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Motivation: Multireference theories

We're interested in developing many-body theories starting from correlated electronic
states
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Motivation: The Driven Similarity Renormalization Group (DSRG)?!
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where A = T — T' is built from a generalized hole-particle excitation operator T. The
components of H in red excite model space determinants outside of it and must be removed
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1Evangelista, FA. J. Chem. Phys. 141,054109 (2014).



The generalized normal ordering formalism

To avoid the intruder state problem we solve a set of many-body equations with an extra
source term:
Hﬂb _ Rgb (5)7
where the operator R(s) (a regularizer) is derived by matching the DSRG to a low-order
perturbative approximation to the SRG
b-.. —iab--- eogab--- o —s( A2
R (s) = [HE> " + A tab e (&)
where the quantity s € [0, co) controls the magnitude of the terms in Fljjb When s — cowe
have that [HI" (s)| — 0.*

Main computational challenge
Generate expressions for normal-ordered operators assuming a general Fermi vacuum ¥,



The generalized normal ordering formalism

Write products of second-quantized operators as
ard = alal---a.a,
Consider a general reference state ¥ with reduced density matrices defined as
Vs = (Polarg. | Wo)
Mukherjee? defines a normal-ordered operator product {a%."} with respect to ¥, to satisfy

Mukherjee's normal ordering condition

(Tol{ar }[Wo) =0

The operators {afy."} represent fluctuations w.r.t. the reference state.

2Mukherjee, D. Chem. Phys. Lett. 274,561 (1997).



Example: One-particle term

Consider the case of & = a}d,. Let's assume that we can write @2 in terms of normal-ordered
operators of equal or smaller particle rank:
ah = afaf} + 3
where «, 8 are scalars. Then by definition
(Wolag|Wo) = a (Yo|{ag}|¥o) +5
T
and g is given by the one-particle reduced density matrix (1-RDM)
B = (Wolag|Vo) = g
When U, is the physical vacuum (|—), v, = 0), then we want af and {af} to be identical, so
a=1.

ah expressed in normal ordered form

A



Wick's theorem |
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Wick's theorem

Pairwise contractions yield elements of the one-particle (+,) or one-hole (n,) density

matrices:
—
aba, =78 = (Voldh|Wo) ,
|—|
0q) = 1l = 0 — 75

Multi-legged contractions are elements of the k-body density cumulant (\y)

ajalasa, = Mg = AR —APyd + 87
For complete-active-space states
1 0 O 0 0 0
Yy1=10 XAy O], ;=10 1—-X; O
0O 0 O 0 0 1



Wick's theorem cont'd

A second Wick's theorem applies to products of normal-ordered operators

Wick's theorem Il
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Wické&d

e Implements the algebra of second quantization

C++ library that implements algebraic and

1 diagrammatic types
W | ‘ K&d Python bindings generated via the pybind11

library

GitHubTest suite (pytest), continuous integration
(via azure), code coverage

Installing wicked

> git clone --recurse-submodules https://github.com/fevangelista/wicked.git
> cd wicked

> python setup.py develop
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Implementation of Wick's theorem

We represent Wick contractions (A) with directed hypergraphs (B), stored using incidence
matrices (C).

A ‘Wick contraction
o o 1ES I SR
VevanTic+ 5 > wemen{alala,a,ata,ala,}
Technical aspects
B Diagram
L, e Orbital spaces
’ O, ~O~ .
oS o) ==< e Representation of operators and
v contractions
c Directed hypergraph incidence matrix

Generation of contractions

Canonicalization of contractions
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Orbital spaces

Partition the spinorbital space S into subsets:
S = Uizlgk.

Table 1: Orbital subspaces handled by Wick&d.

Subspace ¥e oMb N
Occupied & 0 O
General e oomh o N

Unoccupied O &7 O
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Operator notation

In Wick&d operators are represented internally as by a matrix that stores the number of
creation/annihilation operators in each space. Suppose we work with a core (double occ

0 1] «C
C A
A 1 0] <A
Tac =) ti{alan} < )
e 0 0] «V
t
v
P Core (C) levels are in blue while active (A) levels are in
A A4 red.
& This is a generalization of the notation used by Kallay
1A2 H and others.
C | &
SR3 13




Another example

1 0
R 1 E. A Y 0 2
Vevaa = 5 Z Z Z V;Jnve{a:?nalavau} e 1 0
m uv @
%
e viv. = (me|uv) is an antisymmetrized two-electron integral.
e Thefactor 1/2 accounts for the equivalent indices uand v.
The notation extends to products of operators:
10 0 1 0 1
- - 1 10 2 1 0 1 0
Vevaa=Tac ¢ =
CVALRTACTT 9 11 o |0 of o o
v t t
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Representation of (elementary) contractions

Elementary contractions are single 2-legged, 4-legged, etc. contractions of operators.
Consider a standard occupied (0)/virtual (V) orbital partitioning:

ijk abc

15



Representation of (elementary) contractions

Elementary contractions are single 2-legged, 4-legged, etc. contractions of operators.
Consider a standard occupied (0)/virtual (V) orbital partitioning:

bk
‘szi plaiacalaja a,} < [1 0] [0 2]

ijk abc 0 1 2 0
f t

The boxes on the top indicate how many operators are contracted, not which ones are
contracted.

15



Equivalent contractions

This is an example of a Wick contraction that connects equivalent second-quantized
+ A ~ ~ ~ ~
operators: the contraction {akacagaga a; } is equivalent to {&,'(acazaZaj a;

F__________W

Uk abc
=—szit"b{a[ a aba a }
uk abc
. 1
:*szc b{aka gﬁabA A,}
ijk abc

Since in the hypergraph representation, equivalent indices are indistinguishable, we account
for one of these two equivalent contractions and multiply this term by 2.

Wick&d exploits equivalences to minimize the number of terms generated and facilitate the

identification of identical terms. 16



Composite contractions

In general, Wick's theorem involves multiple elementary contractions. These are
represented by stacking rows of elementary contractions (the order is irrelevant)

0 0l (00

0o 1| |10
Lo 1o fo1] ,ov
ZZZﬁ(tgb{&Zacagazajai}e 0 0] [0 0] :ZZZﬁtgb{abaj}

ijk abc _ _ _ _ ij ab
1 0| [0 2
1 2
f t
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Generation of contractions. 1) Enumerating elementary contractions

Considerthefollowingterm
Z Z vesitecz {al al,a,,a,, }{a}, al,a.,a., }
C1€2€3C4 a1d20as30a4
We can write three elementary contractions (C;, Ca, C3):
: , 1 o] fo 1
{alala,a,}{alala.ac} < |0 0] |0 0 =cCi,
0 0] 10 O
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Generation of contractions. 1) Enumerating elementary contractions

Consider the foIIowing term

aigacs 51 Gi g i alaa
E E Veses tayay {dc, 0, da, da, }{ g, d5,0c,0c, }
C1C2C3C4 a1d20as30a4

We can write three elementary contractions (Cy, C2, C3):

: , 1 0] fo 1
{alala,a,}{alala.ac} < |0 0] |0 0 =cCi,

0 0] [0 O]

_— [0 0] [0 0
{alala,a,}{alalacac) < |0 1| |1 0] =0y

0 0] [0 0]
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Generation of contractions. 1) Enumerating elementary contractions

Consider the foIIowing term

aigacs 51 Gi g i alaa
E E Veses tayay {dc, 0, da, da, }{ g, d5,0c,0c, }
C1C2C3C4 a1d20as30a4

We can write three elementary contractions (Cy, C2, C3):

: , 1 0] fo 1
{alala,a,}{alala.ac} < |0 0] |0 0 =cCi,

0 0] [0 0]

—— 0 0| [0 O
{alala,a,}{alalacac) < |0 1| |1 0] =0y

0 0] [0 0]

T 1.1 0 0 0 0
{alala,a,}{alalacac) < |0 2| |2 0] =Cs.

0 0] [0 0]
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Generation ontractions. 2) Enumerating composite contractions

All the unique composite contractions are generated by Composite contractions
backtracking

{}
1 {} {1}
e oY S {C1,C}
I TR AN
o e AL {€1,€1,Co}
------------- 11 G
2 A{Ci} o {Co} 1 {Cs} [Tt
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v AN DN N 10y ) .1
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ZRN N =
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o 1,Ca,Co 1000, Gy Gy 0 GG}
PP e e
{C1,C1,Co {C1,C1,C3} {C1,Ca,Ca} €6} {akala,a,alatacac)
| statd s atata o
40 {C2} {agaga,a,ayahacach
{Cla (217 (227 CQ} {C2,Ca} {ala ‘"’A.”L"L”C"C

T,
{CTK} {&ETZ&IJ&A&A&L&}&?ZC&C}
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The backtracking algorithm produces diagrams with distinct connectivity. Nevertheless, it is
still possible to generate isomorphic diagrams that yield equivalent algebraic terms.

Consider the term (0| [VAAAA, -TAAAA] |Wo) =0

2 0] [o 2
AAAAAAAA o 2| [2 0
VanaaTanan < — 6 vtz {alala,a,alata,a,} < 1L
2 2 2
v ot
2 o] fo 2
A N L om rod ada & Joans A 0 2 2 0
TannaVasan < Evut tz{alaja,a.alalaa « L 7] L
2 2 2 2
ot v

These are identical terms but may have different algebraic expressions. We use early
canonicalization to cancel these out.

20



Hypergraph canonicalization

The incidence matrix W for a contraction can be written as

Ciu Cy -+ Cg
: : - : L rows
W — Cll C21 e CKl
N, N, --- Ng
w1 wy o WK
K columns

We define the canonical form as the minimal element among all the valid permutations, where

lexicographic ordering of the entries of W are used to define an ordering among the
incidence matrices (W < W).

In practice, we may have to test up to KIL! permutations of the entries of W. Is this optimal?

21



Conversion to algebraic expressions

Consider, for example, the following contraction
1 |
{C1,¢:} — {atala,a,alalacac).

Assign distinct indices to the operators (preserving order)
1 |

1 |
avgeacs fat at a g at at a.a
1_6 V(c]fczl taéai {aq 052 aal 002 aag aa4 an ac4 0

Next, reorder this term keeping contracted operators adjacent, keeping track of sign factors
[ I

1 4

201 4C4C3 AT 4 At oA AoA A o

].6 VglCzl t0304 aC1 aC4 aC2 an {aal aaz aag aa4 }'
~——

——
561C4 6c2::3
Simplify the §'s and multiply by combinatorial factors (here 2 for the equivalent contractions)
cC A

C1C2 1020304

co| —
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How is Wick&d implemented?

The example below shows the evaluation of the CC term (®|F,, T;|®) in Python and the
corresponding C++ classes

class WickTheorem class OperatorExpression

© wt = w.WickTheorem() @ Fov = w.op('f', ['o+ v'])
: Tl = w.op('f',['v+ 0'])

!

class Expression

23



How is Wick&d implemented?

The example below shows the evaluation of the CC term (®|F,, T;|®) in Python and the
corresponding C++ classes

class WickTheorem class OperatorExpression

© wt = w.WickTheorem() @ Fov = w.op('f', ['o+ v'])
: Tl = w.op('f',['v+ 0'])

!

class Expression

In this code we:
1. Make aWickTheorem object
2. Make the Fov and T1 operators

3. Evaluate the contraction 23



How is Wick&d implemented?

The example below shows the evaluation of the CC term (®|F,, T;|®) in Python and the
corresponding C++ classes

class WickTheorem class OperatorExpression . 0 .
The Expression object relies on

! ! several underlying classes:

© wt = w.WickTheorem() @ Fov = w.op('f', ['o+ v']) 1
: 1= wop(" T, L've 0')) hpatag + 1Y wanalasa,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, %/_/

© expr = wt contract(Fov ¢] Tl 0,0) Term \ bymbotherm'
l Term

class Expression Expression

The split Term/SymbolicTerm

In this code we: facilitates the grouping of terms in
1. Make aWickTheorem object Expression (stored as a
2. Make the Fov and T1 operators SymbolicTerm — scalar_t map).

3. Evaluate the contraction 23



What can Wick&d do?

e Evaluate vacuum expectation values with respect to a general ¥,
e Put operator in normal-ordered form.

¢ Translate algebraic equations into tensor contractions (not optimized).

24



Arbitrary-order CC equations

In CC theory we are interested in computing the residuals rgb

.. = (@{al, }HI®)

Strategy |
Compute
1 i _ P
L(w) = CIE DO wit(@{al YH|®) = (®QH|®)
: ijo-- ab---
and obtain the residuals as
e = ¢ Z(w)
ab awab...

25



Arbitrary-order CC equations

In CC theory we are interested in computing the residuals rgb
roy... = (@|{ay,. YH|®)

Strategy Il
Compute
_ _ . 1 _ .
H=Eo+) H{as}+ ZZ:L:;fq{afg} ey
pq pqrs

and obtain (via Wick's theorem)
A = (k)2 Ay Ago. Iy

25



Arbitrary-order CC equations

Table 2: Evaluation of the coupled cluster residual equations with Wick&d. Execution time and the
number of unique terms contributing to the residual equations at a given particle-hole excitation level.

Theory Time Diagrams per excitation level

sy o0 1 2 3 4 5 6 7 8
CCSD 01 3 14 31
CCSDT 07 3 15 37 47
CCSDTQ 24 3 15 38 53 74
CCSDTQP 63 3 15 38 54 80 99
CCSDTQPH 138 3 15 38 54 81 105 135
CCSDTQPH7 260 3 15 38 54 81 106 141 169
CCSDTQPH78 454 3 15 38 54 81 106 142 175 215

Fun fact: Getting the high-order terms right requires using arbitrary precision integers.
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Live demo!
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