(i) Quantum AI

A quantum computing perspective on many-body methods

Nicholas Rubin
ENST "Workshop Automated tools for many-body theory"
June 7, 2023

Google

$\mathrm{p}^{\dagger} \mathrm{q}$: A tool for prototyping many-body methods for quantum chemistry

- automated equation and code generation for many-body quantum chemistry methods
- support for :
- normal order with respect to the true vacuum or the fermi vacuum
- CC-type objects (T, L, R) with up to four-body transitions
- EE- / EA- / IP-type EOM-CC objects
- Python einsum implementations (current) and C++ TiledArray implementations (coming soon)
- Cavity QED EOM-CC

https://github.com/edeprince3/pdaggerq
N. C. Rubin and A. E. DePrince III, Mol. Phys. 119, e1954709 (2021)

$\mathrm{p}^{\dagger} \mathrm{q}$: A tool for prototyping many-body methods for quantum chemistry

- automated equation and code generation for many-body quantum chemistry methods
- support for :
- normal order with respect to the true vacuum or the fermi vacuum
- CC-type objects (T, L, R) with up to four-body transitions
- EE- / EA- / IP-type EOM-CC objects
- Python einsum implementations (current) and C++ TiledArray implementations (coming soon)
- Cavity QED EOM-CC

```
# import pdaggerq
# import pdaggerc
# import equation parser
from pdaggerq.parser import contracted_strings_to_tensor_terms
# grab pq_helper for fermio vacuum
pq = pdaggerq.pq_helper("fermi")
# ccsd doubles residual
# set bra
pq.set_left_operators([['e2(i,j,b,a)']])
# add similarity-transform hamiltonian 
pq.add_stoperator(1.0,['f'],['t1','t2'])
pq.add_st_operator(1.0,['v'],['t1'', 't2'])
pq.simplify()
# grab list of fully-contracted strings, then print
# grab list of fully-contracted string
terms = pq.fully_cont
# python code
terms = contracted_strings_to_tensor_terms(terms)
for my_term in terms:
    my_term in terms:
    print("8s" % (my_term.einsum_string(update_val='doubles_res','j')),
    print()
pq.clear()
hen print
```

```
\begin{tabular}{|c|c|c|}
\hline  & 'P( \(\mathrm{P}, \mathrm{j})\) ', 'f(k,j) & 't2 (a, b, i, k) 'l \\
\hline ['+1.00000000000000' & 'P(a,b)', 'f(a,c)' & 't2 (c, b, i, j) '] \\
\hline ['-1.00000000000000' & 'P(i,j)', 'f(k,c) & 't1 (c,j)', 't2(a,b,i,k)'] \\
\hline ['-1.00000000000000' & 'P(a,b)', 'f(k,c)' & 't1 (a,k)', 't2 (c, b,i,j)'] \\
\hline & & \\
\hline
\end{tabular}
lol
#
# -1.0000 P(i,j)f(k,j)*t2(a,b,i,k)
contracted_intermediate = -1.000000000000000 * einsum('kj,abik->abij','f[o,of, t2)
#.0000 P(a,b)f(a,c)*t2 (c,b,i,j)
# 1.0000 P(a,b) f(a,c)*t2(c,b,i,j)
contracted_intermediate = 1.00000000000000 * einsum('ac,cbij->abij', f[v,v], t2),
-1.0000 P(i,j) £(k,c)*t1(c,j)*t2 (a,b,i,k)
contracted_intermediate = -1.000000000000000 * einsum('kc,cj,abik->abij', f[0, v], t1, t2, optimize=['einsum_path', (0, 1), (0, 1)])
doubles_res += 1.00000 * contracted_intermediate + -1.00000 * einsum('abij->abji', contracted_intermediate)
# -1.0000 P(a,b)f(k,c)*t1 (a,k)*t2 (c,b,i,j)
contracted_intermediate =-1.000000000000000 * einsum('kc,ak,cbij->abij', f[0, v], t1, t2, optimize=['einsum_path',(0, 1), (0, 1)])
doubles_res += 1.00000 * contracted_intermediate + -1.00000 * einsum('abij->baij','contracted_intermediate)
# doubles_res += 1.0000<a,b|li,j> 1.00000000000000 * einsum('abij->abij', g[v,v,o, o])
doubles_res += 1.000000000000000 * einsum('abij->abij',g[v,v,o, o])
(16:36~/) python ccsd.py 
[+1.00000000000000',''P(a,b)',''f(a,c)',''t2(c,b,i,j)'] (a,b,i,k)']
```

\cdots

Qubits and gates, briefly

Any 2-state quantum system is a qubit, $|\psi\rangle=a_{0}|0\rangle+a_{1}|1\rangle$
For 2 qubits, $\quad|\psi\rangle=a_{00}|00\rangle+a_{01}|01\rangle+a_{10}|10\rangle+a_{11}|11\rangle$
N qubit systems requires $O\left(2^{N}\right)$ classical bits to represent
Information manipulated by controlled Hamiltonian evolutions

For instance, evolve 2 qubits under $H=\left(Z_{0}-I_{0}\right) \otimes\left(I_{1}-X_{1}\right)$ for time, $t=\pi / 4$

$$
e^{-i H t}:\left|b_{0}\right\rangle\left|b_{1}\right\rangle \mapsto\left|b_{0}\right\rangle\left|b_{0} \oplus b_{1}\right\rangle
$$

CNOT + single qubit rotations "universal" for all quantum dynamics / circuits

"Transmon" qubit

(t) Quantum AI

Google's roadmap to fault-tolerant quantum computing

Are we on a path to qchem simulation advantage?

We are in the age of noisy intermediate scale (NISQ) quantum devices
We can run circuits on ~ 50 qubits but errors severely limit circuit size

Experimental explorations are alive and well
Experiments are a playground for validating error mitigation and provable results

Hartree-Fock on a superconducting qubit quantum

 computer- Largest variational quantum algorithm to date
- Primitive for quantum computing algorithms (Givens rotation)
- Non-interacting fermions:

- Classically simulable :(
- Free gradient estimation :)
- McWeeny purification :)

Science 369 (6507), 1084-1089, 2020

Rigorous results in NISQ

Doubling in space: Virtual distillation
Phys. Rev. X 11, 041036 (2021)

Circuit reps $\propto 1 / f^{4}$

Doubling in time: Verified phase estimation PRX Quantum 2, 020317 (2021)

Circuit reps $\propto 1 / f^{2}$

Measurement complexity
Optimal deterministic measurement complexity 1-RDM, 2-RDM, k-RDM
Science 369 1084-1089 (2021), Phys. Rev. X 10, 031064 (2020), Quantum, 4, 276.

SORTED INSERTION	n-qubit Clifford circuits $C \sim \mathcal{O}\left(n^{2 k-1}\right)$ (empirical)
Majorana clique cover	Ferm. Gaussian circuits $C=\mathcal{O}\left(n^{k}\right)(k \leq 2)$ $\cdots \cdots+\cdots$
Fermionic swap networks	Basis-rotation circuits $C=\tilde{\mathcal{O}}\left(n^{k}\right)$ …......
Classical shadows (FGU)	Ferm. Gaussian circuits $\begin{gathered} K_{r} / r=\tilde{\mathcal{O}}\left(n^{k}\right) \\ \\ \end{gathered}$
Classical shadows (NC)	Basis-rotation circuits $\begin{gathered} K_{r} / r=\tilde{\mathcal{O}}\left(n^{k}\right) \\ -(\mathrm{JW})-\frac{1}{\uparrow}(\mathrm{BK}) \end{gathered}$

$$
M=\mathcal{O}\left[\binom{n}{k} \frac{k^{3 / 2} \log n}{\varepsilon^{2}}\right]
$$

The Richardson-Gaudin model (10 sites)

$H=\sum_{j, \alpha} j n_{j, \alpha}+g \sum_{j, k} c_{j \uparrow}^{\dagger} c_{j \downarrow}^{\dagger} c_{k \downarrow} c_{k \uparrow}$

- Qualitatively accurate for Δ (superconducting order parameter)
- EV ~ PS-VD in performance.
- Mean improvement 50x over Raw VQE
- Error stable across range of g values, unlike classical methods (pccd, BCS).
(t) Quantum AI

Summary of NISQ Progress

- VQE is very popular but progress in chemistry has been slow and the approach is very difficult to scale
- The number of measurements required quickly becomes problematically large
- Most compelling ansatz require circuits far too deep

Molecule	\# Qubits	Year
H_{2}	2	2014
$\mathrm{H}_{2} \mathrm{O}$	5	2020
BeH_{2}	6	2017
$\mathrm{~N}_{2} \mathrm{H}_{2}$	10^{*}	2020
H_{12}	12^{*}	2020

- Theoretical basis for error mitigation can though needs to be verified in practice
- Different strategies (QC-QMC) are needed [Lee et al. Nature 603 (2022)]
(1) Quantum Al

Are we on a path to qchem simulation advantage?

Theoretical progress in QPE going strong
Scaling in chemically relevant parameters are now close to optimal

Time for an honest assessment of progress?

Quantum simulation advantage?

FeMoCo (fertilizer catalyst) PRX Quantum 2 (3), 030305

4 M qubits
4 Days of runtime

4.6 M qubits

3 Days of runtime

? M qubits
? Days of runtime

Simulating Quantum Mechanics on a Quantum Computer

 Phase Estimation AlgorithmTime-evolution of eigenstate encodes the eigenvalues in phase information

Simulating Quantum Mechanics on a Quantum Computer Phase Estimation Algorithm

Time-evolution of eigenstate encodes the eigenvalues in phase information

$$
\langle\hat{Z}\rangle=\langle u|\left(\hat{U}+\hat{U}^{\dagger}\right)|u\rangle / 2=\frac{1}{2}\left(e^{2 \pi i \phi}+e^{-2 \pi i \phi}\right)=\cos (2 \pi \phi)
$$

Error-corrected quantum chemistry simulation

Science 309:5741 (2005), 1704-1707

1. Prepare an ansatz wavefunction ψ with "reasonable" support on the ground state

$$
H|k\rangle=E_{k}|k\rangle \quad|\langle\psi \mid 0\rangle|^{2}=\text { not-too-small }
$$

2. Form quantum circuit $\mathbf{U}=\mathrm{e}^{-\mathrm{i} f(H)}$ that encodes Hamiltonian spectrum in its eigenvalues

$$
\begin{aligned}
& \text { e.g., for } \\
& \text { Trotter: }
\end{aligned} \quad f(H)=H=\sum_{\ell} H_{\ell} \quad U \approx\left(\prod_{\ell} e^{-i H_{\ell} / r}\right)^{r}
$$

3. Application of \boldsymbol{U} to ψ accumulates phases $f(E)$ encoding the spectrum

$$
U|\psi\rangle=\sum_{k} \underbrace{\langle k \mid \psi\rangle}_{a_{k}} e^{-i f\left(E_{k}\right)}|k\rangle
$$

4. Phase estimation gives E_{0} with error ϵ and probability $\left|a_{0}\right|^{2}$ using $\frac{1}{\epsilon}\left\|\frac{\partial f(E)}{\partial E}\right\|^{-1}$ queries to U (i) Quantum AI

Error-corrected quantum chemistry simulation

Science 309:5741 (2005), 1704-1707, PRX 8, 041015 (2018), PRL 121, 010501 (2018)

1. Prepare an ansatz wavefunction ψ with "reasonable" support on the ground state

$$
H|k\rangle=E_{k}|k\rangle \quad|\langle\psi \mid 0\rangle|^{2}=\text { not-too-small }
$$

2. Form quantum circuit $\boldsymbol{U}=\mathrm{e}^{-\mathrm{i} f(H)}$ that encodes Hamiltonian spectrum in its eigenvalues

$$
\begin{array}{ll}
\text { e.g., for } \\
\text { Qubitization: } & f(H)=\arccos (H / \lambda)
\end{array} U=e^{i \arccos (H / \lambda)}
$$

3. Application of \boldsymbol{U} to ψ accumulates phases $f(E)$ encoding the spectrum

$$
U|\psi\rangle=\sum_{k} \underbrace{\langle k \mid \psi\rangle}_{a_{k}} e^{-i f\left(E_{k}\right)}|k\rangle
$$

4. Phase estimation gives E_{0} with error ϵ and probability $\left|a_{0}\right|^{2}$ using $\mathcal{O}\left(\frac{\lambda}{\epsilon}\right)$ queries to U (i) Quantum AI

Simulating Quantum Mechanics on a Quantum Computer

Phase Estimation Algorithm
Time-evolution of eigenstate encodes the eigenvalues in phase information

Very long coherence times required for eigenstate preparation

Block encoding via LCU

$$
H=\sum_{\ell=1}^{L} \omega_{\ell} U_{\ell} \quad \lambda=\sum_{\ell=1}^{L}\left|\omega_{\ell}\right|
$$

Block encoding H

$$
\begin{aligned}
U & =\left[\begin{array}{cc}
\mathcal{H} & \sqrt{I-\mathcal{H}^{2}} \\
\sqrt{I-\mathcal{H}^{2}} & -\mathcal{H}
\end{array}\right] \\
& =Z \otimes \mathcal{H}+X \otimes \sqrt{I-\mathcal{H}^{2}}
\end{aligned}
$$

2D subspaces

$$
\operatorname{PREPARE}|0\rangle^{\otimes \log L} \mapsto \sum_{\ell=0}^{L-1} \sqrt{\frac{w_{\ell}}{\lambda}}|\ell\rangle
$$

(t) Quantum Al

block encodings arithmetic

$$
\mathcal{B}[H / \alpha]=\left(\begin{array}{cc}
H / \alpha & \cdots \\
\vdots & \ddots
\end{array}\right)
$$

Given block encodings for $H_{1}, H_{2}, \ldots, H_{m}$ basic block encoding arithmetic allows you to generate a unitary encoding for any H in the algebra generated by $H_{1}, H_{2}, \ldots, H_{m}$

Space-time considerations are different within error-correction

What we have in mind is a device with $>99.95 \%$ fidelity physical gates and $\sim 1 \mathrm{MM}$ physical qubits
~1k "physical qubits" per "logical qubit"

- Certain necessary gates (e.g. Toffolis) are very slow, require hundreds of logical qubits
- Gives a huge "constant factor slowdown" in spacetime versus classical computers

Cost of qubitization: block encodings

The complexity of building SELECT and PREPARE largely depends on the Hamiltonian factorization we use. The Coulomb kernel can be factorized in many different ways

$$
H=\sum_{a b c d} \underbrace{h_{a b c d}} a_{a}^{\dagger} a_{b}^{\dagger} a_{d} a_{c}=\sum_{\ell=0}^{L-1} \omega_{\ell} U_{\ell}
$$

Qubits	$\tilde{\mathcal{O}}\left(N^{2}\right)$	$\tilde{\mathcal{O}}\left(N^{3 / 2}\right)$	$\tilde{\mathcal{O}}(N \sqrt{\Xi})$	$\tilde{\mathcal{O}}(N)$
Toffoli	$\tilde{\mathcal{O}}\left(N^{2} \lambda / \epsilon\right)$	$\tilde{\mathcal{O}}\left(N^{3 / 2} \lambda / \epsilon\right)$	$\tilde{\mathcal{O}}(N \lambda \sqrt{\Xi} / \epsilon)$	$\tilde{\mathcal{O}}(N \lambda / \epsilon)$
Qubits	$\tilde{\mathcal{O}}\left(N_{k}^{3 / 2} N^{2}\right)$	$\tilde{\mathcal{O}}\left(N_{k} N^{3 / 2}\right)$	$\tilde{\mathcal{O}}\left(\sqrt{N_{k}} N \sqrt{\Xi}\right)$	$\tilde{\mathcal{O}}\left(N_{k} N\right)$
Toffoli	($\left.v_{k}^{3 / 2} N^{2} \lambda_{\text {sparse }} / \epsilon\right)$	$\tilde{\mathcal{O}}\left(N_{k} N^{3 / 2} \lambda_{\text {SF }} / \epsilon\right)$	$\tilde{\mathcal{O}}\left(\sqrt{N_{k}} N \sqrt{\Xi} \lambda_{\text {DF }} / \epsilon\right)$	$\tilde{\mathcal{O}}\left(N_{k} N \lambda_{\text {DF }} / \epsilon\right)$

Cost of qubitization: block encodings

The complexity of building SELECT and PREPARE largely depends on the Hamiltonian factorization we use. The Coulomb kernel can be factorized in many different ways

$$
H=\sum_{a b c d} \underbrace{h_{a b c d}} a_{a}^{\dagger} a_{b}^{\dagger} a_{d} a_{c}=\sum_{\ell=0}^{L-1} \omega_{\ell} U_{\ell}
$$

Important primitives to construct block encodings

For loop on a seg-tree $\mathrm{O}(\mathrm{L})$ Toffoli

Q-ROM O(L) Toffoli + log(L) ancilla or $\mathrm{O}\left((\mathrm{L} \boldsymbol{\beta})^{0.5}\right)$ Toffoli + $\mathrm{O}\left((\mathrm{L} \beta)^{0.5}\right)$ ancilla

State preparation: PREPARE O(L $L^{1 / 2}$) cost

$$
\sqrt{\frac{1}{L}} \sum_{\ell=0}^{L-1}|\ell\rangle|0\rangle \quad \mapsto \sum_{\ell=0}^{\text {QROM }_{L-1}} \sqrt{\frac{\omega_{\ell}}{\lambda}}|\ell\rangle\left|\mathrm{junk}_{\ell}\right\rangle
$$

Interlude: Circuit gadgets: for loop

Main idea: perform loop by doing depth-first-search on a binary tree

$O(\mathrm{~L})$ Toffoli complexity to construct tree and $\mathrm{O}(\log (\mathrm{L}))$ qubits for control
(i) Quantum Al

Interlude: Circuit gadgets: Data lookup + multiplex

Main idea: read-only-memory circuit using unary iteration

$$
D\left|\mathrm{In}_{\ell}\right\rangle\left|0_{0} \ldots 0_{d}\right\rangle=\left|\mathrm{In}_{\ell}\right\rangle\left|d_{\ell}\right\rangle
$$

$\mathrm{O}(\mathrm{L})$ Toffoli $+\log (\mathrm{L})$ ancilla
or
$O\left((L \beta)^{0.5}\right)$ Toffoli $+O\left((L \beta)^{0.5}\right)$ ancilla

Cost of qubitization: block encodings

The complexity of building SELECT and PREPARE largely depends on the Hamiltonian factorization we use. The Coulomb kernel can be factorized in many different ways

$$
H=\sum_{a b c d} \underbrace{h_{a b c d}} a_{a}^{\dagger} a_{b}^{\dagger} a_{d} a_{c}=\sum_{\ell=0}^{L-1} \omega_{\ell} U_{\ell}
$$

$$
\begin{gathered}
V^{\prime}=\frac{1}{8} \sum_{\alpha, \beta \in\{\uparrow, \downarrow\}} \sum_{p, q, r, s=1}^{N / 2} V_{p q r s} Q_{p q \alpha} Q_{r s \beta} \\
Q_{p q \sigma}= \begin{cases}X_{p, \sigma} \vec{Z} X_{q, \sigma}, & p<q, \\
Y_{p, \sigma} \vec{Z} Y_{q, \sigma}, & p>q, \\
-Z_{p, \sigma}, & p=q\end{cases}
\end{gathered}
$$

Cost of qubitization: block encodings

The complexity of building SELECT and PREPARE largely depends on the Hamiltonian factorization we use. The Coulomb kernel can be factorized in many different ways

$$
H=\sum_{a b c d} \underbrace{h_{a b c d}} a_{a}^{\dagger} a_{b}^{\dagger} a_{d} a_{c}=\sum_{\ell=0}^{L-1} \omega_{\ell} U_{\ell}
$$

$$
\begin{aligned}
& \frac{1}{8} \sum_{\ell=1}^{L}\left(\sum_{\sigma \in\{\uparrow, \downarrow\}} \sum_{p, q=1}^{N / 2} W_{p q}^{(\ell)} Q_{p q \sigma}\right)^{2} \\
& Q_{p q \sigma}= \begin{cases}X_{p, \sigma} \vec{Z} X_{q, \sigma}, & p<q \\
Y_{p, \sigma} \vec{Z} Y_{q, \sigma}, & p>q \\
-Z_{p, \sigma}, & p=q\end{cases}
\end{aligned}
$$

Cost of qubitization: block encodings

The complexity of building SELECT and PREPARE largely depends on the Hamiltonian factorization we use. The Coulomb kernel can be factorized in many different ways
$H=\sum_{a b c d} \underbrace{h_{a b c d} a_{a}^{\dagger} a_{b}^{\dagger} a_{d} a_{c}=\sum_{\ell=0}^{L-1} \omega_{\ell} U_{\ell}}$

$$
\frac{1}{8} \sum_{\ell=1}^{L} U_{\ell}\left(\sum_{\sigma \in\{\uparrow, \downarrow\}} \sum_{p=1}^{N / 2} f_{p}^{(\ell)}\left(\mathbb{1}-Z_{p, \sigma}\right)\right)^{2} U_{\ell}^{\dagger}
$$

Cost of qubitization: block encodings

The complexity of building SELECT and PREPARE largely depends on the Hamiltonian factorization we use. The Coulomb kernel can be factorized in many different ways

$$
\frac{1}{8} \sum_{\alpha, \beta \in\{\uparrow, \downarrow\}} \sum_{\mu, \nu=1}^{M} \zeta_{\mu \nu} U_{\mu}^{\dagger} Z_{1, \alpha} U_{\mu} U_{\nu}^{\dagger} Z_{1, \beta} U_{\nu}
$$

Coulomb tensor factorizations symmetry-adapted

Each tensor factorization know must be constrained to the appropriate momentum conservation sum-rule.
$H_{2}=\frac{1}{2} \sum_{\sigma, \tau} \sum_{\mathbf{Q}, \mathbf{k}, \mathbf{k}^{\prime}} \sum_{p q r s} V_{p \mathbf{k}, q(\mathbf{k} \ominus \mathbf{Q}), r\left(\mathbf{k}^{\prime} \ominus \mathbf{Q}\right), s \mathbf{k}^{\prime}} a_{p \mathbf{k} \sigma}^{\dagger} a_{q(\mathbf{k} \ominus \mathbf{Q}) \sigma} a_{r\left(\mathbf{k}^{\prime} \ominus \mathbf{Q}\right) \tau}^{\dagger} a_{s \mathbf{k}^{\prime} \tau}$

$$
\hat{H}_{2}^{\prime}=\frac{1}{2} \sum_{\mathbf{Q}}^{N_{k}} \sum_{n}^{M}\left(\hat{A}_{n}^{2}(\mathbf{Q})+\hat{B}_{n}^{2}(\mathbf{Q})\right)
$$

A and B terms have familiar Majorana fermion operator representations!

$$
\begin{aligned}
\hat{A}_{n}(\mathbf{Q} \neq 0)=\sum_{\sigma \in\{\uparrow, \downarrow\}} \sum_{\mathbf{k}}^{N_{k}} \sum_{p q}^{N / 2} & \left(\frac{i \operatorname{Re}\left[L_{p \mathbf{k} q(\mathbf{k} \bullet \mathbf{Q}), n}\right]}{4}\left(\vec{Z} X_{p \mathbf{k} \sigma} \vec{Z} Y_{q(\mathbf{k} \bullet \mathbf{Q}) \sigma}-\vec{Z} Y_{p \mathbf{k} \sigma} \vec{Z} X_{q(\mathbf{k} \in \mathbf{Q}) \sigma}\right)\right. \\
& \left.+\frac{i \operatorname{Im}\left[L_{p \mathbf{k} q(\mathbf{k} \in \mathbf{Q}), n}\right]}{4}\left(\vec{Z} X_{p \mathbf{k} \sigma} \vec{Z} X_{q(\mathbf{k} \ominus \mathbf{Q}) \sigma}+\vec{Z} Y_{p \mathbf{k} \sigma} \vec{Z} Y_{q(\mathbf{k} \in \mathbf{Q}) \sigma}\right)\right) \\
& O\left(\mathbf{N}_{\mathbf{k}}^{2} \mathbf{N}^{2}\right) \mathbf{v s} \mathrm{O}\left(\mathbf{N}_{\mathbf{k}} \mathbf{N}^{2}\right)
\end{aligned}
$$

Assessing quantum/classical boundary for P450

() Quantum AI

PNAS 119 (38), 2203533119 (2022)
Critical to articulate more specific industry-relevant use cases

P450 is strongly correlated iron-porphyrin / drug anti-target

We observe onset of quantum advantage for active space sizes near 80 qubits

Calculations would require a few million physical qubits assuming 1e-4 error rates in surface code

The future of chemistry is 1st quantized!

~100X more plane waves than molecular orbitals needed for target precision In 2nd quantization \#qubits = \#orbitals so it is critical to use molecular orbitals

In 1st quantization \#qubits = (\#particles) log (\#orbitals) but algorithmically challenging Nature QI 5, 92 gives 1st quantized plane wave algorithm scaling as (\#particles) ${ }^{8 / 3}$ (\#orbitals) ${ }^{1 / 3}$

PRX Quantum 2, 040332 (2021) compiles first quantized chem algorithms to fault-tolerant gates

Enables accurate simulation of realistic materials!

> Non-Born-Oppenheimer quantum dynamics is now possible, and with very little overhead!

The future of chemistry is 1st quantized!

$$
T=\sum_{i=1}^{\eta} \sum_{p \in \mathcal{G}} \frac{\left\|\boldsymbol{G}_{\boldsymbol{p}}\right\|^{2}}{2}|\boldsymbol{p}\rangle\left\langle\left.\boldsymbol{p}\right|_{i}\right.
$$

$$
U=-\frac{4 \pi}{\Omega} \sum_{i=1}^{\eta} \sum_{q \in \mathcal{G}} \sum_{\substack{\nu \in \mathcal{G}_{0} \\(\boldsymbol{q}-\boldsymbol{\nu}) \in \mathcal{G}}} \frac{\sum_{I=1}^{L} Z_{I} e^{i \boldsymbol{G}_{\nu} \cdot \boldsymbol{R}_{I}}}{\left\|\boldsymbol{G}_{\nu}\right\|^{2}}|\boldsymbol{q}-\boldsymbol{\nu}\rangle\left\langle\left.\boldsymbol{q}\right|_{i}\right.
$$

$$
V=\frac{2 \pi}{\Omega} \sum_{i \neq j}^{\eta} \sum_{p, q \in \mathcal{G}} \sum_{\substack{\nu \in \mathcal{G}_{0} \\(\boldsymbol{p}+\boldsymbol{\nu} \in \mathcal{G} \\(\boldsymbol{q}-\boldsymbol{\nu} \in \mathcal{G}}} \frac{1}{\left\|\boldsymbol{G}_{\nu}\right\|^{2}}|\boldsymbol{p}+\boldsymbol{\nu}\rangle\left\langle\left.\boldsymbol{p}\right|_{i} \mid \boldsymbol{q}-\boldsymbol{\nu}\right\rangle\left\langle\left.\boldsymbol{q}\right|_{j}\right.
$$

$|0\rangle-R_{y}(\theta) \quad(\cos (\theta)|0\rangle+\sin (\theta)|1\rangle)_{a}$
$|0\rangle-\quad R_{y}\left(\arccos \theta_{\lambda}\right)-\left(\sqrt{\frac{\lambda_{U}}{\lambda_{U}+\lambda_{V}}}|0\rangle+\sqrt{\frac{\lambda_{V}}{\lambda_{U}+\lambda_{V}}}|1\rangle\right)_{m}$
$|0\rangle \uparrow \quad \mathrm{PREP}_{T} \quad$ Eq. (89)
$|0\rangle-\sum_{j=1}^{\eta}|j\rangle_{e}|i \stackrel{?}{=} j\rangle_{c}$
$|0\rangle /$ Momentum state $-\sqrt{\frac{P_{\nu}}{\lambda_{\nu}}}|0\rangle_{j} \sum_{\boldsymbol{\nu} \in \mathcal{G}_{0}} \frac{1}{\|\boldsymbol{\nu}\|}|\boldsymbol{\nu}\rangle_{k}+|\perp\rangle$
$|0\rangle+\quad \mathrm{QROM} \quad \frac{1}{\sqrt{\lambda_{z}}} \sum_{I=1}^{L} \sqrt{Z_{I}}\left|\boldsymbol{R}_{I}\right\rangle_{l}$

We need new software tools for this work

Bloqs: Structured Representation of Algos

We can't execute these algorithms (yet), so no requirement to code everything "all the way down"

Allow users to freely annotate known quantities and write protocols to query properties for complex algorithms.
E.g.: drawing, testing classical-reversible subroutines, counting resources etc.

Cirq-FT: Cirq for Fault Tolerant algorithms

Make it easier to write Fault Tolerant algorithms in Cirq using qubit registers, quantum memory management etc.

Reusable library of primitives and Bi-Directional Interop with Bloqs

Efficient resource counting for large systems.
@frozen
class MultiTargetCSwap(GateWithRegisters):
bitsize: int
@cached_property
def registers(self) -> Registers:
return Registers.build(ctrl=1, x=self.bitsize, y=self.bitsize)
def decompose from registers(self,
ctrl: Sequence[cirq.Qid],
x: Sequence[cirq.Qid],
y : Sequence[cirq.Qid],
) -> cirq.OP_TREE:
yield [cirq.CSWAP(*ctrl, t_x, t_y) for t_x, t_y in zip(x, y)]

Physical Costing

Formulas exist for estimating wallclock time, \# physical qubits given T-gate count, code distance, etc.

They can be inaccessible or indiscriminately applied

- Factory Error

- Data Error
- \# data qubits

Goal: put a variety of them in one place with a common interface.

Thank you!

(1] Quantum Al

- Google has PhD intern programs / student stay programs
- Interest in collaborating on FT algorithms applications in challenging domains
- Interest in quantum many-body methods development

Google

