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Relativistic Fock-space coupled-cluster method

Post–Hartree–Fock method including

✓ Special relativity and electron correlation

✓ Multireference

• closed-shell systems (with quasi-degenerate levels)

• open-shell systems (such as transition metal atoms)

• excited states in general

✓ Single wave operator for all states

• many electronic states obtained in one calculation

• energy differences: ionization potentials, electron
affinities, excitation energies

Highly accurate and large applicability
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Atomic relativistic Fock space coupled-cluster method

Atomic systems

✓ Spherical symmetry

• Separation of angular and radial terms

• Angular momentum reduction

→ TRAFS-3C, Tel Aviv atomic computational package
E. Eliav and U. Kaldor
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Restricted to 2 holes/particles1

1Figure from A. Borschevsky.
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→ Extend scope of applicability to 4 holes/particles1

1Figure from A. Borschevsky.
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Atomic relativistic Fock space coupled-cluster method

Atomic systems
✓ Spherical symmetry

• Separation of angular and radial terms

• Angular momentum reduction

→ Extend the applicability and accuracy of the atomic relativistic FSCC method

→ Triple excitations must be included in computations for HSFSCC

Part I: Derivation of the equations (this talk)

Part II: Implementation (Martijn’s talk)
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Outline

Introduction

Formalism
Effective operator and Bloch equation
Fock space

Coupled-cluster equations
Normal-ordered operators
Amplitude equations

Spherical symmetry
Coulomb matrix elements
Angular reduction

Summary

5 / 25



Introduction Formalism Coupled-cluster equations Spherical symmetry Summary

Effective operator

Schrödinger (or Dirac) equation

H|Ψµ⟩ = Eµ|Ψµ⟩ (1)

H is divided in the zero-order Hamiltonian and a perturbation

H = H0 + V (2)

The zero-order Hamiltonian follows the eigenvalue equation

H0|ϕµ⟩ = E0
µ|ϕµ⟩ (3)

|ϕµ⟩ zero-order solutions (Slater determinants)

✓ known
✓ good approximation to the exact wave function |Ψµ⟩
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Effective operator

• Wave function:

Model space (LP) and orthogonal space (LQ)

LP → all functions associated with one or several configurations

Example: Be:

|Ψµ⟩ = a|1s22s2 1S⟩+ b|1s22p2 1S⟩+ ...

LP : 1s22s2, 1s22p2 (1S)

|Φµ⟩ = a|1s22s2 1S⟩+ b|1s22p2 1S⟩

• Projection operator:
P|Ψµ⟩ = |Φµ⟩ (4)

• Wave operator:
Ω|Φµ⟩ = |Ψµ⟩ (5)
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Effective operator

Schrödinger (or Dirac) equation,

H|Ψµ⟩ = Eµ|Ψµ⟩ (6)

replacing |Ψµ⟩ = Ω|Φµ⟩ and operating on the left with P,

PHΩ|Φµ⟩ = Eµ|Φµ⟩ (7)

Effective Hamiltonian

H̃|Φµ⟩ = Eµ|Φµ⟩ (8)

The effective Hamiltonian acting on the model wave function gives the exact energy
of the µ state.

→ By diagonalizing H̃ we obtain the electronic state energies Eµ and the model func-
tions Φµ

Find the wave operator→
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Derivation of the generalized Bloch equation

H|Ψµ⟩ = Ea|Ψµ⟩ (9)

(Ea − H0)|Ψµ⟩ = V |Ψµ⟩ (10)

operating on the left with P

(Ea − H0)|Φµ⟩ = PV |Ψµ⟩ (11)

and operating now with Ω

Ea|Ψµ⟩ − ΩH0|Φµ⟩ = ΩPV |Ψµ⟩ (12)

and rearranging,

H|Ψµ⟩ − ΩH0|Φµ⟩ = ΩPV |Ψµ⟩
(H0 + V )Ω|Φµ⟩ − ΩH0|Φµ⟩ = ΩPV |Ψµ⟩

H0Ω|Φµ⟩ − ΩH0|Φµ⟩ = −VΩ|Φµ⟩+ΩPVΩ|Φµ⟩
(13)

Therefore,
[Ω,H0]P = (VΩ− ΩPVΩ)P (14)

9 / 25



Introduction Formalism Coupled-cluster equations Spherical symmetry Summary

Coupled-cluster equation

[Ω,H0]P = (VΩ− ΩPVΩ)P (15)

Expanding the wave operator in n-body parts,

Ω = 1 + Ω1 +Ω2 + ... (16)

→ Solving the non-perturbative equations self-consistently is equivalent to summing
the corresponding terms in the perturbation expansion to all orders

Exponential ansatz2

Ω = {eT } = 1 + T +
1

2
{T 2}+ ... =

∞∑
n

1

n!
{T n} (17)

T = T1 + T2 + ... (18)

✓ Truncating T after the 2-body term, 4-body terms are included in Ω (T 2)

2The brackets represent the normal ordered operators: annihilation operators moved to the right of creation
operators.
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Model space

Including all determinants obtained by distributing h holes over the active hole states
and p particles over active particle states in all possible ways → Complete model
space

→Fock-space sector (h,p)
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Fock-space coupled-cluster sectors
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Fock-space coupled-cluster sectors

• Model space
LP = L00P ⊕ L10P ⊕ L01P ⊕ L11P ⊕ ... (19)

• Projector operator
P = P00 + P10 + P01 + P11 + ... (20)

Qhp = 1− Php (21)

• Effective Hamiltonian

H̃ = H̃00 + H̃10 + H̃01 + H̃11 + ... (22)

diagonalizing the H̃hp matrices in each (h, p) sector we obtain the corresponding
electronic state energies and model functions

• Cluster operator
T = T 00 + T 10 + T 01 + T 11 + ... (23)
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Fock-space coupled-cluster equation

[T hp
n ,H0]P

hp = (VΩ− ΩPhpVΩ)n,connP
hp (24)

✓ Partial decoupling according to the subsystem embedding condition3

✓ Linked diagram theorem → size consistent (for energy and wave function)4

3Mukherjee, D., & Pal, S. (1989). Advances in Quantum Chemistry, 20, 291-373.
4Lindgren, I. (1985). Physica Scripta, 32(4), 291.
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Second quantized operators

• Electronic Hamiltonian

H = −
1

2

N∑
i=1

∇2
i −

N∑
i=1

Z

ri
+

N∑
i<j

1

rij
(25)

H = H0 + V (26)

H0 =
N∑
i=1

(
−
1

2
∇2

i −
Z

ri
+ u(ri )

)
V =

N∑
i<j

1

rij
−

N∑
i=1

u(ri ) (27)

• Second quantization

H0 =
∑
i

a†i aiεi (28)

V = −
∑
ij

a†i aj ⟨i |u|j⟩+
1

2

∑
ijkl

a†i a
†
j alak ⟨ij |

1

r12
|kl⟩ (29)
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• Normal-ordered operators
• Zero-order Hamiltonian

H0 =
occ∑
a

εa +
∑
i

{a†i ai}εi (30)

• Perturbation

V = V0 + V1 + V2

V0 =
core∑
a

⟨a| − u|a⟩ +
1

2

core∑
ab

(
⟨ab|

1

r12
|ab⟩ − ⟨ba|

1

r12
|ab⟩

)
V1 =

∑
ij

{a†i aj}⟨i|v |j⟩

V2 =
∑
ijkl

{a†i a
†
j alak}⟨ij|

1

r12
|kl⟩

(31)

• Cluster operator
T ≡ T1 + T2 + ... (32)

Tn =
1

n!

∑
a1..an

∑
i1...in

t
a1...an
i1..in

{a†i1 ...a
†
in
aan ...aa1} (33)
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• Zero-order Hamiltonian

H0 =
occ∑
a

εa +
∑
i

{a†i ai}εi (30)

• Perturbation

V = V0 + V1 + V2

V0 =
core∑
a

⟨a| − u|a⟩ +
1

2

core∑
ab

(
⟨ab|

1

r12
|ab⟩ − ⟨ba|

1

r12
|ab⟩

)
V1 =

∑
ij

{a†i aj}⟨i|v |j⟩

V2 =
∑
ijkl

{a†i a
†
j alak}⟨ij|

1

r12
|kl⟩

(31)

• Cluster operator
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Diagrammatic notation5

V = V0 + V1 + V2

T = T1 + T2 + T3 + ...

5Figure from Shavitt, I., & Bartlett, R. J. (2009). Cambridge university press.

17 / 25



Introduction Formalism Coupled-cluster equations Spherical symmetry Summary

Diagrammatic notation5

V = V0 + V1 + V2

T = T1 + T2 + T3 + ...

5Figure from Shavitt, I., & Bartlett, R. J. (2009). Cambridge university press.

17 / 25



Introduction Formalism Coupled-cluster equations Spherical symmetry Summary

Amplitude equations

[Tn,H
0] = (VΩ− ΩPVΩ)n,conn (34)

• l.h.s.∑
pq

{a†paq}(εq − εp)t
p
q +

1

2

∑
pqsr

{a†pa†qasar}(εs + εr − εp − εq)t
pq
rs + ... (35)

• r.h.s. →6Wick’s theorem for operator products

6Figure from Lindgren, I., & Morrison, J. (2012). Springer Science & Business Media.
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Amplitude equations

[Tn,H
0] = (VΩ− ΩPVΩ)n,conn (34)

• l.h.s.∑
pq

{a†paq}(εq − εp)t
p
q +

1

2

∑
pqsr

{a†pa†qasar}(εs + εr − εp − εq)t
pq
rs + ... (35)

• r.h.s. 6Goldstone diagrams

→ identifying the n-body terms on the l.h.s. and r.h.s, we can write down a series of
coupled equations that can be solved iteratively to find the cluster amplitudes.

6Single particle (in CCSD). Figure from Shavitt, I., & Bartlett, R. J. (2009). Cambridge university press.
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• Higher sectors7

• Fock-space from single-reference coupled-cluster diagrams8

7Figure taken from A. Oleynichenko PhD thesis.
8Example for sector (0,1). Figure taken from A. Oleynichenko PhD thesis.
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Coulomb matrix elements

Considering the Coulomb interaction, separating radial9 and angular variables,

⟨ab|
1

r12
|cd⟩ =

∑
k

(−1)k k̂ Rk
ÃB̃C̃ D̃

⟨ab|{C⃗ k (1)C⃗ k (2)}00|cd⟩. (36)

Coupling ab and cd ,∑
Jab,Jcd

∑
Mab,Mcd

(
ja jb Jab
ma mb −Mab

)(
jc jd Jcd
mc md −Mcd

)
(−1)−ja+jb−Mab (−1)−jc+jd−Mcd Ĵab Ĵcd

× ⟨(ab)Jab|{C⃗ k (1)C⃗ k (2)}00|(cd)Jcd ⟩
(37)

9Rk
ÃB̃C̃ D̃

represents the Slater integral. The tilde˜indicates no dependency on the projection of the angular

momentum (m quantum number).
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Coulomb matrix elements

Using the Wigner-Eckart theorem,

⟨(ab)Jab|{C⃗ k (1)C⃗ k (2)}00|(cd)Jcd ⟩

=

(
Jab 0 Jcd

−Mab 0Mcd

)
(−1)Jab−Mab ⟨(ja, jb)Jab||{C⃗ k (1)C⃗ k (2)}0||(jc , jd )Jcd ⟩

(38)

Filling in the known reduced matrix element and rearranging,10

⟨ab|
1

r12
|cd⟩ =

∑
k

(−1)k Rk
ÃB̃C̃ D̃

∑
J,M

(
ja jb J
ma mb −M

)(
jc jd J
mc md −M

)
(−1)ff

× Ĵ ĵa ĵc ĵb ĵd

(
ja k jc
1
2
0− 1

2

)(
jb k jd
1
2
0− 1

2

){
ja jc k
jd jb J

} (39)

Which can be expressed as,

⟨ab|
1

r12
|cd⟩ =

∑
J,M

(
ja jb J
ma mb −M

)(
jc jd J
mc md −M

)
X J
ãb̃c̃d̃

(40)

→ The integral is split in 3j symbol and reduced matrix element. The reduced matrix
element needs to be calculated only once.

10(−1)ff = (−1)−ja+2jb+jd−2M+J+k+ja+1/2+jb+1/2
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Angular reduction for tensors products

⟨ab||cd⟩tklij =∑
JJ′MM′

(
ja jb J
ma mb −M

)(
jc jd J
mc md −M

)(
jk jl J′

mk ml −M′

)(
ji jj J′

mi mj −M′

)
X̄ J
ãb̃c̃d̃

t̄J
′

k̃ l̃ ĩ j̃
(41)

→ Making use of graph-theory-based angular momentum reduction11 the 3-j symbols
product can be reduced to a factor that can be calculated analytically.

11Tichai, A., Wirth, R., Ripoche, J., & Duguet, T. (2020). The European Physical Journal A, 56, 1-25.

22 / 25



Introduction Formalism Coupled-cluster equations Spherical symmetry Summary

Angular reduction for tensors products

⟨ab||cd⟩tklij =∑
JJ′MM′

(
ja jb J
ma mb −M

)(
jc jd J
mc md −M

)(
jk jl J′

mk ml −M′

)(
ji jj J′

mi mj −M′

)
X̄ J
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Reduced amplitude equations

After the angular momentum reduction, the amplitude equations can be simplified

(εa − εi )t
a
i = ⟨a|v |i⟩+

∑
kc

⟨k|v |c⟩tacik + ...+
∑
klcd

⟨kl ||ic⟩tackl + ...

∼ ...+
∑
klcd

[Angularfactor]X̄k̃ l̃ ĩ c̃ t̄
ãc̃
k̃ l̃

+ ...
(42)
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Summary

• The energies of the states can be obtained by diagonalizing the effective
Hamiltonian. The Bloch equation can be solved to find the wave operator

• The Fock-space coupled-cluster method can be used to study electronic states
with a different number of electrons. Its equations can be obtained from the
single-reference coupled-cluster ones

• The use of angular momentum theory and spherical symmetry reduce the
coupled-cluster amplitude equations

Outlook

• Derive the coupled-cluster amplitude equations in the CCSDT approximation
(T = T1 + T2 + T3) for FSCC (0,0) and higher sectors

• Reduce the coupled-cluster amplitude equations using angular momentum graph
theory

• Implement the reduced coupled-cluster amplitude equations to calculate
electronic energies in atoms with a higher precision and a broader applicability
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