
Automatic derivation of fermionic many-body theories based

on general Fermi vacua

Francesco Evangelista

June 13, 2023

Emory University

1

Motivation: Multireference theories

We're interested in developingmany-body theories starting from correlated electronic

states

2

Motivation: The Driven Similarity Renormalization Group (DSRG)1

H 󰀁→ H̄ = e−AHeA = H̄0 +
󰁛

pq

H̄q
p{â†pâq}+

1

4

󰁛

pqrs

H̄rs
pq{â†pâ†qâsâr}+ . . .

where A = T− T† is built from a generalized hole-particle excitation operator T. The
components of H̄ in red excite model space determinants outside of it andmust be removed

V

A

C

P

H
↑↓
↑↓

↑↓

↑↓
↑↓

H̄c
a{â

†
aâc} H̄c

a{â
†
aâc} H̄a

v{â
†
vâa} H̄c

a{â
†
aâc}

1Evangelista, F.A. J. Chem. Phys. 141, 054109 (2014).
3

The generalized normal ordering formalism

To avoid the intruder state problemwe solve a set of many-body equationswith an extra
source term:

H̄ab···
ij··· = Rab···ij··· (s),

where the operator R(s) (a regularizer) is derived bymatching the DSRG to a low-order

perturbative approximation to the SRG

Rab···ij··· (s) = [H̄ab···
ij··· +∆ab···

ij··· t
ab···
ij···]e

−s(∆ab···
ij···)2

where the quantity s ∈ [0,∞) controls themagnitude of the terms in H̄ab···
ij··· . When s → ∞we

have that |H̄ab···
ij··· (s)| → 0.∗

Main computational challenge

Generate expressions for normal-ordered operators assuming a general Fermi vacuumΨ0.

4

The generalized normal ordering formalism

Write products of second-quantized operators as

âpq···rs··· = â†pâ
†
q · · · âs âr

Consider a general reference stateΨ0 with reduced density matrices defined as

γpq···rs··· = 〈Ψ0|âpq···rs··· |Ψ0〉

Mukherjee2 defines a normal-ordered operator product {âpq···rs··· }with respect toΨ0 to satisfy

Mukherjee's normal ordering condition

〈Ψ0|{âpq···rs··· }|Ψ0〉 = 0

The operators {âpq···rs··· } represent fluctuationsw.r.t. the reference state.

2Mukherjee, D. Chem. Phys. Lett. 274, 561 (1997).

5

Example: One-particle term

Consider the case of âpq = â†pâq. Let's assume that we canwrite âpq in terms of normal-ordered

operators of equal or smaller particle rank:

âpq = α{âpq}+ β

where α,β are scalars. Then by definition

〈Ψ0|âpq|Ψ0〉 = α 〈Ψ0|{âpq}|Ψ0〉󰁿 󰁾󰁽 󰂀
=0

+β

and β is given by the one-particle reduced density matrix (1-RDM)

β = 〈Ψ0|âpq|Ψ0〉 = γpq .

WhenΨ0 is the physical vacuum (|−〉, γ1 = 0), then wewant âpq and {âpq} to be identical, so
α = 1.

âpq expressed in normal ordered form

âpq = {âpq}+ γpq {âpq} = âpq − γpq

6

Wick's theorem

Wick's theorem I

q̂1q̂2 · · · ={q̂1q̂2 · · ·}+
󰁛

single
pairs

{q̂1q̂2 · · ·}

+
󰁛

double
pairs

{q̂1q̂2 · · ·}+
󰁛

single
4-leg

{q̂1q̂2 · · ·}

+
󰁛

triple
pairs

{q̂1q̂2 · · · }+
󰁛

single
pairs

󰁛

single
4-leg

{q̂1q̂2 · · · }+

Newmulti-leg contractions appear inWick's theorem.

7

Wick's theorem

Pairwise contractions yield elements of the one-particle (γ1) or one-hole (η1) density

matrices:

â†pâq = γpq ≡ 〈Ψ0|âpq|Ψ0〉 ,

âqâ
†
p = ηpq = δpq − γpq .

Multi-legged contractions are elements of the k-body density cumulant (λk)

â†pâ
†
qâs âr = λpqrs ≡ γpqrs − γpr γ

q
s + γps γ

q
r .

For complete-active-space states

γ1 =

󰀳

󰁅󰁃
1 0 0
0 λ1 0
0 0 0

󰀴

󰁆󰁄 , η1 =

󰀳

󰁅󰁃
0 0 0
0 1 − λ1 0
0 0 1

󰀴

󰁆󰁄 .

8

Wick's theorem cont'd

A secondWick's theorem applies to products of normal-ordered operators

Wick's theorem II

{Â}{B̂} · · · {Ẑ} ={ÂB̂ · · · Ẑ}+
󰁛

single
pairs

{Â B̂ · · · Ẑ}

+
󰁛

double
pairs

{Â B̂ · · · Ẑ}+
󰁛

single
4-leg

{Â B̂ · · · Ẑ}

+
󰁛

triple
pairs

{Â B̂ · · · Ẑ}+

9

Wick&d

Wick&d
• Implements the algebra of second quantization

• C++ library that implements algebraic and

diagrammatic types

• Python bindings generated via the pybind11
library

• GitHubTest suite (pytest), continuous integration
(via azure), code coverage

Installing wicked

> git clone --recurse-submodules https://github.com/fevangelista/wicked.git
> cd wicked
> python setup.py develop

10

Implementation ofWick's theorem

We representWick contractions (A) with directed hypergraphs (B), stored using incidence

matrices (C).

A

B

C

vertices

Directed hypergraph incidence matrix

Wick contraction

Diagram

edges

Technical aspects

• Orbital spaces

• Representation of operators and

contractions

• Generation of contractions

• Canonicalization of contractions

• Translation to equations

11

Orbital spaces

Partition the spinorbital space S into subsets:
S = ∪s

k=1Sk.

Table 1: Orbital subspaces handled byWick&d.

Subspace γpq ηpq λpq···rs···

Occupied δpq 0 0

General γpq ηpq λpq···rs···
Unoccupied 0 δpq 0

12

Operator notation

InWick&d operators are represented internally as by amatrix that stores the number of

creation/annihilation operators in each space. Suppose wework with a core (double occ

T̂AC =

C󰁛

m

A󰁛

u

tmu {â†uâm} ↔

󰀵

󰀹󰀷
0 1

1 0

0 0

󰀶

󰀺󰀸

t

← C
← A
← V

,

V

A

C

P

H
↑↓
↑↓

↑↓

↑↓
↑↓

Core (C) levels are in blue while active (A) levels are in
red.

This is a generalization of the notation used by Kállay

and others.

13

Another example

V̂CVAA =
1

2

C󰁛

m

A󰁛

uv

V󰁛

e

vuvme{â†mâ†e âvâu} ↔

󰀵

󰀹󰀷
1 0

0 2

1 0

󰀶

󰀺󰀸

v

• vuvme = 〈me||uv〉 is an antisymmetrized two-electron integral.

• The factor 1/2 accounts for the equivalent indices u and v.

The notation extends to products of operators:

V̂CVAA
1

2
T̂2AC ↔ 1

2

󰀵

󰀹󰀷
1 0

0 2

1 0

󰀶

󰀺󰀸

󰀵

󰀹󰀷
0 1

1 0

0 0

󰀶

󰀺󰀸

󰀵

󰀹󰀷
0 1

1 0

0 0

󰀶

󰀺󰀸

v t t

14

Representation of (elementary) contractions

Elementary contractions are single 2-legged, 4-legged, etc. contractions of operators.

Consider a standard occupied (O)/virtual (V) orbital partitioning:

1

4

O󰁛

ijk

V󰁛

abc

fckt
ij
ab{â

†
kâc â

†
aâ

†
bâj âi }

15

Representation of (elementary) contractions

Elementary contractions are single 2-legged, 4-legged, etc. contractions of operators.

Consider a standard occupied (O)/virtual (V) orbital partitioning:

1

4

O󰁛

ijk

V󰁛

abc

fckt
ij
ab{â

†
kâc â

†
aâ

†
bâj âi } ↔

󰀥
1 0

0 0

󰀦 󰀥
0 1

0 0

󰀦

󰀥
1 0

0 1

󰀦 󰀥
0 2

2 0

󰀦

f t

The boxes on the top indicate howmany operators are contracted, not which ones are
contracted.

15

Equivalent contractions

This is an example of aWick contraction that connects equivalent second-quantized

operators: the contraction {â†kâc â
†
aâ

†
bâj âi } is equivalent to {â

†
kâc â

†
aâ

†
bâj âi }

1

4

O󰁛

ijk

V󰁛

abc

fckt
ij
ab{â

†
kâc â

†
aâ

†
bâj âi }

=
1

4

O󰁛

ijk

V󰁛

abc

fckt
ji
ab{â

†
kâc â

†
aâ

†
bâi âj }

=
1

4

O󰁛

ijk

V󰁛

abc

fckt
ij
ab{â

†
kâc â

†
aâ

†
bâj âi }

Since in the hypergraph representation, equivalent indices are indistinguishable, we account

for one of these two equivalent contractions andmultiply this term by 2.

Wick&d exploits equivalences tominimize the number of terms generated and facilitate the

identification of identical terms. 16

Composite contractions

In general,Wick's theorem involves multiple elementary contractions. These are

represented by stacking rows of elementary contractions (the order is irrelevant)

1

4

O󰁛

ijk

V󰁛

abc

fckt
ij
ab{â

†
kâc â

†
aâ

†
bâj âi } ↔

󰀥
0 0

0 1

󰀦 󰀥
0 0

1 0

󰀦

󰀥
1 0

0 0

󰀦 󰀥
0 1

0 0

󰀦

󰀥
1 0

0 1

󰀦 󰀥
0 2

2 0

󰀦

f t

=
4

4

O󰁛

ij

V󰁛

ab

fai t
ij
ab{â

†
bâj }

17

Generation of contractions. 1) Enumerating elementary contractions

Consider the following term

1

16

C󰁛

c1c2c3c4

A󰁛

a1a2a3a4

va3a4c3c4 t
c1c2
a1a2{â

†
c3 â

†
c4 âa4 âa3}{â

†
a1 â

†
a2 âc2 âc1}

We canwrite three elementary contractions (C1, C2, C3):

{â†Câ
†
CâAâA}{â

†
Aâ

†
AâCâC} ↔

󰀵

󰀹󰀷
1 0

0 0

0 0

󰀶

󰀺󰀸

󰀵

󰀹󰀷
0 1

0 0

0 0

󰀶

󰀺󰀸 = C1,

18

Generation of contractions. 1) Enumerating elementary contractions

Consider the following term

1

16

C󰁛

c1c2c3c4

A󰁛

a1a2a3a4

va3a4c3c4 t
c1c2
a1a2{â

†
c3 â

†
c4 âa4 âa3}{â

†
a1 â

†
a2 âc2 âc1}

We canwrite three elementary contractions (C1, C2, C3):

{â†Câ
†
CâAâA}{â

†
Aâ

†
AâCâC} ↔

󰀵

󰀹󰀷
1 0

0 0

0 0

󰀶

󰀺󰀸

󰀵

󰀹󰀷
0 1

0 0

0 0

󰀶

󰀺󰀸 = C1,

{â†Câ
†
CâAâA}{â

†
Aâ

†
AâCâC} ↔

󰀵

󰀹󰀷
0 0

0 1

0 0

󰀶

󰀺󰀸

󰀵

󰀹󰀷
0 0

1 0

0 0

󰀶

󰀺󰀸 = C2,

18

Generation of contractions. 1) Enumerating elementary contractions

Consider the following term

1

16

C󰁛

c1c2c3c4

A󰁛

a1a2a3a4

va3a4c3c4 t
c1c2
a1a2{â

†
c3 â

†
c4 âa4 âa3}{â

†
a1 â

†
a2 âc2 âc1}

We canwrite three elementary contractions (C1, C2, C3):

{â†Câ
†
CâAâA}{â

†
Aâ

†
AâCâC} ↔

󰀵

󰀹󰀷
1 0

0 0

0 0

󰀶

󰀺󰀸

󰀵

󰀹󰀷
0 1

0 0

0 0

󰀶

󰀺󰀸 = C1,

{â†Câ
†
CâAâA}{â

†
Aâ

†
AâCâC} ↔

󰀵

󰀹󰀷
0 0

0 1

0 0

󰀶

󰀺󰀸

󰀵

󰀹󰀷
0 0

1 0

0 0

󰀶

󰀺󰀸 = C2,

{â†Câ
†
CâAâA}{â

†
Aâ

†
AâCâC} ↔

󰀵

󰀹󰀷
0 0

0 2

0 0

󰀶

󰀺󰀸

󰀵

󰀹󰀷
0 0

2 0

0 0

󰀶

󰀺󰀸 = C3.

18

Generation of contractions. 2) Enumerating composite contractions

All the unique composite contractions are generated by

backtracking

1

2

3

4

5 7

6 8

9

10

11

Composite contractions

19

The backtracking algorithm produces diagramswith distinct connectivity. Nevertheless, it is

still possible to generate isomorphic diagrams that yield equivalent algebraic terms.

Consider the term 〈Ψ0|[V̂AAAA, T̂AAAA]|Ψ0〉 = 0

V̂AAAAT̂AAAA ← 1

16
vuvst t

yz
wx{â†s â

†
t âv âuâ

†
wâ

†
x âz ây} ↔

󰁫
2 0

󰁬 󰁫
0 2

󰁬

󰁫
0 2

󰁬 󰁫
2 0

󰁬

󰁫
2 2

󰁬 󰁫
2 2

󰁬

v t

.

T̂AAAAV̂AAAA ← 1

16
vuvst t

yz
wx{â†wâ†x âz ây â†s â

†
t âv âu} ↔

󰁫
2 0

󰁬 󰁫
0 2

󰁬

󰁫
0 2

󰁬 󰁫
2 0

󰁬

󰁫
2 2

󰁬 󰁫
2 2

󰁬

t v

.

These are identical terms but may have different algebraic expressions. We use early
canonicalization to cancel these out. 20

Hypergraph canonicalization

The incidencematrixW for a contraction can bewritten as

W =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀷

C1L C2L · · · CKL
...

...
. . .

...

C11 C21 · · · CK1

N1 N2 · · · NK

ω1 ω2 · · · ωK

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀸

L rows

K columns

We define the canonical form as theminimal element among all the valid permutations, where
lexicographic ordering of the entries ofW are used to define an ordering among the

incidencematrices (W < W ′).

In practice, wemay have to test up to K!L! permutations of the entries ofW . Is this optimal?

21

Conversion to algebraic expressions

Consider, for example, the following contraction

{C1, C1} → {â†Câ
†
CâAâAâ

†
Aâ

†
AâCâC}.

Assign distinct indices to the operators (preserving order)

1

16
va2a1c1c2 t

c4c3
a3a4{â

†
c1 â

†
c2 âa1 âa2 â

†
a3 â

†
a4 âc3 âc4}.

Next, reorder this term keeping contracted operators adjacent, keeping track of sign factors
1

16
va2a1c1c2 t

c4c3
a3a4 â

†
c1 âc4󰁿 󰁾󰁽 󰂀
δc1c4

â†c2 âc3󰁿 󰁾󰁽 󰂀
δc2c3

{âa1 âa2 â
†
a3 â

†
a4}.

Simplify the δ's andmultiply by combinatorial factors (here 2 for the equivalent contractions)
1

8

C󰁛

c1c2

A󰁛

a1a2a3a4

va3a4c1c2 t
c1c2
a1a2{â

†
a1 â

†
a2 âa4 âa3}.

22

How isWick&d implemented?

The example below shows the evaluation of the CC term 〈Φ|F̂ovT̂1|Φ〉 in Python and the
corresponding C++ classes

class OperatorExpressionclass WickTheorem

1 2

3

Fov = w.op('f',['o+ v'])
T1 = w.op('f',['v+ o'])

wt = w.WickTheorem()

expr = wt.contract(Fov @ T1,0,0)

class Expression

23

How isWick&d implemented?

The example below shows the evaluation of the CC term 〈Φ|F̂ovT̂1|Φ〉 in Python and the
corresponding C++ classes

class OperatorExpressionclass WickTheorem

1 2

3

Fov = w.op('f',['o+ v'])
T1 = w.op('f',['v+ o'])

wt = w.WickTheorem()

expr = wt.contract(Fov @ T1,0,0)

class Expression

In this codewe:

1. Make a WickTheorem object

2. Make the Fov and T1 operators

3. Evaluate the contraction 23

How isWick&d implemented?

The example below shows the evaluation of the CC term 〈Φ|F̂ovT̂1|Φ〉 in Python and the
corresponding C++ classes

class OperatorExpressionclass WickTheorem

1 2

3

Fov = w.op('f',['o+ v'])
T1 = w.op('f',['v+ o'])

wt = w.WickTheorem()

expr = wt.contract(Fov @ T1,0,0)

class Expression

In this codewe:

1. Make a WickTheorem object

2. Make the Fov and T1 operators

3. Evaluate the contraction

The Expression object relies on
several underlying classes:

hqpâ
†
pâq󰁿 󰁾󰁽 󰂀

Term

+
1

4
vrspqâ

†
pâ

†
qâsâr󰁿 󰁾󰁽 󰂀

SymbolicTerm󰁿 󰁾󰁽 󰂀
Term󰁿 󰁾󰁽 󰂀

Expression

The split Term/SymbolicTerm
facilitates the grouping of terms in

Expression (stored as a
SymbolicTerm→ scalar_tmap).

23

What canWick&d do?

• Evaluate vacuum expectation values with respect to a generalΨ0.

• Put operator in normal-ordered form.

• Translate algebraic equations into tensor contractions (not optimized).

24

Arbitrary-order CC equations

In CC theory we are interested in computing the residuals rij···ab···

rij···ab··· = 〈Φ|{âij···ab···}H̄|Φ〉

Strategy I

Compute

Z(ω) =
1

(k!)2
󰁛

ij···

󰁛

ab···

ωab···
ij··· 〈Φ|{âij···ab···}H̄|Φ〉 = 〈Φ|Ω̂H̄|Φ〉

and obtain the residuals as

rij···ab··· =
∂

∂ωab···
ij···

Z(ω)

25

Arbitrary-order CC equations

In CC theory we are interested in computing the residuals rij···ab···

rij···ab··· = 〈Φ|{âij···ab···}H̄|Φ〉

Strategy II

Compute

H̄ = E0 +
󰁛

pq

H̄q
p{âpq}+

1

4

󰁛

pqrs

H̄rs
pq{âpqrs }+ . . . ,

and obtain (viaWick's theorem)

rij···ab··· = (k!)2Aij···Aab···H̄
ij···
ab···

25

Arbitrary-order CC equations

Table 2: Evaluation of the coupled cluster residual equations withWick&d. Execution time and the

number of unique terms contributing to the residual equations at a given particle-hole excitation level.

Theory Time Diagrams per excitation level

(s) 0 1 2 3 4 5 6 7 8

CCSD 0.1 3 14 31

CCSDT 0.7 3 15 37 47

CCSDTQ 2.4 3 15 38 53 74

CCSDTQP 6.3 3 15 38 54 80 99

CCSDTQPH 13.8 3 15 38 54 81 105 135

CCSDTQPH7 26.0 3 15 38 54 81 106 141 169

CCSDTQPH78 45.4 3 15 38 54 81 106 142 175 215

Fun fact: Getting the high-order terms right requires using arbitrary precision integers.

26

Live demo!

27

