} a_{i}^{\dagger} a_{i} \varepsilon_{i} \tag{28}\\
V=-\sum_{i j} a_{i}^{\dagger} a_{j}\langle i| u|j\rangle+\frac{1}{2} \sum_{i j k l} a_{i}^{\dagger} a_{j}^{\dagger} a_{l} a_{k}\langle i j| \frac{1}{r_{12}}|k l\rangle
\end{gather*}
$$

Second quantized operators

- Electronic Hamiltonian

$$
\begin{gather*}
H=-\frac{1}{2} \sum_{i=1}^{N} \nabla_{i}^{2}-\sum_{i=1}^{N} \frac{Z}{r_{i}}+\sum_{i<j}^{N} \frac{1}{r_{i j}} \tag{25}\\
H=H_{0}+V \tag{26}\\
H_{0}=\sum_{i=1}^{N}\left(-\frac{1}{2} \nabla_{i}^{2}-\frac{Z}{r_{i}}+u\left(r_{i}\right)\right) \quad V=\sum_{i<j}^{N} \frac{1}{r_{i j}}-\sum_{i=1}^{N} u\left(r_{i}\right) \tag{27}
\end{gather*}
$$

[^5]

Second quantized operators

- Electronic Hamiltonian

$$
\begin{gather*}
H=-\frac{1}{2} \sum_{i=1}^{N} \nabla_{i}^{2}-\sum_{i=1}^{N} \frac{Z}{r_{i}}+\sum_{i<j}^{N} \frac{1}{r_{i j}} \tag{25}\\
H=H_{0}+V \tag{26}\\
H_{0}=\sum_{i=1}^{N}\left(-\frac{1}{2} \nabla_{i}^{2}-\frac{Z}{r_{i}}+u\left(r_{i}\right)\right) \quad V=\sum_{i<j}^{N} \frac{1}{r_{i j}}-\sum_{i=1}^{N} u\left(r_{i}\right) \tag{27}
\end{gather*}
$$

- Second quantization

$$
\begin{gather*}
H_{0}=\sum_{i} a_{i}^{\dagger} a_{i} \varepsilon_{i} \tag{28}\\
V=-\sum_{i j} a_{i}^{\dagger} a_{j}\langle i| u|j\rangle+\frac{1}{2} \sum_{i j k l} a_{i}^{\dagger} a_{j}^{\dagger} a_{l} a_{k}\langle i j| \frac{1}{r_{12}}|k l\rangle \tag{29}
\end{gather*}
$$

- Normal-ordered operators
- Zero-order Hamiltonian

$$
\begin{equation*}
H_{0}=\sum_{a}^{o c c} \varepsilon_{a}+\sum_{i}\left\{a_{i}^{\dagger} a_{i}\right\} \varepsilon_{i} \tag{30}
\end{equation*}
$$

- Perturbation

$$
\begin{align*}
& V=V_{0}+V_{1}+V_{2} \\
& V_{0}=\sum_{a}^{c o r e}\langle a|-u|a\rangle+\frac{1}{2} \sum_{a b}^{c o r e}\left(\langle a b| \frac{1}{r_{12}}|a b\rangle-\langle b a| \frac{1}{r_{12}}|a b\rangle\right) \\
& V_{1}=\sum_{i j}\left\{a_{i}^{\dagger} a_{j}\right\}\langle i| v|j\rangle \tag{31}\\
& \left.V_{2}=\sum_{i j k l}\left\{a_{i}^{\dagger} a_{j}^{\dagger} a_{\mid a_{k}}\right\}\langle i j| \frac{1}{r_{12}}|k|\right\rangle
\end{align*}
$$

- Cluster operator

$$
\begin{gather*}
T \equiv T_{1}+T_{2}+\ldots \tag{32}\\
T_{n}=\frac{1}{n!} \sum_{a_{1} \ldots a_{n}} \sum_{i_{1} \ldots i_{n}} t_{i_{1} \ldots i_{n}}^{a_{1} \ldots a_{n}}\left\{a_{i_{1}}^{\dagger} \ldots a_{i_{n}}^{\dagger} a_{a_{n}} \ldots a_{a_{1}}\right\} \tag{33}
\end{gather*}
$$

- Normal-ordered operators
- Zero-order Hamiltonian

$$
\begin{equation*}
H_{0}=\sum_{a}^{o c c} \varepsilon_{a}+\sum_{i}\left\{a_{i}^{\dagger} a_{i}\right\} \varepsilon_{i} \tag{30}
\end{equation*}
$$

- Perturbation

$$
\begin{aligned}
& V=V_{0}+V_{1}+V_{2} \\
& V_{0}=\sum_{a}^{c o r e}\langle a|-u|a\rangle+\frac{1}{2} \sum_{a b}^{c o r e}\left(\langle a b| \frac{1}{r_{12}}|a b\rangle-\langle b a| \frac{1}{r_{12}}|a b\rangle\right) \\
& V_{1}=\sum_{i j}\left\{a_{i}^{\dagger} a_{j}\right\}\langle i| v|j\rangle \\
& \left.V_{2}=\sum_{i j k l}\left\{a_{j}^{\dagger} a_{j}^{\dagger} a_{l} a_{k}\right\}\langle i j| \frac{1}{r_{12}}|k|\right\rangle
\end{aligned}
$$

- Cluster operator

$$
\begin{gather*}
T \equiv T_{1}+T_{2}+\ldots \tag{32}\\
T_{n}=\frac{1}{n!} \sum_{a_{1} \ldots a_{n}} \sum_{i_{1} \ldots i_{n}} t_{i_{1} \ldots i_{n}}^{a_{1} \ldots a_{n}}\left\{a_{i_{1}}^{\dagger} \ldots a_{i_{n}}^{\dagger} a_{a_{n}} \ldots a_{a_{1}}\right\} \tag{33}
\end{gather*}
$$

- Normal-ordered operators
- Zero-order Hamiltonian

$$
\begin{equation*}
H_{0}=\sum_{a}^{\mathrm{occ}} \varepsilon_{a}+\sum_{i}\left\{a_{i}^{\dagger} a_{i}\right\} \varepsilon_{i} \tag{30}
\end{equation*}
$$

- Perturbation

$$
\begin{align*}
& V=V_{0}+V_{1}+V_{2} \\
& V_{0}=\sum_{a}^{\text {core }}\langle a|-u|a\rangle+\frac{1}{2} \sum_{a b}^{\text {core }}\left(\langle a b| \frac{1}{r_{12}}|a b\rangle-\langle b a| \frac{1}{r_{12}}|a b\rangle\right) \\
& V_{1}=\sum_{i j}\left\{a_{i}^{\dagger} a_{j}\right\}\langle i| v|j\rangle \tag{31}\\
& V_{2}=\sum_{i j k l}\left\{a_{i}^{\dagger} a_{j}^{\dagger} a_{l} a_{k}\right\}\langle i j| \frac{1}{r_{12}}|k l\rangle
\end{align*}
$$

- Cluster operator

$$
T_{n}=\frac{1}{n!} \sum_{a_{1} \ldots a_{n}} \sum_{i_{1} \ldots i_{n}} t_{i_{1} \ldots i_{n}}^{a_{1} \ldots a_{n}}\left\{a_{i_{1}}^{\dagger} \ldots a_{i_{n}}^{\dagger} a_{a_{n}} \ldots a_{a_{1}}\right\}
$$

- Normal-ordered operators
- Zero-order Hamiltonian

$$
\begin{equation*}
H_{0}=\sum_{a}^{\mathrm{occ}} \varepsilon_{a}+\sum_{i}\left\{a_{i}^{\dagger} a_{i}\right\} \varepsilon_{i} \tag{30}
\end{equation*}
$$

- Perturbation

$$
\begin{align*}
& V=V_{0}+V_{1}+V_{2} \\
& V_{0}=\sum_{a}^{\text {core }}\langle a|-u|a\rangle+\frac{1}{2} \sum_{a b}^{\text {core }}\left(\langle a b| \frac{1}{r_{12}}|a b\rangle-\langle b a| \frac{1}{r_{12}}|a b\rangle\right) \\
& V_{1}=\sum_{i j}\left\{a_{i}^{\dagger} a_{j}\right\}\langle i| v|j\rangle \tag{31}\\
& V_{2}=\sum_{i j k l}\left\{a_{i}^{\dagger} a_{j}^{\dagger} a_{l} a_{k}\right\}\langle i j| \frac{1}{r_{12}}|k l\rangle
\end{align*}
$$

- Cluster operator

$$
\begin{gather*}
T \equiv T_{1}+T_{2}+\ldots \tag{32}\\
T_{n}=\frac{1}{n!} \sum_{a_{1} \ldots a_{n}} \sum_{i_{1} \ldots i_{n}} t_{i_{1} \ldots i_{n}}^{a_{1} \ldots a_{n}}\left\{a_{i_{1}}^{\dagger} \ldots a_{i_{n}}^{\dagger} a_{a_{n}} \ldots a_{a_{1}}\right\} \tag{33}
\end{gather*}
$$

Diagrammatic notation ${ }^{5}$

$$
\begin{aligned}
& V=V_{0}+V_{1}+V_{2}
\end{aligned}
$$

Diagrammatic notation ${ }^{5}$

$$
\begin{aligned}
& V=V_{0}+V_{1}+V_{2}
\end{aligned}
$$

$$
\begin{aligned}
& T=T_{1}+T_{2}+T_{3}+\ldots \\
& \underset{+-}{V} \underset{++--}{V V++---}
\end{aligned}
$$

Amplitude equations

$$
\begin{equation*}
\left[T_{n}, H^{0}\right]=(V \Omega-\Omega P V \Omega)_{\mathrm{n}, \mathrm{conn}} \tag{34}
\end{equation*}
$$

- I.h.s.

$$
\begin{equation*}
\sum_{p q}\left\{a_{p}^{\dagger} a_{q}\right\}\left(\varepsilon_{q}-\varepsilon_{p}\right) t_{q}^{p}+\frac{1}{2} \sum_{p q s r}\left\{a_{p}^{\dagger} a_{q}^{\dagger} a_{s} a_{r}\right\}\left(\varepsilon_{s}+\varepsilon_{r}-\varepsilon_{p}-\varepsilon_{q}\right) t_{r s}^{p q}+\ldots \tag{35}
\end{equation*}
$$

Amplitude equations

$$
\begin{equation*}
\left[T_{n}, H^{0}\right]=(V \Omega-\Omega P V \Omega)_{\mathrm{n}, \mathrm{conn}} \tag{34}
\end{equation*}
$$

- I.h.s.

$$
\begin{equation*}
\sum_{p q}\left\{a_{p}^{\dagger} a_{q}\right\}\left(\varepsilon_{q}-\varepsilon_{p}\right) t_{q}^{p}+\frac{1}{2} \sum_{p q s r}\left\{a_{p}^{\dagger} a_{q}^{\dagger} a_{s} a_{r}\right\}\left(\varepsilon_{s}+\varepsilon_{r}-\varepsilon_{p}-\varepsilon_{q}\right) t_{r s}^{p q}+\ldots \tag{35}
\end{equation*}
$$

- r.h.s. \rightarrow^{6} Wick's theorem for operator products

(c)
(d)
(e)
(f)

Amplitude equations

$$
\begin{equation*}
\left[T_{n}, H^{0}\right]=(V \Omega-\Omega P V \Omega)_{\mathrm{n}, \mathrm{conn}} \tag{34}
\end{equation*}
$$

- I.h.s.

$$
\begin{equation*}
\sum_{p q}\left\{a_{p}^{\dagger} a_{q}\right\}\left(\varepsilon_{q}-\varepsilon_{p}\right) t_{q}^{p}+\frac{1}{2} \sum_{p q s r}\left\{a_{p}^{\dagger} a_{q}^{\dagger} a_{s} a_{r}\right\}\left(\varepsilon_{s}+\varepsilon_{r}-\varepsilon_{p}-\varepsilon_{q}\right) t_{r s}^{p q}+\ldots \tag{35}
\end{equation*}
$$

- r.h.s. ${ }^{6}$ Goldstone diagrams
${ }^{6}$ Single particle (in CCSD). Figure from Shavitt, I., \& Bartlett, R. J. (2009). Cambridge university press.

Amplitude equations

$$
\begin{equation*}
\left[T_{n}, H^{0}\right]=(V \Omega-\Omega P V \Omega)_{\mathrm{n}, \mathrm{conn}} \tag{34}
\end{equation*}
$$

- I.h.s.

$$
\begin{equation*}
\sum_{p q}\left\{a_{p}^{\dagger} a_{q}\right\}\left(\varepsilon_{q}-\varepsilon_{p}\right) t_{q}^{p}+\frac{1}{2} \sum_{p q s r}\left\{a_{p}^{\dagger} a_{q}^{\dagger} a_{s} a_{r}\right\}\left(\varepsilon_{s}+\varepsilon_{r}-\varepsilon_{p}-\varepsilon_{q}\right) t_{r s}^{p q}+\ldots \tag{35}
\end{equation*}
$$

- r.h.s. ${ }^{6}$ Goldstone diagrams

$$
\begin{aligned}
& f_{a i}+\sum_{k c} f_{k c} t_{i k}^{a c}+\frac{1}{2} \sum_{k c d}\langle a k \| c d\rangle t_{i k}^{c d}-\frac{1}{2} \sum_{k l c}\langle k l \| i c\rangle t_{k l}^{a c}+\sum_{c} f_{a c} t_{i}^{c} \\
& -\sum_{k} f_{k i} t_{k}^{a}+\sum_{k c}\langle a k \| i c\rangle t_{k}^{c}-\frac{1}{2} \sum_{k l c d}\langle k l \| c d\rangle t_{i}^{c} t_{k l}^{a d}-\frac{1}{2} \sum_{k l c d}\langle k l \| c d\rangle t_{k}^{a} t_{i l}^{c d} \\
& +\sum_{k l c d}\langle k l \| c d\rangle t_{k}^{c} t_{l i}^{d a}-\sum_{k c} f_{k c} t_{i}^{c} t_{k}^{a}+\sum_{k c d}\langle a k \| c d\rangle t_{i}^{c} t_{k}^{d} \\
& \left.-\sum_{k l c}\langle k l \| i c\rangle t_{k}^{a} t_{l}^{c}-\sum_{k l c d}\langle k l \| c d\rangle t_{i}^{c} t_{k}^{a} t_{l}^{d}=0 \quad \quad \text { (for all } i, a\right) .
\end{aligned}
$$

\rightarrow identifying the n-body terms on the I.h.s. and r.h.s, we can write down a series of coupled equations that can be solved iteratively to find the cluster amplitudes.

[^6]- Higher sectors ${ }^{7}$

- Fock-space from single-reference coupled-cluster diagrams ${ }^{8}$

[^7]- Higher sectors ${ }^{7}$

- Fock-space from single-reference coupled-cluster diagrams ${ }^{8}$

[^8]
Coulomb matrix elements

Considering the Coulomb interaction, separating radial ${ }^{9}$ and angular variables,

$$
\begin{equation*}
\langle a b| \frac{1}{r_{12}}|c d\rangle=\sum_{k}(-1)^{k} \hat{k} R_{\tilde{A} \tilde{B} \tilde{C} \tilde{D}}^{k}\langle a b|\left\{\vec{C}^{k}(1) \vec{C}^{k}(2)\right\}_{0}^{0}|c d\rangle . \tag{36}
\end{equation*}
$$

Coupling $a b$ and $c d$,

${ }^{9} R_{\tilde{A} \tilde{B} \tilde{C} \tilde{D}}^{k}$ represents the Slater integral. The tilde ${ }^{\sim}$ indicates no dependency on the projection of the angular momentum (m quantum number).

Coulomb matrix elements

Considering the Coulomb interaction, separating radial ${ }^{9}$ and angular variables,

$$
\begin{equation*}
\langle a b| \frac{1}{r_{12}}|c d\rangle=\sum_{k}(-1)^{k} \hat{k} R_{\tilde{A} \tilde{B} \tilde{C} \tilde{D}}^{k}\langle a b|\left\{\vec{C}^{k}(1) \vec{C}^{k}(2)\right\}_{0}^{0}|c d\rangle . \tag{36}
\end{equation*}
$$

Coupling $a b$ and $c d$,

$$
\begin{align*}
& \sum_{J_{a b}, J_{c d}} \sum_{M_{a b}, M_{c d}}\left(\begin{array}{lll}
j_{a} & j_{b} & J_{a b} \\
m_{a} & m_{b}-M_{a b}
\end{array}\right)\left(\begin{array}{lll}
j_{c} & j_{d} & J_{c d} \\
m_{c} & m_{d}-M_{c d}
\end{array}\right)(-1)^{-j_{a}+j_{b}-M_{a b}}(-1)^{-j_{c}+j_{d}-M_{c d}} \hat{J}_{a b} \hat{J}_{c d} \\
& \times\left\langle(a b) J_{a b}\right|\left\{\vec{C}^{k}(1) \vec{C}^{k}(2)\right\}_{0}^{0}\left|(c d) J_{c d}\right\rangle \tag{37}
\end{align*}
$$

[^9]
Coulomb matrix elements

Using the Wigner-Eckart theorem,

$$
\begin{align*}
& \left\langle(a b) J_{a b}\right|\left\{\vec{C}^{k}(1) \vec{C}^{k}(2)\right\}_{0}^{0}\left|(c d) J_{c d}\right\rangle \\
& =\left(\begin{array}{ccc}
J_{a b} & 0 & J_{c d} \\
-M_{a b} & 0 & M_{c d}
\end{array}\right)(-1)^{J_{a b}-M_{a b}}\left\langle\left(j_{a}, j_{b}\right) J_{a b}\left\|\left\{\vec{C}^{k}(1) \vec{C}^{k}(2)\right\}^{0}\right\|\left(j_{c}, j_{d}\right) J_{c d}\right\rangle \tag{38}
\end{align*}
$$

Filling in the known reduced matrix element and rearranging, ${ }^{10}$

Which can be expressed as,

\rightarrow The integral is split in 3 j symbol and reduced matrix element. The reduced matrix element needs to be calculated only once.

$$
(-1)^{f f}=(-1)^{-j_{a}+2 j_{b}+j_{d}-2 M+J+k+j_{a}}+1 / 2+j_{b}+1 / 2
$$

Coulomb matrix elements

Using the Wigner-Eckart theorem,

$$
\begin{align*}
& \left\langle(a b) J_{a b}\right|\left\{\vec{C}^{k}(1) \vec{C}^{k}(2)\right\}_{0}^{0}\left|(c d) J_{c d}\right\rangle \\
& =\left(\begin{array}{ccc}
J_{a b} & 0 & J_{c d} \\
-M_{a b} & 0 & M_{c d}
\end{array}\right)(-1)^{J_{a b}-M_{a b}}\left\langle\left(j_{a}, j_{b}\right) J_{a b}\left\|\left\{\vec{C}^{k}(1) \vec{C}^{k}(2)\right\}^{0}\right\|\left(j_{c}, j_{d}\right) J_{c d}\right\rangle \tag{38}
\end{align*}
$$

Filling in the known reduced matrix element and rearranging, ${ }^{10}$

$$
\left.\begin{array}{rl}
\langle a b| \frac{1}{r_{12}}|c d\rangle & =\sum_{k}(-1)^{k} R_{\tilde{A} \tilde{B} \tilde{C} \tilde{D}}^{k} \sum_{J, M}\left(\begin{array}{ccc}
j_{a} & j_{b} & J \\
m_{a} & m_{b} & -M
\end{array}\right)\left(\begin{array}{ccc}
j_{c} & j_{d} & J \\
m_{c} & m_{d} & -M
\end{array}\right)(-1)^{f f} \tag{39}\\
& \times \hat{j_{j}} \hat{j_{c}} \hat{j_{c}} \hat{j}_{b} \hat{j}_{d} \\
j_{a} k & j_{c} \\
\frac{1}{2} & 0
\end{array}-\frac{1}{2}\right)\left(\begin{array}{cccc}
j_{b} & k & j_{d} \\
\frac{1}{2} & 0 & -\frac{1}{2}
\end{array}\right)\left\{\begin{array}{lll}
j_{a} & j_{c} & k \\
j_{d} & j_{b} & J
\end{array}\right\}, ~ l
$$

Which can be expressed as,
\rightarrow The integral is split in 3 j symbol and reduced matrix element. The reduced matrix
element needs to be calculated only once.

$$
{ }^{10}(-1)^{f f}=(-1)^{-j_{a}+2 j_{b}+j_{d}-2 M+J+k+j_{a}}+1 / 2+j_{b}+1 / 2
$$

Coulomb matrix elements

Using the Wigner-Eckart theorem,

$$
\begin{align*}
& \left\langle(a b) J_{a b}\right|\left\{\vec{C}^{k}(1) \vec{C}^{k}(2)\right\}_{0}^{0}\left|(c d) J_{c d}\right\rangle \\
& =\left(\begin{array}{ccc}
J_{a b} & 0 & J_{c d} \\
-M_{a b} & 0 & M_{c d}
\end{array}\right)(-1)^{J_{a b}-M_{a b}}\left\langle\left(j_{a}, j_{b}\right) J_{a b}\left\|\left\{\vec{C}^{k}(1) \vec{C}^{k}(2)\right\}^{0}\right\|\left(j_{c}, j_{d}\right) J_{c d}\right\rangle \tag{38}
\end{align*}
$$

Filling in the known reduced matrix element and rearranging, ${ }^{10}$

$$
\left.\begin{array}{rl}
\langle a b| \frac{1}{r_{12}}|c d\rangle & =\sum_{k}(-1)^{k} R_{\tilde{A} \tilde{B} \tilde{C} \tilde{D}}^{k} \sum_{J, M}\left(\begin{array}{ccc}
j_{a} & j_{b} & J \\
m_{a} & m_{b} & -M
\end{array}\right)\left(\begin{array}{ccc}
j_{c} & j_{d} & J \\
m_{c} & m_{d} & -M
\end{array}\right)(-1)^{f f} \tag{39}\\
& \times \hat{j_{j}} \hat{j_{c}} \hat{j_{c}} \hat{j_{b}} \hat{j}_{d} \\
j_{a} k & j_{c} \\
\frac{1}{2} & 0
\end{array}-\frac{1}{2}\right)\left(\begin{array}{cccc}
j_{b} & k & j_{d} \\
\frac{1}{2} & 0 & -\frac{1}{2}
\end{array}\right)\left\{\begin{array}{lll}
j_{a} & j_{c} & k \\
j_{d} & j_{b} & J
\end{array}\right\}, ~ l
$$

Which can be expressed as,

$$
\langle a b| \frac{1}{r_{12}}|c d\rangle=\sum_{J, M}\left(\begin{array}{ccc}
j_{a} & j_{b} & J \tag{40}\\
m_{a} & m_{b} & -M
\end{array}\right)\left(\begin{array}{ccc}
j_{c} & j_{d} & J \\
m_{c} & m_{d} & -M
\end{array}\right) X_{\tilde{a} \tilde{b} \tilde{c} \tilde{d}}^{J}
$$

\rightarrow The integral is split in 3 j symbol and reduced matrix element. The reduced matrix element needs to be calculated only once.

$$
{ }^{10}(-1)^{f f}=(-1)^{-j_{a}+2 j_{b}+j_{d}-2 M+J+k+j_{a}+1 / 2+j_{b}+1 / 2}
$$

Angular reduction for tensors products

$$
\begin{gather*}
\langle a b||c d\rangle t_{k l i j}= \\
\sum_{J J^{\prime} M M^{\prime}}\left(\begin{array}{ccc}
j_{a} & j_{b} & J \\
m_{a} & m_{b} & -M
\end{array}\right)\left(\begin{array}{ccc}
j_{c} & j_{d} & J \\
m_{c} & m_{d} & -M
\end{array}\right)\left(\begin{array}{ccc}
j_{k} & j_{l} & J^{\prime} \\
m_{k} & m_{l} & -M^{\prime}
\end{array}\right)\left(\begin{array}{ccc}
j_{i} & j_{j} & J^{\prime} \\
m_{i} & m_{j} & -M^{\prime}
\end{array}\right) \bar{X}_{\tilde{a} \tilde{b} \tilde{c} \tilde{d}}^{J} \bar{\tau}_{\tilde{k} \tilde{l} \tilde{j} \tilde{j}}^{J^{\prime}} \tag{41}
\end{gather*}
$$

\rightarrow Making use of graph-theory-based angular momentum reduction ${ }^{11}$ the $3-j$ symbols product can be reduced to a factor that can be calculated analytically.

Angular reduction for tensors products

$$
\begin{align*}
& \langle a b||c d\rangle\rangle_{k l i j}= \\
& \sum_{J^{\prime} M M^{\prime}}\left(\begin{array}{ccc}
j_{a} & j_{b} & J \\
m_{a} & m_{b} & -M
\end{array}\right)\left(\begin{array}{ccc}
j_{c} & j_{d} & J \\
m_{c} & m_{d} & -M
\end{array}\right)\left(\begin{array}{ccc}
j_{k} & j_{l} & J^{\prime} \\
m_{k} & m_{l} & -M^{\prime}
\end{array}\right)\left(\begin{array}{ccc}
j_{i} & j_{j} & J^{\prime} \\
m_{i} & m_{j} & -M^{\prime}
\end{array}\right) \bar{X}_{\tilde{a} \tilde{b} \tilde{c} \tilde{d}}^{J} \overline{\tilde{E}_{\tilde{k}}^{\prime} l i j} \tag{41}
\end{align*}
$$

\rightarrow Making use of graph-theory-based angular momentum reduction ${ }^{11}$ the 3-j symbols product can be reduced to a factor that can be calculated analytically.

Reduced amplitude equations

After the angular momentum reduction, the amplitude equations can be simplified

$$
\begin{align*}
\left(\varepsilon_{a}-\varepsilon_{i}\right) t_{i}^{a} & =\langle a| v|i\rangle+\sum_{k c}\langle k| v|c\rangle t_{i k}^{a c}+\ldots+\sum_{k l c d}\langle k\| \| i c\rangle t_{k l}^{a c}+\ldots \tag{42}\\
& \sim \ldots+\sum_{k l c d}[\text { Angularfactor }] \bar{X}_{\tilde{k} \widetilde{l} \tilde{c}} \bar{t}_{\tilde{k} \tilde{c} \tilde{\tilde{l}}}+\ldots
\end{align*}
$$

Summary

- The energies of the states can be obtained by diagonalizing the effective Hamiltonian. The Bloch equation can be solved to find the wave operator
- The Fock-space coupled-cluster method can be used to study electronic states with a different number of electrons. Its equations can be obtained from the single-reference coupled-cluster ones
- The use of angular momentum theory and spherical symmetry reduce the coupled-cluster amplitude equations

Outlook

- Derive the coupled-cluster amplitude equations in the CCSDT approximation ($T=T_{1}+T_{2}+T_{3}$) for $\operatorname{FSCC}(0,0)$ and higher sectors
- Reduce the coupled-cluster amplitude equations using angular momentum graph theory
- Implement the reduced coupled-cluster amplitude equations to calculate electronic energies in atoms with a higher precision and a broader applicability

Summary

- The energies of the states can be obtained by diagonalizing the effective Hamiltonian. The Bloch equation can be solved to find the wave operator
- The Fock-space coupled-cluster method can be used to study electronic states with a different number of electrons. Its equations can be obtained from the single-reference coupled-cluster ones
- The use of angular momentum theory and spherical symmetry reduce the coupled-cluster amplitude equations

Outlook

- Derive the coupled-cluster amplitude equations in the CCSDT approximation ($T=T_{1}+T_{2}+T_{3}$) for $\operatorname{FSCC}(0,0)$ and higher sectors
- Reduce the coupled-cluster amplitude equations using angular momentum graph theory
- Implement the reduced coupled-cluster amplitude equations to calculate electronic energies in atoms with a higher precision and a broader applicability

Summary

- The energies of the states can be obtained by diagonalizing the effective Hamiltonian. The Bloch equation can be solved to find the wave operator
- The Fock-space coupled-cluster method can be used to study electronic states with a different number of electrons. Its equations can be obtained from the single-reference coupled-cluster ones
- The use of angular momentum theory and spherical symmetry reduce the coupled-cluster amplitude equations
- Derive the coupled-cluster amplitude equations in the CCSDT approximation ($T=T_{1}+T_{2}+T_{3}$) for $\operatorname{FSCC}(0,0)$ and higher sectors
- Reduce the coupled-cluster amplitude equations using angular momentum graph theory
- Implement the reduced coupled-cluster amplitude equations to calculate electronic energies in atoms with a higher precision and a broader applicability

Summary

- The energies of the states can be obtained by diagonalizing the effective Hamiltonian. The Bloch equation can be solved to find the wave operator
- The Fock-space coupled-cluster method can be used to study electronic states with a different number of electrons. Its equations can be obtained from the single-reference coupled-cluster ones
- The use of angular momentum theory and spherical symmetry reduce the coupled-cluster amplitude equations

Outlook

- Derive the coupled-cluster amplitude equations in the CCSDT approximation ($T=T_{1}+T_{2}+T_{3}$) for $\operatorname{FSCC}(0,0)$ and higher sectors
- Reduce the coupled-cluster amplitude equations using angular momentum graph theory
- Implement the reduced coupled-cluster amplitude equations to calculate electronic energies in atoms with a higher precision and a broader applicability

Summary

- The energies of the states can be obtained by diagonalizing the effective Hamiltonian. The Bloch equation can be solved to find the wave operator
- The Fock-space coupled-cluster method can be used to study electronic states with a different number of electrons. Its equations can be obtained from the single-reference coupled-cluster ones
- The use of angular momentum theory and spherical symmetry reduce the coupled-cluster amplitude equations

Outlook

- Derive the coupled-cluster amplitude equations in the CCSDT approximation ($T=T_{1}+T_{2}+T_{3}$) for FSCC $(0,0)$ and higher sectors
- Reduce the coupled-cluster amplitude equations using angular momentum graph theory
- Implement the reduced coupled-cluster amplitude equations to calculate electronic energies in atoms with a higher precision and a broader applicability

Summary

- The energies of the states can be obtained by diagonalizing the effective Hamiltonian. The Bloch equation can be solved to find the wave operator
- The Fock-space coupled-cluster method can be used to study electronic states with a different number of electrons. Its equations can be obtained from the single-reference coupled-cluster ones
- The use of angular momentum theory and spherical symmetry reduce the coupled-cluster amplitude equations

Outlook

- Derive the coupled-cluster amplitude equations in the CCSDT approximation ($T=T_{1}+T_{2}+T_{3}$) for $\operatorname{FSCC}(0,0)$ and higher sectors
- Reduce the coupled-cluster amplitude equations using angular momentum graph theory
- Implement the reduced coupled-cluster amplitude equations to calculate electronic energies in atoms with a higher precision and a broader applicability

Acknowledgements

Internal team
Martijn Reitsma
Aleksandra Kiuberies
Anastasia Borschevsky
Ephraim Eliav

External collaborators

Alexander Tichai

Thomas Duguet

Alexander Oleinichenko

Thank you for your attention!

[^0]: ${ }^{1}$ Figure from A . Borschevsky.

[^1]: ${ }^{2}$ The brackets represent the normal ordered operators: annihilation operators moved to the right of creation operators.

[^2]: ${ }^{2}$ The brackets represent the normal ordered operators: annihilation operators moved to the right of creation operators.

[^3]: ${ }^{3}$ Mukherjee, D., \& Pal, S. (1989). Advances in Quantum Chemistry, 20, 291-373.
 Lindgren, I. (1985). Physica Scripta, 32(4), 291.

[^4]: ${ }^{3}$ Mukherjee, D., \& Pal, S. (1989). Advances in Quantum Chemistry, 20, 291-373.
 ${ }^{4}$ Lindgren, I. (1985). Physica Scripta, 32(4), 291.

[^5]: - Second quantization

[^6]: ${ }^{6}$ Single particle (in CCSD). Figure from Shavitt, I., \& Bartlett, R. J. (2009). Cambridge university press.

[^7]: ${ }^{7}$ Figure taken from A. Oleynichenko PhD thesis.
 Example for sector (0,1). Figure taken from A. Oleynichenko PhD thesis.

[^8]: ${ }^{7}$ Figure taken from A . Oleynichenko PhD thesis.
 ${ }^{8}$ Example for sector (0,1). Figure taken from A . Oleynichenko PhD thesis.

[^9]: ${ }^{9} R_{\tilde{A} \tilde{B} \tilde{C} \tilde{D}}^{k}$ represents the Slater integral. The tilde ${ }^{\sim}$ indicates no dependency on the projection of the angular momentum (m quantum number).

