

Formalism 00000 0000 Coupled-cluster equations

Spherical symmetry

Summary 00

Towards High sectors Fock-space coupled-cluster theory for atomic calculations

Yuly Andrea Chamorro Mena

Martijn Reitsma Anastasia Borschevsky, Ephraim Eliav

Van Swinderen Institute for Particle Physics and Gravity University of Groningen, The Netherlands

June 7, 2023

Spherical symmetry

Relativistic Fock-space coupled-cluster method

Post-Hartree-Fock method including

 \checkmark Special relativity and electron correlation

✓ Multireference

- closed-shell systems (with quasi-degenerate levels)
- open-shell systems (such as transition metal atoms)
- excited states in general

\checkmark Single wave operator for all states

- many electronic states obtained in one calculation
- energy differences: ionization potentials, electron affinities, excitation energies

Relativistic Fock-space coupled-cluster method

Post-Hartree-Fock method including

- \checkmark Special relativity and electron correlation
- ✓ Multireference
 - closed-shell systems (with quasi-degenerate levels)
 - open-shell systems (such as transition metal atoms)
 - excited states in general

 \checkmark Single wave operator for all states

- many electronic states obtained in one calculation
- energy differences: ionization potentials, electron affinities, excitation energies

Relativistic Fock-space coupled-cluster method

Post-Hartree-Fock method including

- \checkmark Special relativity and electron correlation
- ✓ Multireference
 - closed-shell systems (with quasi-degenerate levels)
 - open-shell systems (such as transition metal atoms)
 - excited states in general

 \checkmark Single wave operator for all states

- many electronic states obtained in one calculation
- energy differences: ionization potentials, electron affinities, excitation energies

Relativistic Fock-space coupled-cluster method

Post-Hartree-Fock method including

- \checkmark Special relativity and electron correlation
- ✓ Multireference
 - closed-shell systems (with quasi-degenerate levels)
 - open-shell systems (such as transition metal atoms)
 - excited states in general

\checkmark Single wave operator for all states

- many electronic states obtained in one calculation
- energy differences: ionization potentials, electron affinities, excitation energies

FXP₋T a relativistic multireference coupled cluster program

Atomic relativistic Fock space coupled-cluster method

Atomic systems

$\checkmark\,$ Spherical symmetry

- Separation of angular and radial terms
- Angular momentum reduction

 \rightarrow TRAFS-3C, Tel Aviv atomic computational package E. Eliav and U. Kaldor

Atomic relativistic Fock space coupled-cluster method

Atomic systems

$\checkmark\,$ Spherical symmetry

- Separation of angular and radial terms
- Angular momentum reduction

 \rightarrow TRAFS-3C, Tel Aviv atomic computational package E. Eliav and U. Kaldor

Formalism 00000 0000 Coupled-cluster equations

Spherical symmetry

Summary 00

Restricted to 2 holes/particles¹

Periodic Table of the Elements

1A																	8A
1 H	24												44	54		74	2 He
3	2A 4										1	5	6	7 7	8	9	10
Li	Be											в	с	N	0	F	Ne
- 11	12											13	14	15	16	17	18
Na	Mg	38	4B	5R	6B	78		8B		18	2B	AI	Si	Р	s	CI	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
к	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Тө	1	Хө
55	56	57-71	72	73	74	75	76	- 77	78	79	60	81	82	83	84	85	86
Cs	Ba	Lanthanides	Hf	Та	¥.	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
87	88	89-103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	Later and	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	FI	Uup	Lv	Uus	Uuo
	Activise																
		- 1	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Lanthanides		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
			89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Actinides		Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

¹Figure from A. Borschevsky.

Formalism

Coupled-cluster equations

Spherical symmetry

Summary 00

\rightarrow Extend scope of applicability to 4 holes/particles^1

Periodic Table of the Elements

1A																	8A
1																	2
н																	He
	2A											3A	4A	5A	6A	7A	÷
3	4 -											5	6	7	8	9	10
Li	Be											В	С	N	0	F	Ne
																	1
-11	12											13	14	15	16	17	18
Na	Mg											AI	Si	Р	s	CI	Ar
		3B	4B	5B	6B	7B		— 8B —		1B	2B						
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
к	Ca	Sc	- 11	v	Cr	Mn	Fe	Co	NI	Cu	Zn	Ga	Ge	As	Se	Br	Kr
07			10		10				10	17			50			50	54
Bh		39	40	41 NL	42	43	44 D	40	40	4/	48	49	50	01	02 T-	- 03	04
RD	51		21	ND	MO	1C	ĸu	KO	Pa	Ag	Ca	m	Sn	50	10		Ye
66	56	57.71	70	72	74	76	76	77	79	70	90	9.1	0.0	92	9.4	96	98
Co.	P.o.	3000	LIF	To	W	Bo	00	le le	D+	A.,	Ha	TI	Db	D:	Bo	A+	P.o.
Co	Da	Lanthanidas	- 11	Ia		N8	05		P1	Au	ny		FU	ы	FU	AL	NII
87	88	89-103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Er	Ra		Rf	Db	Sa	Bb	He	Mt	De	Ra	Cn	Nb	FI	Mo	L M	Те	Og
		Activides			•9					i tig				mo		10	C g
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
Lanthanides		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	ть	Dv	Но	Er	Tm	Yb	Lu	
				90	91	92	93	94	95	96	97	98	99	100	101	102	103
Actinides		Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
											1.1						

¹Figure from A. Borschevsky.

Atomic relativistic Fock space coupled-cluster method

Atomic systems

- ✓ Spherical symmetry
 - Separation of angular and radial terms
 - Angular momentum reduction

 \rightarrow Extend the $\ensuremath{\mathsf{applicability}}$ and $\ensuremath{\mathsf{accuracy}}$ of the atomic relativistic FSCC method

 \rightarrow Triple excitations must be included in computations for HSFSCC

Part I: Derivation of the equations (this talk)

Part II: Implementation (Martijn's talk)

Atomic relativistic Fock space coupled-cluster method

Atomic systems

- ✓ Spherical symmetry
 - Separation of angular and radial terms
 - Angular momentum reduction

 \rightarrow Extend the $\ensuremath{\mathsf{applicability}}$ and $\ensuremath{\mathsf{accuracy}}$ of the atomic relativistic FSCC method

 \rightarrow Triple excitations must be included in computations for HSFSCC

Part I: Derivation of the equations (this talk)

Part II: Implementation (Martijn's talk)

Spherical symmetry

Summary 00

Outline

Introduction

Formalism

Effective operator and Bloch equation Fock space

Coupled-cluster equations

Normal-ordered operators Amplitude equations

Spherical symmetry

Coulomb matrix elements Angular reduction

Summary

Spherical symmetry

Summary 00

Effective operator

Schrödinger (or Dirac) equation

$$H|\Psi_{\mu}
angle = E_{\mu}|\Psi_{\mu}
angle$$
 (1)

 ${\boldsymbol{H}}$ is divided in the zero-order Hamiltonian and a perturbation

$$H = H_0 + V \tag{2}$$

The zero-order Hamiltonian follows the eigenvalue equation

$$H_0|\phi_{\mu}\rangle = E^0_{\mu}|\phi_{\mu}\rangle \tag{3}$$

 $|\phi_{\mu}\rangle$ zero-order solutions (Slater determinants)

√ known

Spherical symmetry

Summary 00

Effective operator

Schrödinger (or Dirac) equation

$$H|\Psi_{\mu}
angle = E_{\mu}|\Psi_{\mu}
angle$$
 (1)

${\boldsymbol{H}}$ is divided in the zero-order Hamiltonian and a perturbation

$$H = H_0 + V \tag{2}$$

The zero-order Hamiltonian follows the eigenvalue equation

$$H_0|\phi_{\mu}\rangle = E^0_{\mu}|\phi_{\mu}\rangle \tag{3}$$

 $|\phi_{\mu}\rangle$ zero-order solutions (Slater determinants)

√ known

Spherical symmetry

Summary 00

Effective operator

Schrödinger (or Dirac) equation

$$H|\Psi_{\mu}
angle = E_{\mu}|\Psi_{\mu}
angle$$
 (1)

${\boldsymbol{H}}$ is divided in the zero-order Hamiltonian and a perturbation

$$H = H_0 + V \tag{2}$$

The zero-order Hamiltonian follows the eigenvalue equation

$$H_0|\phi_{\mu}\rangle = E^0_{\mu}|\phi_{\mu}\rangle \tag{3}$$

 $|\phi_{\mu}\rangle$ zero-order solutions (Slater determinants)

√ known

Spherical symmetry

Summary 00

Effective operator

Schrödinger (or Dirac) equation

$$H|\Psi_{\mu}
angle = E_{\mu}|\Psi_{\mu}
angle$$
 (1)

 ${\boldsymbol{H}}$ is divided in the zero-order Hamiltonian and a perturbation

$$H = H_0 + V \tag{2}$$

The zero-order Hamiltonian follows the eigenvalue equation

$$H_0|\phi_{\mu}\rangle = E^0_{\mu}|\phi_{\mu}\rangle \tag{3}$$

 $|\phi_{\mu}\rangle$ zero-order solutions (Slater determinants)

√ known

Spherical symmetry

Summary 00

Effective operator

• Wave function:

Model space (L_P) and orthogonal space (L_Q)

 $L_P
ightarrow$ all functions associated with one or several configurations

Example: Be:

$$\begin{split} |\Psi_{\mu}\rangle &= a|1s^{2}2s^{2}\ ^{1}S\rangle + b|1s^{2}2p^{2}\ ^{1}S\rangle + \dots \\ L_{P}:\ 1s^{2}2s^{2},\ 1s^{2}2p^{2}\ ^{1}S) \\ |\Phi_{\mu}\rangle &= a|1s^{2}2s^{2}\ ^{1}S\rangle + b|1s^{2}2p^{2}\ ^{1}S\rangle \end{split}$$

• Projection operator:

$$P|\Psi_{\mu}\rangle = |\Phi_{\mu}\rangle \tag{4}$$

$$|\Omega|\Phi_{\mu}
angle = |\Psi_{\mu}
angle$$
 (5)

Spherical symmetry

Summary 00

Effective operator

Wave function:

Model space (L_P) and orthogonal space (L_Q)

L_P \rightarrow all functions associated with one or several configurations

Example: Be: $|\Psi_{\mu}\rangle = a|1s^{2}2s^{2} \ ^{1}S\rangle + b|1s^{2}2p^{2} \ ^{1}S\rangle + ...$ $L_{p}: \ 1s^{2}2s^{2}, \ 1s^{2}2p^{2} \ (^{1}S)$ $|\Phi_{\mu}\rangle = a|1s^{2}2s^{2} \ ^{1}S\rangle + b|1s^{2}2p^{2} \ ^{1}S\rangle$

Projection operator:

$$P|\Psi_{\mu}\rangle = |\Phi_{\mu}\rangle \tag{4}$$

$$\Omega |\Phi_{\mu}\rangle = |\Psi_{\mu}\rangle \tag{5}$$

Spherical symmetry

Summary 00

Effective operator

• Wave function:

Model space (L_P) and orthogonal space (L_Q)

L_P \rightarrow all functions associated with one or several configurations

Example: Be:

$$\begin{split} |\Psi_{\mu}\rangle &= a|1s^{2}2s^{2} \ ^{1}S\rangle + b|1s^{2}2p^{2} \ ^{1}S\rangle + \dots \\ L_{P} \colon \ 1s^{2}2s^{2}, \ 1s^{2}2p^{2} \ ^{1}S) \\ |\Phi_{\mu}\rangle &= a|1s^{2}2s^{2} \ ^{1}S\rangle + b|1s^{2}2p^{2} \ ^{1}S\rangle \end{split}$$

• Projection operator:

$$P|\Psi_{\mu}\rangle = |\Phi_{\mu}\rangle \tag{4}$$

$$\Omega |\Phi_{\mu}\rangle = |\Psi_{\mu}\rangle \tag{5}$$

Spherical symmetry 00 00 Summary 00

Effective operator

• Wave function:

Model space (L_P) and orthogonal space (L_Q)

 $L_{\mathcal{P}}$ \rightarrow all functions associated with one or several configurations

Example: Be:

$$\begin{split} |\Psi_{\mu}\rangle &= a|1s^{2}2s^{2}\ ^{1}S\rangle + b|1s^{2}2p^{2}\ ^{1}S\rangle + ...\\ L_{P}:\ 1s^{2}2s^{2},\ 1s^{2}2p^{2}\ ^{1}S\rangle \\ |\Phi_{\mu}\rangle &= a|1s^{2}2s^{2}\ ^{1}S\rangle + b|1s^{2}2p^{2}\ ^{1}S\rangle \end{split}$$

Projection operator:

$$P|\Psi_{\mu}
angle = |\Phi_{\mu}
angle$$
 (4)

$$\Omega |\Phi_{\mu}\rangle = |\Psi_{\mu}\rangle$$
 (5)

Spherical symmetry 00 00 Summary 00

Effective operator

• Wave function:

Model space (L_P) and orthogonal space (L_Q)

 $L_{\mathcal{P}}$ \rightarrow all functions associated with one or several configurations

Example: Be:

$$\begin{split} |\Psi_{\mu}\rangle &= a|1s^{2}2s^{2}\ ^{1}S\rangle + b|1s^{2}2p^{2}\ ^{1}S\rangle + ...\\ L_{P}:\ 1s^{2}2s^{2},\ 1s^{2}2p^{2}\ ^{1}S)\\ |\Phi_{\mu}\rangle &= a|1s^{2}2s^{2}\ ^{1}S\rangle + b|1s^{2}2p^{2}\ ^{1}S\rangle \end{split}$$

Projection operator:

$$P|\Psi_{\mu}
angle = |\Phi_{\mu}
angle$$
 (4)

$$\Omega |\Phi_{\mu}\rangle = |\Psi_{\mu}\rangle \tag{5}$$

Spherical symmetry

Summary 00

Effective operator

Schrödinger (or Dirac) equation,

$$H|\Psi_{\mu}
angle = E_{\mu}|\Psi_{\mu}
angle$$
 (6)

replacing $|\Psi_{\mu}
angle=\Omega|\Phi_{\mu}
angle$ and operating on the left with P,

$$PH\Omega|\Phi_{\mu}\rangle = E_{\mu}|\Phi_{\mu}\rangle \tag{7}$$

Effective Hamiltonian

$$\tilde{H}|\Phi_{\mu}\rangle = E_{\mu}|\Phi_{\mu}\rangle \tag{8}$$

The effective Hamiltonian acting on the model wave function gives the exact energy of the μ state.

 \rightarrow By diagonalizing \tilde{H} we obtain the electronic state energies E_{μ} and the model functions Φ_{μ}

Spherical symmetry

Summary 00

Effective operator

Schrödinger (or Dirac) equation,

$$H|\Psi_{\mu}
angle = E_{\mu}|\Psi_{\mu}
angle$$
 (6)

replacing $|\Psi_{\mu}
angle=\Omega|\Phi_{\mu}
angle$ and operating on the left with P,

$$PH\Omega|\Phi_{\mu}\rangle = E_{\mu}|\Phi_{\mu}\rangle \tag{7}$$

Effective Hamiltonian

$$\tilde{H}|\Phi_{\mu}\rangle = E_{\mu}|\Phi_{\mu}\rangle \tag{8}$$

The effective Hamiltonian acting on the model wave function gives the exact energy of the μ state.

 \rightarrow By diagonalizing \ddot{H} we obtain the electronic state energies E_{μ} and the model functions Φ_{μ}

Spheric	al syı	nmetr
88		

Summary 00

Effective operator

Schrödinger (or Dirac) equation,

$$H|\Psi_{\mu}\rangle = E_{\mu}|\Psi_{\mu}\rangle \tag{6}$$

replacing $|\Psi_{\mu}
angle=\Omega|\Phi_{\mu}
angle$ and operating on the left with P,

$$PH\Omega|\Phi_{\mu}\rangle = E_{\mu}|\Phi_{\mu}\rangle \tag{7}$$

Effective Hamiltonian

$$\tilde{H}|\Phi_{\mu}\rangle = E_{\mu}|\Phi_{\mu}\rangle$$
 (8)

The effective Hamiltonian acting on the model wave function gives the exact energy of the μ state.

 \to By diagonalizing \tilde{H} we obtain the electronic state energies ${\it E}_{\mu}$ and the model functions Φ_{μ}

Spheric	al syı	nmetr
88		

Summary 00

Effective operator

Schrödinger (or Dirac) equation,

$$H|\Psi_{\mu}\rangle = E_{\mu}|\Psi_{\mu}\rangle \tag{6}$$

replacing $|\Psi_{\mu}
angle=\Omega|\Phi_{\mu}
angle$ and operating on the left with P,

$$PH\Omega|\Phi_{\mu}\rangle = E_{\mu}|\Phi_{\mu}\rangle \tag{7}$$

Effective Hamiltonian

$$\tilde{H}|\Phi_{\mu}\rangle = E_{\mu}|\Phi_{\mu}\rangle \tag{8}$$

The effective Hamiltonian acting on the model wave function gives the exact energy of the μ state.

 \to By diagonalizing \tilde{H} we obtain the electronic state energies ${\it E}_{\mu}$ and the model functions Φ_{μ}

Spherical symmetry

Summary 00

Derivation of the generalized Bloch equation

$$H|\Psi_{\mu}\rangle = E_{a}|\Psi_{\mu}\rangle \tag{9}$$

$$(E_a - H_0)|\Psi_{\mu}\rangle = V|\Psi_{\mu}\rangle \tag{10}$$

operating on the left with P

$$(E_{a} - H_{0})|\Phi_{\mu}\rangle = PV|\Psi_{\mu}\rangle \tag{11}$$

and operating now with $\boldsymbol{\Omega}$

$$E_{a}|\Psi_{\mu}\rangle - \Omega H_{0}|\Phi_{\mu}\rangle = \Omega P V|\Psi_{\mu}\rangle \tag{12}$$

and rearranging,

$$H|\Psi_{\mu}\rangle - \Omega H_{0}|\Phi_{\mu}\rangle = \Omega P V|\Psi_{\mu}\rangle$$

$$(H_{0} + V)\Omega|\Phi_{\mu}\rangle - \Omega H_{0}|\Phi_{\mu}\rangle = \Omega P V|\Psi_{\mu}\rangle$$

$$H_{0}\Omega|\Phi_{\mu}\rangle - \Omega H_{0}|\Phi_{\mu}\rangle = -V\Omega|\Phi_{\mu}\rangle + \Omega P V\Omega|\Phi_{\mu}\rangle$$
(13)

Therefore,

$$[\Omega, H_0]P = (V\Omega - \Omega P V\Omega)P \tag{14}$$

Spherical symmetry

Summary 00

Coupled-cluster equation

$$[\Omega, H^0]P = (V\Omega - \Omega P V\Omega)P$$
(15)

Expanding the wave operator in *n*-body parts,

$$\Omega = 1 + \Omega_1 + \Omega_2 + \dots \tag{16}$$

 \rightarrow Solving the non-perturbative equations self-consistently is equivalent to summing the corresponding terms in the perturbation expansion to all orders

Exponential ansatz²

$$\Omega = \{e^{T}\} = 1 + T + \frac{1}{2}\{T^{2}\} + \dots = \sum_{n=1}^{\infty} \frac{1}{n!}\{T^{n}\}$$
(17)

$$T = T_1 + T_2 + \dots (18)$$

 \checkmark Truncating T after the 2-body term, 4-body terms are included in Ω (T²)

²The brackets represent the normal ordered operators: annihilation operators moved to the right of creation operators.

Spherical symmetry

Summary 00

Coupled-cluster equation

$$[\Omega, H^0]P = (V\Omega - \Omega P V\Omega)P$$
(15)

Expanding the wave operator in *n*-body parts,

$$\Omega = 1 + \Omega_1 + \Omega_2 + \dots \tag{16}$$

 \rightarrow Solving the non-perturbative equations self-consistently is equivalent to summing the corresponding terms in the perturbation expansion to all orders

Exponential ansatz²

$$\Omega = \{e^{T}\} = 1 + T + \frac{1}{2}\{T^{2}\} + \dots = \sum_{n=1}^{\infty} \frac{1}{n!}\{T^{n}\}$$
(17)

$$T = T_1 + T_2 + \dots (18)$$

 \checkmark Truncating ${\cal T}$ after the 2-body term, 4-body terms are included in Ω (${\cal T}^2$)

²The brackets represent the normal ordered operators: annihilation operators moved to the right of creation operators.

Spherical symmetry

Summary 00

Coupled-cluster equation

$$[\Omega, H^0]P = (V\Omega - \Omega P V\Omega)P \tag{15}$$

Expanding the wave operator in *n*-body parts,

$$\Omega = 1 + \Omega_1 + \Omega_2 + \dots \tag{16}$$

 \rightarrow Solving the non-perturbative equations self-consistently is equivalent to summing the corresponding terms in the perturbation expansion to all orders

Exponential ansatz²

$$\Omega = \{e^{T}\} = 1 + T + \frac{1}{2}\{T^{2}\} + \dots = \sum_{n=1}^{\infty} \frac{1}{n!}\{T^{n}\}$$
(17)

$$T = T_1 + T_2 + \dots (18)$$

 \checkmark Truncating T after the 2-body term, 4-body terms are included in Ω (T²)

 $^{^2 {\}rm The}$ brackets represent the normal ordered operators: annihilation operators moved to the right of creation operators.

Spherical symmetry

Summary 00

Coupled-cluster equation

$$[\Omega, H^0]P = (V\Omega - \Omega P V\Omega)P$$
(15)

Expanding the wave operator in *n*-body parts,

$$\Omega = 1 + \Omega_1 + \Omega_2 + \dots \tag{16}$$

 \rightarrow Solving the non-perturbative equations self-consistently is equivalent to summing the corresponding terms in the perturbation expansion to all orders

Exponential ansatz²

$$\Omega = \{e^{T}\} = 1 + T + \frac{1}{2}\{T^{2}\} + \dots = \sum_{n=1}^{\infty} \frac{1}{n!}\{T^{n}\}$$
(17)

$$T = T_1 + T_2 + \dots (18)$$

 \checkmark Truncating T after the 2-body term, 4-body terms are included in Ω (T²)

 $^{^2 {\}rm The}$ brackets represent the normal ordered operators: annihilation operators moved to the right of creation operators.

Coupled-cluster equations

Spherical symmetry

Summary 00

Model space

Including all determinants obtained by distributing h holes over the active hole states and p particles over active particle states in all possible ways \rightarrow Complete model space

 \rightarrow Fock-space sector (*h*,*p*)

Coupled-cluster equations

Spherical symmetry

Summary 00

Model space

Including all determinants obtained by distributing h holes over the active hole states and p particles over active particle states in all possible ways \rightarrow Complete model space

 \rightarrow Fock-space sector (*h*,*p*)

Coupled-cluster equations

Spherical symmetry

Summary 00

Model space

Including all determinants obtained by distributing h holes over the active hole states and p particles over active particle states in all possible ways \rightarrow Complete model space

 \rightarrow Fock-space sector (*h*,*p*)

Coupled-cluster equations

Spherical symmetry

Summary 00

Model space

Including all determinants obtained by distributing h holes over the active hole states and p particles over active particle states in all possible ways \rightarrow Complete model space

 \rightarrow Fock-space sector (*h*,*p*)

Spherical symmetry

Summary 00

Fock-space coupled-cluster sectors

Spherical symmetry

Summary 00

Fock-space coupled-cluster sectors

Spherical symmetry

Summary 00

Fock-space coupled-cluster sectors

Spherical symmetry

Summary 00

Fock-space coupled-cluster sectors

Spherical symmetry

Summary 00

Fock-space coupled-cluster sectors

Fock-space coupled-cluster sectors

Model space

$$L_{P} = L_{P}^{00} \oplus L_{P}^{10} \oplus L_{P}^{01} \oplus L_{P}^{11} \oplus \dots$$
 (19)

Projector operator

$$P = P^{00} + P^{10} + P^{01} + P^{11} + \dots$$
 (20)

$$Q^{hp} = 1 - P^{hp} \tag{21}$$

• Effective Hamiltonian

$$\tilde{H} = \tilde{H}^{00} + \tilde{H}^{10} + \tilde{H}^{01} + \tilde{H}^{11} + \dots$$
(22)

diagonalizing the \hat{H}^{hp} matrices in each (h,p) sector we obtain the corresponding electronic state energies and model functions

$$T = T^{00} + T^{10} + T^{01} + T^{11} + \dots$$
(23)

Spherical symmetry

Summary 00

Fock-space coupled-cluster sectors

Model space

$$L_P = L_P^{00} \oplus L_P^{10} \oplus L_P^{01} \oplus L_P^{11} \oplus \dots$$
⁽¹⁹⁾

Projector operator

$$P = P^{00} + P^{10} + P^{01} + P^{11} + \dots$$
 (20)

$$Q^{hp} = 1 - P^{hp} \tag{21}$$

• Effective Hamiltonian

$$\tilde{H} = \tilde{H}^{00} + \tilde{H}^{10} + \tilde{H}^{01} + \tilde{H}^{11} + \dots$$
(22)

diagonalizing the \hat{H}^{hp} matrices in each (h, p) sector we obtain the corresponding electronic state energies and model functions

$$T = T^{00} + T^{10} + T^{01} + T^{11} + \dots$$
(23)

Spherical symmetry

Summary 00

Fock-space coupled-cluster sectors

Model space

$$L_P = L_P^{00} \oplus L_P^{10} \oplus L_P^{01} \oplus L_P^{11} \oplus \dots$$
⁽¹⁹⁾

Projector operator

$$P = P^{00} + P^{10} + P^{01} + P^{11} + \dots$$
 (20)

$$Q^{hp} = 1 - P^{hp} \tag{21}$$

• Effective Hamiltonian

$$\tilde{H} = \tilde{H}^{00} + \tilde{H}^{10} + \tilde{H}^{01} + \tilde{H}^{11} + \dots$$
(22)

diagonalizing the \tilde{H}^{hp} matrices in each (h,p) sector we obtain the corresponding electronic state energies and model functions

 $T = T^{00} + T^{10} + T^{01} + T^{11} + \dots$ (23)

Spherical symmetry

Summary 00

Fock-space coupled-cluster sectors

Model space

$$L_P = L_P^{00} \oplus L_P^{10} \oplus L_P^{01} \oplus L_P^{11} \oplus \dots$$
⁽¹⁹⁾

Projector operator

$$P = P^{00} + P^{10} + P^{01} + P^{11} + \dots$$
 (20)

$$Q^{hp} = 1 - P^{hp} \tag{21}$$

• Effective Hamiltonian

$$\tilde{H} = \tilde{H}^{00} + \tilde{H}^{10} + \tilde{H}^{01} + \tilde{H}^{11} + \dots$$
(22)

diagonalizing the \tilde{H}^{hp} matrices in each (h,p) sector we obtain the corresponding electronic state energies and model functions

$$T = T^{00} + T^{10} + T^{01} + T^{11} + \dots$$
(23)

Spherical symmetry

Summary 00

Fock-space coupled-cluster equation

$$[T_n^{hp}, H_0]P^{hp} = (V\Omega - \Omega P^{hp} V\Omega)_{n, \text{conn}} P^{hp}$$
(24)

 \checkmark Partial decoupling according to the subsystem embedding condition³

 \checkmark Linked diagram theorem \rightarrow size consistent (for energy and wave function)⁴

³Mukherjee, D., & Pal, S. (1989). Advances in Quantum Chemistry, 20, 291-373.

⁴Lindgren, I. (1985). Physica Scripta, 32(4), 291.

Spherical symmetry

Summary 00

Fock-space coupled-cluster equation

$$[T_n^{hp}, H_0]P^{hp} = (V\Omega - \Omega P^{hp} V\Omega)_{n, \text{conn}} P^{hp}$$
(24)

- \checkmark Partial decoupling according to the subsystem embedding condition³
- \checkmark Linked diagram theorem \rightarrow size consistent (for energy and wave function)^4

³Mukherjee, D., & Pal, S. (1989). Advances in Quantum Chemistry, 20, 291-373.

⁴Lindgren, I. (1985). Physica Scripta, 32(4), 291.

Spherical symmetry

Summary 00

Second quantized operators

• Electronic Hamiltonian

$$H = -\frac{1}{2} \sum_{i=1}^{N} \nabla_{i}^{2} - \sum_{i=1}^{N} \frac{Z}{r_{i}} + \sum_{i< j}^{N} \frac{1}{r_{ij}}$$
(25)

$$H = H_0 + V \tag{26}$$

$$H_0 = \sum_{i=1}^{N} \left(-\frac{1}{2} \nabla_i^2 - \frac{Z}{r_i} + u(r_i) \right) \qquad V = \sum_{i(27)$$

• Second quantization

$$H_0 = \sum_i a_i^{\dagger} a_i \varepsilon_i \tag{28}$$

$$V = -\sum_{ij} a_i^{\dagger} a_j \langle i | u | j \rangle + \frac{1}{2} \sum_{ijkl} a_i^{\dagger} a_j^{\dagger} a_l a_k \langle ij | \frac{1}{r_{12}} | kl \rangle$$
(29)

Spherical symmetry

Summary 00

Second quantized operators

• Electronic Hamiltonian

$$H = -\frac{1}{2} \sum_{i=1}^{N} \nabla_{i}^{2} - \sum_{i=1}^{N} \frac{Z}{r_{i}} + \sum_{i< j}^{N} \frac{1}{r_{ij}}$$
(25)

$$H = H_0 + V \tag{26}$$

$$H_0 = \sum_{i=1}^{N} \left(-\frac{1}{2} \nabla_i^2 - \frac{Z}{r_i} + u(r_i) \right) \qquad V = \sum_{i(27)$$

• Second quantization

$$H_0 = \sum_i a_i^{\dagger} a_i \varepsilon_i \tag{28}$$

$$V = -\sum_{ij} a_i^{\dagger} a_j \langle i | u | j \rangle + \frac{1}{2} \sum_{ijkl} a_i^{\dagger} a_j^{\dagger} a_l a_k \langle ij | \frac{1}{r_{12}} | kl \rangle$$
(29)

Spherical symmetry

Summary 00

Second quantized operators

• Electronic Hamiltonian

$$H = -\frac{1}{2} \sum_{i=1}^{N} \nabla_{i}^{2} - \sum_{i=1}^{N} \frac{Z}{r_{i}} + \sum_{i< j}^{N} \frac{1}{r_{ij}}$$
(25)

$$H = H_0 + V \tag{26}$$

$$H_0 = \sum_{i=1}^{N} \left(-\frac{1}{2} \nabla_i^2 - \frac{Z}{r_i} + u(r_i) \right) \qquad V = \sum_{i(27)$$

• Second quantization

$$H_0 = \sum_i a_i^{\dagger} a_i \varepsilon_i \tag{28}$$

$$V = -\sum_{ij} a_i^{\dagger} a_j \langle i | u | j \rangle + \frac{1}{2} \sum_{ijkl} a_i^{\dagger} a_j^{\dagger} a_l a_k \langle ij | \frac{1}{r_{12}} | kl \rangle$$
(29)

Coupled-cluster equations $\bigcirc \bigcirc \bigcirc \bigcirc$

Spherical symmetry

Summary 00

- Normal-ordered operators
 - Zero-order Hamiltonian

$$H_0 = \sum_{a}^{\text{occ}} \varepsilon_a + \sum_i \{a_i^{\dagger} a_i\} \varepsilon_i$$
(30)

• Perturbation

$$V = V_{0} + V_{1} + V_{2}$$

$$V_{0} = \sum_{a}^{\text{core}} \langle a| - u|a \rangle + \frac{1}{2} \sum_{ab}^{\text{core}} \left(\langle ab| \frac{1}{r_{12}} |ab \rangle - \langle ba| \frac{1}{r_{12}} |ab \rangle \right)$$

$$V_{1} = \sum_{ij} \{a_{i}^{\dagger} a_{j}\} \langle i|v|j \rangle$$

$$V_{2} = \sum_{jjkl} \{a_{i}^{\dagger} a_{j}^{\dagger} a_{l} a_{k}\} \langle ij| \frac{1}{r_{12}} |kl \rangle$$
(31)

$$T \equiv T_1 + T_2 + \dots \tag{32}$$

$$T_n = \frac{1}{n!} \sum_{a_1...a_n} \sum_{i_1...i_n} t_{i_1...i_n}^{a_1...a_n} \{ a_{i_1}^{\dagger} ... a_{i_n}^{\dagger} a_{a_n} ... a_{a_1} \}$$
(33)

Introduction 00000 Formalism 00000 0000 Coupled-cluster equations $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Spherical symmetry

Summary 00

- Normal-ordered operators
 - Zero-order Hamiltonian

$$H_0 = \sum_{a}^{\text{occ}} \varepsilon_a + \sum_i \{a_i^{\dagger} a_i\} \varepsilon_i$$
(30)

Perturbation

$$\begin{split} \mathbf{V} &= \mathbf{V}_{0} + \mathbf{V}_{1} + \mathbf{V}_{2} \\ V_{0} &= \sum_{a}^{\text{core}} \langle a| - u|a \rangle + \frac{1}{2} \sum_{ab}^{\text{core}} \left(\langle ab| \frac{1}{r_{12}} |ab \rangle - \langle ba| \frac{1}{r_{12}} |ab \rangle \right) \\ V_{1} &= \sum_{ij} \{a_{i}^{\dagger} a_{j} \} \langle i|v|j \rangle \\ V_{2} &= \sum_{ijkl} \{a_{i}^{\dagger} a_{j}^{\dagger} a_{l} a_{k} \} \langle ij| \frac{1}{r_{12}} |kl \rangle \end{split}$$
(31)

$$T \equiv T_1 + T_2 + \dots \tag{32}$$

$$T_n = \frac{1}{n!} \sum_{a_1...a_n} \sum_{i_1...i_n} t_{i_1...i_n}^{a_1...a_n} \{ a_{i_1}^{\dagger} ... a_{i_n}^{\dagger} a_{a_n} ... a_{a_1} \}$$
(33)

Introduction 00000

Coupled-cluster equations $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Spherical symmetry

Summary 00

- Normal-ordered operators
 - Zero-order Hamiltonian

$$H_0 = \sum_{a}^{\text{occ}} \varepsilon_a + \sum_i \{a_i^{\dagger} a_i\} \varepsilon_i$$
(30)

Perturbation

$$V = V_{0} + V_{1} + V_{2}$$

$$V_{0} = \sum_{a}^{\text{core}} \langle a| - u|a \rangle + \frac{1}{2} \sum_{ab}^{\text{core}} \left(\langle ab|\frac{1}{r_{12}}|ab \rangle - \langle ba|\frac{1}{r_{12}}|ab \rangle \right)$$

$$V_{1} = \sum_{ij} \{a_{i}^{\dagger}a_{j}\} \langle i|v|j \rangle$$

$$V_{2} = \sum_{ijkl} \{a_{i}^{\dagger}a_{j}^{\dagger}a_{l}a_{k}\} \langle ij|\frac{1}{r_{12}}|kl \rangle$$
(31)

$$T \equiv T_1 + T_2 + \dots \tag{32}$$

$$T_{n} = \frac{1}{n!} \sum_{a_{1}..a_{n}} \sum_{i_{1}...i_{n}} t_{i_{1}...i_{n}}^{a_{1}...a_{n}} \{a_{i_{1}}^{\dagger}...a_{i_{n}}^{\dagger}a_{a_{n}}...a_{a_{1}}\}$$
(33)

Introduction 00000 Formalism 00000 0000 Coupled-cluster equations $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Spherical symmetry

Summary 00

- Normal-ordered operators
 - Zero-order Hamiltonian

$$H_0 = \sum_{a}^{\text{occ}} \varepsilon_a + \sum_i \{a_i^{\dagger} a_i\} \varepsilon_i$$
(30)

Perturbation

$$V = V_{0} + V_{1} + V_{2}$$

$$V_{0} = \sum_{a}^{\text{core}} \langle a| - u|a \rangle + \frac{1}{2} \sum_{ab}^{\text{core}} \left(\langle ab| \frac{1}{r_{12}} |ab \rangle - \langle ba| \frac{1}{r_{12}} |ab \rangle \right)$$

$$V_{1} = \sum_{ij} \{a_{i}^{\dagger} a_{j}\} \langle i|v|j \rangle$$

$$V_{2} = \sum_{ijkl} \{a_{i}^{\dagger} a_{j}^{\dagger} a_{l} a_{k}\} \langle ij| \frac{1}{r_{12}} |kl \rangle$$
(31)

$$T \equiv T_1 + T_2 + \dots \tag{32}$$

$$T_{n} = \frac{1}{n!} \sum_{a_{1}..a_{n}} \sum_{i_{1}...i_{n}} t_{i_{1}...i_{n}}^{a_{1}...a_{n}} \{a_{i_{1}}^{\dagger}...a_{i_{n}}^{\dagger}a_{a_{n}}...a_{a_{1}}\}$$
(33)

Spherical	symmetry
00	
00	

Summary 00

Diagrammatic notation⁵

 $V = V_0 + V_1 + V_2$

⁵Figure from Shavitt, I., & Bartlett, R. J. (2009). Cambridge university press.

Spherical	symmetry
00	
00	

Summary 00

Diagrammatic notation⁵

 $V = V_0 + V_1 + V_2$

⁵Figure from Shavitt, I., & Bartlett, R. J. (2009). Cambridge university press.

Spherical symmetry

Summary 00

Amplitude equations

$$[T_n, H^0] = (V\Omega - \Omega P V\Omega)_{n,conn}$$
(34)

• I.h.s.

$$\sum_{pq} \{a_p^{\dagger} a_q\} (\varepsilon_q - \varepsilon_p) t_q^p + \frac{1}{2} \sum_{pqsr} \{a_p^{\dagger} a_q^{\dagger} a_s a_r\} (\varepsilon_s + \varepsilon_r - \varepsilon_p - \varepsilon_q) t_{rs}^{pq} + \dots$$
(35)

• r.h.s.
$$\rightarrow^6$$

⁶Figure from Lindgren, I., & Morrison, J. (2012). Springer Science & Business Media.

Spherical symmetry

Summary 00

Amplitude equations

$$[T_n, H^0] = (V\Omega - \Omega P V\Omega)_{n,conn}$$
(34)

• I.h.s.

$$\sum_{pq} \{a_p^{\dagger} a_q\} (\varepsilon_q - \varepsilon_p) t_q^p + \frac{1}{2} \sum_{pqsr} \{a_p^{\dagger} a_q^{\dagger} a_s a_r\} (\varepsilon_s + \varepsilon_r - \varepsilon_p - \varepsilon_q) t_{rs}^{pq} + \dots$$
(35)

• r.h.s. \rightarrow^{6} Wick's theorem for operator products

⁶Figure from Lindgren, I., & Morrison, J. (2012). Springer Science & Business Media.

Spherical symmetry

Summary 00

Amplitude equations

$$[T_n, H^0] = (V\Omega - \Omega P V\Omega)_{n, \text{conn}}$$
(34)

• I.h.s.

$$\sum_{pq} \{a_p^{\dagger} a_q\} (\varepsilon_q - \varepsilon_p) t_q^p + \frac{1}{2} \sum_{pqsr} \{a_p^{\dagger} a_q^{\dagger} a_s a_r\} (\varepsilon_s + \varepsilon_r - \varepsilon_p - \varepsilon_q) t_{rs}^{pq} + \dots$$
(35)

• r.h.s. ⁶Goldstone diagrams

⁶Single particle (in CCSD). Figure from Shavitt, I., & Bartlett, R. J. (2009). Cambridge university press.

Spherical symmetry

Summary 00

Amplitude equations

$$[T_n, H^0] = (V\Omega - \Omega P V\Omega)_{n,conn}$$
(34)

• I.h.s.

$$\sum_{pq} \{a_p^{\dagger} a_q\} (\varepsilon_q - \varepsilon_p) t_q^p + \frac{1}{2} \sum_{pqsr} \{a_p^{\dagger} a_q^{\dagger} a_s a_r\} (\varepsilon_s + \varepsilon_r - \varepsilon_p - \varepsilon_q) t_{rs}^{pq} + \dots$$
(35)

• r.h.s. ⁶Goldstone diagrams

$$\begin{split} f_{ai} + &\sum_{kc} f_{kc} t_{ik}^{ac} + \frac{1}{2} \sum_{kcd} \langle ak \| cd \rangle t_{ik}^{cd} - \frac{1}{2} \sum_{klc} \langle kl \| ic \rangle t_{kl}^{ac} + \sum_{c} f_{ac} t_{i}^{c} \\ &- \sum_{k} f_{ki} t_{k}^{a} + \sum_{kc} \langle ak \| ic \rangle t_{k}^{c} - \frac{1}{2} \sum_{klcd} \langle kl \| cd \rangle t_{i}^{c} t_{kl}^{ad} - \frac{1}{2} \sum_{klcd} \langle kl \| cd \rangle t_{k}^{c} t_{il}^{ad} \\ &+ \sum_{klcd} \langle kl \| cd \rangle t_{k}^{c} t_{il}^{da} - \sum_{kc} f_{kc} t_{i}^{c} t_{k}^{a} + \sum_{kcd} \langle ak \| cd \rangle t_{i}^{c} t_{k}^{dd} \\ &- \sum_{klcd} \langle kl \| ic \rangle t_{k}^{a} t_{i}^{c} - \sum_{kc} \langle kl \| cd \rangle t_{i}^{c} t_{k}^{ad} = 0 \quad \text{(for all } i, a). \end{split}$$

 \rightarrow identifying the *n*-body terms on the l.h.s. and r.h.s, we can write down a series of coupled equations that can be solved iteratively to find the cluster amplitudes.

⁶Single particle (in CCSD). Figure from Shavitt, I., & Bartlett, R. J. (2009). Cambridge university press.

Spherical symmetry

Summary 00

• Higher sectors⁷

• Fock-space from single-reference coupled-cluster diagrams⁸

⁷Figure taken from A. Oleynichenko PhD thesis.

⁸Example for sector (0,1). Figure taken from A. Oleynichenko PhD thesis.

Spherical symmetry

Summary 00

Higher sectors⁷

• Fock-space from single-reference coupled-cluster diagrams⁸

⁷Figure taken from A. Oleynichenko PhD thesis.

⁸Example for sector (0,1). Figure taken from A. Oleynichenko PhD thesis.

Summary 00

Coulomb matrix elements

Considering the Coulomb interaction, separating radial⁹ and angular variables,

$$\langle ab|\frac{1}{r_{12}}|cd\rangle = \sum_{k} (-1)^{k} \hat{k} R^{k}_{\tilde{A}\tilde{B}\tilde{C}\tilde{D}} \langle ab|\{\vec{C}^{k}(1)\vec{C}^{k}(2)\}^{0}_{0}|cd\rangle.$$
(36)

Coupling ab and cd,

$$\sum_{J_{ab},J_{cd}} \sum_{M_{ab},M_{cd}} \left(\begin{array}{cc} j_{a} & j_{b} & J_{ab} \\ m_{a} & m_{b} - M_{ab} \end{array} \right) \left(\begin{array}{cc} j_{c} & j_{d} & J_{cd} \\ m_{c} & m_{d} - M_{cd} \end{array} \right) (-1)^{-j_{a}+j_{b}-M_{ab}} (-1)^{-j_{c}+j_{d}-M_{cd}} \hat{J}_{ab} \hat{J}_{cd} \\ \times \langle (ab)J_{ab} | \{\vec{C}^{k}(1)\vec{C}^{k}(2)\}_{0}^{0} | (cd)J_{cd} \rangle$$

 $^{{}^9}R^k_{\bar{A}\bar{B}\bar{C}\bar{D}}$ represents the Slater integral. The tilde~indicates no dependency on the projection of the angular momentum (*m* quantum number).

Summary 00

Coulomb matrix elements

Considering the Coulomb interaction, separating radial⁹ and angular variables,

$$\langle ab|\frac{1}{r_{12}}|cd\rangle = \sum_{k} (-1)^{k} \hat{k} R^{k}_{\tilde{A}\tilde{B}\tilde{C}\tilde{D}} \langle ab|\{\vec{C}^{k}(1)\vec{C}^{k}(2)\}^{0}_{0}|cd\rangle.$$
(36)

Coupling ab and cd,

$$\sum_{J_{ab},J_{cd}} \sum_{M_{ab},M_{cd}} \left(\begin{matrix} j_{a} & j_{b} & J_{ab} \\ m_{a} & m_{b} & -M_{ab} \end{matrix} \right) \left(\begin{matrix} j_{c} & j_{d} & J_{cd} \\ m_{c} & m_{d} & -M_{cd} \end{matrix} \right) (-1)^{-j_{a}+j_{b}-M_{ab}} (-1)^{-j_{c}+j_{d}-M_{cd}} \hat{J}_{ab} \hat{J}_{cd} \times \langle (ab) J_{ab} | \{ \vec{C}^{k}(1) \vec{C}^{k}(2) \}_{0}^{0} | (cd) J_{cd} \rangle$$
(37)

 $^{{}^9}R^k_{\bar{A}\bar{B}\bar{C}\bar{D}}$ represents the Slater integral. The tilde~indicates no dependency on the projection of the angular momentum (*m* quantum number).

Formalism 00000 0000 Coupled-cluster equations

Summary 00

Coulomb matrix elements

Using the Wigner-Eckart theorem,

Filling in the known reduced matrix element and rearranging,¹⁰

$$\langle ab|\frac{1}{r_{12}}|cd\rangle = \sum_{k} (-1)^{k} R^{k}_{\tilde{A}\tilde{B}\tilde{C}\tilde{D}} \sum_{J,M} \begin{pmatrix} j_{a} & j_{b} & J\\ m_{a} & m_{b} - M \end{pmatrix} \begin{pmatrix} j_{c} & j_{d} & J\\ m_{c} & m_{d} - M \end{pmatrix} (-1)^{ff}$$

$$\times \hat{J}_{ja}\hat{j}_{c}\hat{j}_{b}\hat{J}_{d} \begin{pmatrix} j_{a} & k & j_{c} \\ \frac{1}{2} & 0 - \frac{1}{2} \end{pmatrix} \begin{pmatrix} j_{b} & k & j_{d} \\ \frac{1}{2} & 0 - \frac{1}{2} \end{pmatrix} \begin{pmatrix} j_{a} & j_{c} & k\\ j_{d} & j_{b} & J \end{pmatrix}$$

$$(39)$$

Which can be expressed as,

$$\langle ab|\frac{1}{r_{12}}|cd\rangle = \sum_{J,M} \begin{pmatrix} j_a & j_b & J\\ m_a & m_b - M \end{pmatrix} \begin{pmatrix} j_c & j_d & J\\ m_c & m_d - M \end{pmatrix} X^J_{\bar{a}\bar{b}\bar{c}\bar{d}}$$
(40)

 \rightarrow The integral is split in 3j symbol and reduced matrix element. The reduced matrix element needs to be calculated only once.

$${}^{10}(-1)^{ff} = (-1)^{-j_a+2j_b+j_d-2M+J+k+j_a+1/2+j_b+1/2}$$

Formalism 00000 0000 Coupled-cluster equations

Summary 00

Coulomb matrix elements

Using the Wigner-Eckart theorem,

$$\langle (ab)J_{ab}|\{\vec{C}^{k}(1)\vec{C}^{k}(2)\}_{0}^{0}|(cd)J_{cd}\rangle = \begin{pmatrix} J_{ab} & 0 & J_{cd} \\ -M_{ab} & 0 & M_{cd} \end{pmatrix} (-1)^{J_{ab}-M_{ab}}\langle (j_{a},j_{b})J_{ab}||\{\vec{C}^{k}(1)\vec{C}^{k}(2)\}^{0}||(j_{c},j_{d})J_{cd}\rangle$$

$$(38)$$

Filling in the known reduced matrix element and rearranging,¹⁰

$$\begin{aligned} \langle ab|\frac{1}{r_{12}}|cd\rangle &= \sum_{k} (-1)^{k} R^{k}_{\tilde{A}\tilde{B}\tilde{C}\tilde{D}} \sum_{J,M} \begin{pmatrix} j_{a} & j_{b} & J\\ m_{a} & m_{b} - M \end{pmatrix} \begin{pmatrix} j_{c} & j_{d} & J\\ m_{c} & m_{d} - M \end{pmatrix} (-1)^{ff} \\ &\times \hat{J}_{ja}\hat{j}_{c}\hat{j}_{b}\hat{j}_{d} \begin{pmatrix} j_{a} & k & j_{c}\\ \frac{1}{2} & 0 - \frac{1}{2} \end{pmatrix} \begin{pmatrix} j_{b} & k & j_{d}\\ \frac{1}{2} & 0 - \frac{1}{2} \end{pmatrix} \begin{pmatrix} j_{a} & j_{c} & k\\ j_{d} & j_{b} & J \end{pmatrix} \end{aligned}$$
(39)

Which can be expressed as,

$$\langle ab|\frac{1}{r_{12}}|cd\rangle = \sum_{J,M} \begin{pmatrix} j_a & j_b & J\\ m_a & m_b - M \end{pmatrix} \begin{pmatrix} j_c & j_d & J\\ m_c & m_d - M \end{pmatrix} X^J_{\tilde{a}\tilde{b}\tilde{c}\tilde{d}}$$
(40)

 \rightarrow The integral is split in 3j symbol and reduced matrix element. The reduced matrix element needs to be calculated only once.

$${}^{10}(-1)^{ff} = (-1)^{-j_a+2j_b+j_d-2M+J+k+j_a+1/2+j_b+1/2}$$

Formalism 00000 0000 Coupled-cluster equations

Summary 00

Coulomb matrix elements

Using the Wigner-Eckart theorem,

$$\langle (ab) J_{ab} | \{ \vec{C}^{k}(1) \vec{C}^{k}(2) \}_{0}^{0} | (cd) J_{cd} \rangle$$

$$= \begin{pmatrix} J_{ab} & 0 & J_{cd} \\ -M_{ab} & 0 & M_{cd} \end{pmatrix} (-1)^{J_{ab} - M_{ab}} \langle (j_{a}, j_{b}) J_{ab} | | \{ \vec{C}^{k}(1) \vec{C}^{k}(2) \}^{0} | | (j_{c}, j_{d}) J_{cd} \rangle$$

$$(38)$$

Filling in the known reduced matrix element and rearranging,¹⁰

$$\langle ab|\frac{1}{r_{12}}|cd\rangle = \sum_{k} (-1)^{k} R^{k}_{\tilde{A}\tilde{B}\tilde{C}\tilde{D}} \sum_{J,M} \begin{pmatrix} j_{a} & j_{b} & J\\ m_{a} & m_{b} - M \end{pmatrix} \begin{pmatrix} j_{c} & j_{d} & J\\ m_{c} & m_{d} - M \end{pmatrix} (-1)^{ff}$$

$$\times \hat{J}\hat{j}_{a}\hat{j}_{c}\hat{j}_{b}\hat{j}_{d} \begin{pmatrix} j_{a} & k & j_{c} \\ \frac{1}{2} & 0 - \frac{1}{2} \end{pmatrix} \begin{pmatrix} j_{b} & k & j_{d} \\ \frac{1}{2} & 0 - \frac{1}{2} \end{pmatrix} \begin{cases} j_{a} & j_{c} & k\\ j_{d} & j_{b} & J \end{cases}$$

$$(39)$$

Which can be expressed as,

$$\langle ab|\frac{1}{r_{12}}|cd\rangle = \sum_{J,M} \begin{pmatrix} j_a & j_b & J\\ m_a & m_b - M \end{pmatrix} \begin{pmatrix} j_c & j_d & J\\ m_c & m_d - M \end{pmatrix} X^J_{\tilde{a}\tilde{b}\tilde{c}\tilde{d}}$$
(40)

 \rightarrow The integral is split in 3j symbol and reduced matrix element. The reduced matrix element needs to be calculated only once.

$${}^{10}(-1)^{ff} = (-1)^{-j_a+2j_b+j_d-2M+J+k+j_a+1/2+j_b+1/2}$$

Summary 00

Angular reduction for tensors products

$$\langle \mathbf{ab} | | \mathbf{cd} \rangle \mathbf{t}_{klij} =$$

$$\sum_{JJ'MM'} \begin{pmatrix} j_a & j_b & J \\ m_a & m_b & -M \end{pmatrix} \begin{pmatrix} j_c & j_d & J \\ m_c & m_d & -M \end{pmatrix} \begin{pmatrix} j_k & j_l & J' \\ m_k & m_l & -M' \end{pmatrix} \begin{pmatrix} j_i & j_j & J' \\ m_i & m_j & -M' \end{pmatrix} \bar{X}_{\bar{a}\bar{b}\bar{c}\bar{d}}^J \bar{t}_{\bar{k}\bar{l}\bar{l}\bar{j}}^{J'}$$

$$(41)$$

 \rightarrow Making use of graph-theory-based angular momentum reduction¹¹ the 3-*j* symbols product can be reduced to a factor that can be calculated analytically.

¹¹ Tichai, A., Wirth, R., Ripoche, J., & Duguet, T. (2020). The European Physical Journal A, 56, 1-25.

Summary 00

Angular reduction for tensors products

$$\langle \mathbf{ab} | | \mathbf{cd} \rangle \mathbf{t}_{klij} =$$

$$\sum_{JJ'MM'} \begin{pmatrix} j_a & j_b & J \\ m_a & m_b & -M \end{pmatrix} \begin{pmatrix} j_c & j_d & J \\ m_c & m_d & -M \end{pmatrix} \begin{pmatrix} j_k & j_l & J' \\ m_k & m_l & -M' \end{pmatrix} \begin{pmatrix} j_i & j_j & J' \\ m_i & m_j & -M' \end{pmatrix} \bar{X}_{\bar{a}\bar{b}\bar{c}\bar{d}}^J \bar{t}_{\bar{k}\bar{l}\bar{l}\bar{j}}^{J'}$$

$$(41)$$

 \rightarrow Making use of graph-theory-based angular momentum reduction 11 the 3-j symbols product can be reduced to a factor that can be calculated analytically.

¹¹Tichai, A., Wirth, R., Ripoche, J., & Duguet, T. (2020). The European Physical Journal A, 56, 1-25.

Summary 00

Reduced amplitude equations

After the angular momentum reduction, the amplitude equations can be simplified

$$(\varepsilon_{a} - \varepsilon_{i})t_{i}^{a} = \langle a|v|i\rangle + \sum_{kc} \langle k|v|c\rangle t_{ik}^{ac} + \dots + \sum_{klcd} \langle kl||ic\rangle t_{kl}^{ac} + \dots$$

$$\sim \dots + \sum_{klcd} [\text{Angularfactor}]\bar{X}_{\bar{k}\bar{l}\bar{i}\bar{c}}\bar{t}_{\bar{k}\bar{l}}^{\bar{a}\bar{c}} + \dots$$
(42)

- The energies of the states can be obtained by diagonalizing the effective Hamiltonian. The Bloch equation can be solved to find the wave operator
- The Fock-space coupled-cluster method can be used to study electronic states with a different number of electrons. Its equations can be obtained from the single-reference coupled-cluster ones
- The use of angular momentum theory and spherical symmetry reduce the coupled-cluster amplitude equations

- Derive the coupled-cluster amplitude equations in the CCSDT approximation $(T = T_1 + T_2 + T_3)$ for FSCC (0,0) and higher sectors
- Reduce the coupled-cluster amplitude equations using angular momentum graph theory
- Implement the reduced coupled-cluster amplitude equations to calculate electronic energies in atoms with a higher precision and a broader applicability

Summary

- The energies of the states can be obtained by diagonalizing the effective Hamiltonian. The Bloch equation can be solved to find the wave operator
- The Fock-space coupled-cluster method can be used to study electronic states with a different number of electrons. Its equations can be obtained from the single-reference coupled-cluster ones
- The use of angular momentum theory and spherical symmetry reduce the coupled-cluster amplitude equations

- Derive the coupled-cluster amplitude equations in the CCSDT approximation $(T = T_1 + T_2 + T_3)$ for FSCC (0,0) and higher sectors
- Reduce the coupled-cluster amplitude equations using angular momentum graph theory
- Implement the reduced coupled-cluster amplitude equations to calculate electronic energies in atoms with a higher precision and a broader applicability

Summary

- The energies of the states can be obtained by diagonalizing the effective Hamiltonian. The Bloch equation can be solved to find the wave operator
- The Fock-space coupled-cluster method can be used to study electronic states with a different number of electrons. Its equations can be obtained from the single-reference coupled-cluster ones
- The use of angular momentum theory and spherical symmetry reduce the coupled-cluster amplitude equations

- Derive the coupled-cluster amplitude equations in the CCSDT approximation $(T = T_1 + T_2 + T_3)$ for FSCC (0,0) and higher sectors
- Reduce the coupled-cluster amplitude equations using angular momentum graph theory
- Implement the reduced coupled-cluster amplitude equations to calculate electronic energies in atoms with a higher precision and a broader applicability

Summary

- The energies of the states can be obtained by diagonalizing the effective Hamiltonian. The Bloch equation can be solved to find the wave operator
- The Fock-space coupled-cluster method can be used to study electronic states with a different number of electrons. Its equations can be obtained from the single-reference coupled-cluster ones
- The use of angular momentum theory and spherical symmetry reduce the coupled-cluster amplitude equations

- Derive the coupled-cluster amplitude equations in the CCSDT approximation $(T = T_1 + T_2 + T_3)$ for FSCC (0,0) and higher sectors
- Reduce the coupled-cluster amplitude equations using angular momentum graph theory
- Implement the reduced coupled-cluster amplitude equations to calculate electronic energies in atoms with a higher precision and a broader applicability

Summary

- The energies of the states can be obtained by diagonalizing the effective Hamiltonian. The Bloch equation can be solved to find the wave operator
- The Fock-space coupled-cluster method can be used to study electronic states with a different number of electrons. Its equations can be obtained from the single-reference coupled-cluster ones
- The use of angular momentum theory and spherical symmetry reduce the coupled-cluster amplitude equations

Outlook

- Derive the coupled-cluster amplitude equations in the CCSDT approximation $(T = T_1 + T_2 + T_3)$ for FSCC (0,0) and higher sectors
- Reduce the coupled-cluster amplitude equations using angular momentum graph theory
- Implement the reduced coupled-cluster amplitude equations to calculate electronic energies in atoms with a higher precision and a broader applicability

Summary

- The energies of the states can be obtained by diagonalizing the effective Hamiltonian. The Bloch equation can be solved to find the wave operator
- The Fock-space coupled-cluster method can be used to study electronic states with a different number of electrons. Its equations can be obtained from the single-reference coupled-cluster ones
- The use of angular momentum theory and spherical symmetry reduce the coupled-cluster amplitude equations

Outlook

- Derive the coupled-cluster amplitude equations in the CCSDT approximation $(T = T_1 + T_2 + T_3)$ for FSCC (0,0) and higher sectors
- Reduce the coupled-cluster amplitude equations using angular momentum graph theory
- Implement the reduced coupled-cluster amplitude equations to calculate electronic energies in atoms with a higher precision and a broader applicability

 $\underset{\substack{OOO\\OO}}{\text{Coupled-cluster equations}}$

Spherical symmetry

Summary O

Acknowledgements

Internal team

Martijn Reitsma

Aleksandra Kiuberies

Anastasia Borschevsky

Ephraim Eliav

External collaborators

Alexander Tichai

Thomas Duguet

Alexander Oleinichenko

Thank you for your attention!