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Workshop Goals

1. To introduce attendants to different approaches to computer-aided derivation techniques for
many-body theory,

2. To exchange ideas regarding state-of-the-art automatic derivation methods between
guantum chemists and nuclear physicists,

3. To discuss open problems in the field of automatic derivation, including the factorization of
tensor contractions and identification of identical terms,

4. To identify ways to make current automatic derivation tools interoperable as a way to
validate, benchmark, and expand the capabilities of current codes.



‘ Quantum Chemistry: Computational Chemistry From First Principles
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The Electron Correlation Problem

The electronic wave function is a complex highly-dimensional object
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Chemistry and the Electron Correlation Problem

The wave function is a linear combination of all arrangements
of electrons in a set of orbitals (Slater determinants)
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Chemistry and the Electron Correlation Problem
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Enter Many-Body Methods in Quantum Chemistry

On the Correlation Problem in Atomic and Molecular Systems. Calculation of
Wavefunction Components in Ursell-Type Expansion Using Quantum-Field
Theoretical Methods

Jkt CiZex*
Institute of Physical Chemistry, Czechoslovak Academy of Sciences, Prague, Czechoslovakia
(Received 17 May 1966)

method suggested in this paper. Two different ap-
proximations were applied. In both of these only the
component T of the operator 1' was considered. That
means that the exact wavefunction was written in the
form | ¥)=exp(T:) | ®).

Eqgs. (54). The solution of the nonlinear system of
equations was obtained using a general program for the
Elliott 803 computer written by Paldus.** This pro-



Computer-Aided Methods in Quantum Chemistry

Purposes of computer-aided development

O —
® Automate the derivation and implementation of
theories that lead to equations that are too g
complicated to be handled by a human
® Provide reference values for the implementation +
of new methods.
+

® Quickly explore new theoretical methods that
otherwise would take too long to code and



‘ Counting Diagrams in Coupled-Cluster Theory

T=T +T+...T,

MOLECULAR PrysICS, 2002, VoL. 100, No. 11, 18671872 Taylor & Frandis
For T truncated to order n, the
: 3
Diagrammatic structure of the general coupled cluster equations number of diagrams grows as n
MONIKA MUSIAL', STANISLAW A. KUCHARSKI? Anti di
and RODNEY J. BARTLETT'® ntisym. diagrams
1 . . .
Quantum Theory Project, Departments of Chemistry and Physics,
University of Florida, Gainesville, FL 32611, USA I HF Non-HF
’Institute of Chemistry, Silesian University, Szkolna 9, 40-006, Katowice, Poland 1 4 4
(Received 17 September 2001; accepted 9 December 2001) 24 26 30
The general formula for the number of diagrammatic terms occurring in the T, equation 3 42 47
within a particular coupled cluster model is derived. Both the antisymmetrized and 4 68 74
5 92 99
6 127 135

1.Musiat, M., Kucharski, S. A. & Bartlett, R. J. J. Chem. Phys. 116, 4382 (2002).



The First CCSDT Results Were Slightly Incorrect

The full CCSDT model for molecular electronic structure

Jozef Noga® and Rodney J. Bartlett® ,
Quantum Theory Project, Departments of Chemistry and Physics, University of Florida, Gainesville,
Florida 32611

(Received 19 January 1987; accepted 2 March 1987)

The full coupled-cluster model (CCSDT) single, double, and triple excitation method defined
by the wave function exp(T, + T, + T5)|®,) is formulated and computationally implemented
for the first time. Explicit computational equations are presented. The method is applied to

A NEW IMPLEMENTATION OF THE FULL CCSDT MODEL

FOR MOLECULAR ELECTRONIC STRUCTURE : - - -
rable to any CI approach). In the mcantime (to be

Gustavo E. SCUSERIA and Henry F. SCHAEFER 11 o . precise, one month earlier) we learned from Noga
Center for Computational Quantum Chemustry ', School of Chemical Sciences, University of Georgia, Athens, GA 30¢ .
and Bartlett (sec ref. [29] and errata in refs.
Received 28 August 1988; in final form 16 September 1988 [25 301 ) lhat they had independently found a mi'
b
nor crror in their program. After a term-by-tcrm

A new implementation of the coupled cluster method including all single, double and triple cxcitations (designated CUSIDTY)
has been developed and carefully tested. Applications to the molecular structures and harmonic vibrational frequencies of HF,
OH ., N, and CO are reported. CCSDT results are in close agreement with those obtained from the configuration interaction
method including all single, double, triple and quadruple excitations (CISDTQ).



‘ CCSDTQP Implementation (Human)

Formulation and implementation of the full coupled-cluster method
through pentuple excitations

M. Musiat and S. A. Kucharski
Institute of Chemistry, Silesian University, Szkolna 9, 40-006 Katowice, Poland

R. J. Bartlett?
Quantum Theory Project, Departments of Chemistry and Physics, University of Florida, Gainesville,
Florida 32611

(Received 2 October 2001; accepted 3 December 2001)

TABLE V. Correlation corrections with various CC methods relative to FCI* values [mH].

| TCCSDTQP) = litlat-+15| @)

CCSD CCSDT CCSDTQ CCSDTQP

R, 3.006 0.266 0018 0.000
.. . . . HF(DZP) 1.5R, 5.099 0.646 0.041 0.000
This is the highest-level CC approximation 208, 10.181 1125 0062 0001
. R, 4.122 0.531 0.023 0.002
ever implemented by hand H,0(DZP) 1.5R, 10.158 1.784 0.139 0.025
20R, 21.404 —-2472 -0.015 0.026
R, 2.843 0.100 0.002 0.001
. . . . SiH,(DZP) 1.5R, 6.685 0.058 -0.015 0.001
first difficulty. Although the T'5 equation consists of 99 anti- 20R, 14.869 ~3.689 ~0.346 0.001
. . : . . R, 3.544 0.206 0.007 0.000
symmetrized d1agrgm§ (or, equivalently, 20§ diagrams if we CH,(DZP) 15K, 061 310 e s
choose to work within a Goldstone formalism) the method 20R® 14.648 ~1.900 ~0.050 0.000

can still be implemented very efficiently. Following the ap- “The FCI values, basis sets and geometry taken from Ref. 27 for HF; Ref. 28 for H,0; Ref. 29 for SiH, and Ref.

30 for CH, .
"For CH, system the FCI 2R, result is not available; the CCSDTQP value was used as the reference.

Musiat, M., Kucharski, S. A. & Bartlett, R. J. J Chem Phys 116, 4382-4388 (2002).



We'’re in 2023, Why Can’t We Just Ask ChatGPT To Do It?

Write a python code that solves the CCD equations for a 8 sites half-filling Hubbard model.

Writing a Python code to solve the CCD equations for an 8-site half-filling Hubbard model is
a complex task that requires a deep understanding of quantum many-body physics and

numerical methods. Here is a basic structure of how such a code might look like:

for iteration in range(1
the amplitudes
T_new = np.zeros((N, N, N, N))
for i in range(N):
for j in range(N):
for a in range(N):

for b in range(N):

# Update T[i,j,a,b]

n the equations

rNntarmeds atc ctatec
intermedlate States




Early History of Computer-Aided Quantum Chemistry



1973: Paldus And Wong

COMPUTER GENERATION OF
FEYNMAN DIAGRAMS FOR PERTURBATION THEORY
I. GENERAL ALGORITHM

J.PALDUS and H.C. WONG
Quantum Theory Group, Department of Applied Mathematics, University of Waterloo,
Waterloo, Ontario, Canada N2L 3G1

Received 24 April 1973

A general algorithm which generates all the topologically distinct, linked, non-Hartree—Fock vacuum and Green-
function Hugenholtz-type diagrams is presented. Both the particle—hole and particle—particle Green-functions are con-
sidered. The one-particle Green function diagrams are not treated separately but rather obtained from the two-particle
self-energy diagrams.

Our goal may thus be stated as follows: Generate
all the essentially distinct, linked, non-Hartree—Fock
vacuum and p—p and p—h two-particle Green-function
Hugenholtz-type diagrams (distinguishing the self-
energy ones) of the nth order, having n; one-particle
and ny =n — ny two-particle vertices.

Based on Hugenholtz diagrams

(o) (b}
——— ><
(c) (d)

Fig. 1. One (a) and two (b) particle interaction vertices of
the Goldstone type, representing the one- and two-particle
parts of our hamiltonian (or of the hamiltonian of the per-
turbation), respectively. The Hugenholtz (degenerate) form
of these vertices is shown, correspondingly, in (c) and (d).

Goldstone Hugenholtz
] : ] 1 )
(a) (b) (c)

Fig. 2. Second order vacuum diagrams (a, b) in the Goldstone
form and Hugenholtz (c) form, considering only two-particle
interactions.



1973: Paldus and Wong
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Fig. 5. Third order particle—hole Green-function diagrams ge-
nerated in the second test case (INDEX =1, N1 =0, N2 = 3).
The last three diagrams (12, 13, 14) are the self-energy dia-
grams. The “external” vertices (1 and 5 in this case) are “re-
moved to infinity”, thus giving the diagrmas its usual form.
For other conventions see the caption to fig. 2.



1973: Paldus And Wong

A diagram is represented by a string. This
is not a unique representation.

Two representations of the same diagram

S, = 12453243
S, = 12432453

Fig. 8. An example of the third-order p—h diagram in the
Hugenholtz-form.

Diagram consolidation was necessary to
recognize topologically equivalent diagrams

Paldus and Wong used adjacency matrices

[0 1 0 0 0]
00020
Sp,$H—= |1 1.0 00
0010 1
00 1 0 0

Let us mention, finally, that in this last consolida-
tion step we have to consider again all possible time
versions, obtained by the permutation of vertex labels
on the equivalent vertices. This last test is, obviously,



1991: Janssen and Schaefer

Theor Chim Acta (1991) 79: 1-42 Thpoljetica
Chimica Acta
H.F. SEhHBfBl’ © Springer-Verlag 1991

Center for Computational Cuantam Chcn..y
Universitv of Georgia

Athens, Georgia 30602 - Second quantization symbol
The automated solution of second quantization equations manipulator (SQSYM).
with applications to the coupled cluster approach*® A fundamental contribution to

the field: This is the first example
of a complete program
(derivation + implementation).

Curtis L. Janssen and Henry F. Schaefer 1II
Center for Computational Quantum Chemistry, University of Georgia, Athens, GA 30602, USA

Received August 14, 1990; received in revised form/Accepted September 26, 1990

Summary. Theoretical methods in chemistry frequently involve the tedious solu-
tion of complex algebraic equations. Then the solutions, sometimes still quite
complex, are usually hand-coded by a programmer into an efficient computer
language. During this procedure it is all too easy to make an error which will go
undetected. A better approach would be to introduce the computer at an even
earlier stage in the development of the theory by programming it to first solve
the set of equations and then compile the solution into an efficient computer
language. In this research a program has been written in the C programming



1991: Janssen and Schaefer

This paper was cited 145 times!
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1991: Janssen and Schaefer

SQSYM is actually two programs. The first one is an interpreter + compiler

declare thetwo e ieclare factor h2 L 29 (3 435 (oC1 23 49) Specify spaces of
. .. adctor spdace spdace space space (+ + + 7
integrals (ij | kI) P P P P (ij | kl) and the
permutational
symmetry
) declare factor x
Build the declare factor y
expression for

quiyiv Cterm +1 xCu i) y(i v))

The simplified expressions generated by SQSYM are then executed by the correlation energy
language interpreter CORR



1991: Janssen and Schaefer

SQSYM was used to implement coupled cluster with singles —
and doubles (CCSD) for high-spin open-shell references ab,... 4 ——
T I ——

|P) =e' | D) | @) = |viyi YW1 W) BV L —e—

I,j,... 4 —ee—

— -

__ A, , I bapbr, L
T = (/£ + 196 + £ EY + (O EVEY + ..

In the HSOS case complications arise, so authors consider a partially spin-adapted variant

_ Ter T T New contractions are possible with a T'on the left since
H=e"He' # (He") ant A : . o
conn t'a) a, destroys anunoccupied (x) spin orbital in @

AR

H= « ;[[[[[H, T)---1,T]+... Terms involving up to the eight power of T enter into H



| 1994: Li and Paldus

Automation of the implementation of spin-adapted open-shell coupled-
cluster theories relying on the unitary group formalism

Xiangzhu Li and Josef Paldus®
Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3Gl

(Received 24 May 1994; accepted | August 1994)

A new implementation of the orthogonally spin-adapted open-shell (OS) coupled-cluster (CC)
formalism that is based on the unitary group approach to many-electron correlation problem is
described. Although the emphasis is on the so-called state specific single-reference but
multiconfigurational OS CC approach, the developed algorithms as well as the actual codes are also
amenable to multireference CC applications of the state-universal type. A special attention is given
to simple OS doublets and OS singlet and triplet cases, the former being applicable to the ground
states of radicals and the latter to the excited states of closed shell systems. The encoding of the
underlying formalism is fully automated and is based on a convenient decomposition of the
Hamiltonian into the effective zero-, one-, and two-orbital contributions as well as on the general
strategy that focuses on the excitation operator driven evaluation of individual absolute, linear,
quadratic, etc., coupled cluster coefficients, rather than on the standard molecular {spin) orbital
driven algorithms. In this way unnecessary duplications are avoided and efficient codes are
developed both for the general formula generation and final executable modules. A thorough testing
of this procedure on a number of model cases is described and several illustrative applications at the
ab initio level are provided. ‘



Determinantal Methods



1998: Kutzelnigg (Why Aren’t We Doing More Benchmark Calculations?)

MoLEcuLAR PHysics, 1998, VoL. 94, No. 1, 65-71

Almost variational coupled cluster theory

By WERNER KUTZELNIGG

Lehrstuhl fiir Theoretische Chemie, Ruhr-Universitdt Bochum,
D-44780 Bochum, Germany

Surprisingly
The energy expectation value of coupled-cluster theory can be formulated as the sum of the )
energy expression of traditional coupled-cluster (TCC) theory plus a corroc(nor)l term. The latter enough TCC versus VCC calculations (untrun—
is simplified if the stationarity conditions of TCC hold. It is then of o(s”), where s is the . >
coupled-cluster amplitude. The leading error contribution agrees with the leading term of the Cated In powcers Of S ) have—to the author S
difference between the TCC energy and the energy expression of extended coupled-cluster __ -
(ECC) theory. It is suggested to evaluate this routinely at the end of any TCC calculation kHOWICdge not even been performed at bench
as a check of the relmblllty of the latter. The error of the ECC energy expression with respect mark level, If one can dO full CI one ShOLlld
to an expectation value is of o (5°). The error of traditional CCSD with respect to an expecta- .
tion value is not affected by the inclusion of triple excitations in CCSDT. Approximations to Cel’talnly be able to dO VCC'SD or VCC'SDT

CCSDT are also discussed. A hierarchy of approximations starting from TCC and ending at
variational coupled-cluster (VCC) theory, alternative to the previously proposed improved
coupled-cluster (ICC) method is presented.

If we can optimize FCl states with | W) = Z | @;)c;, there is no reason we can't also

I
benchmark coupled cluster methods by expanding eT| d) = 2 | (I)I>CI

Il



How Do Determinant-Based Methods Work?

Express any state (vector) in the full configuration interaction determinant basis

[v) = Z | Py ‘= (©)
1
The Hartree-Fock determinant
| D) = | D) c=1(1,0,...)
The coupled-cluster wave function
el| @) c=¢1(1,0,...) where T is the matrix representation of 7 in the FCl basis

The Hamiltonian applied to the coupled-cluster wave function

He™| @) ¢ =HeT(1,0,..)) one can re-use techniques developed for FCI (string-based)



| 2000: Olsen

JOURNAL OF CHEMICAL PHYSICS

VOLUME 113, NUMBER 17

1 NOVE

The initial implementation and applications of a general active space
coupled cluster method

Jeppe Olsen
Department of Chemistry, University of Aarhus, DK-8000 Aarhus, Denmark

(Received 31 May 2000; accepted 7 July 2000)

A general coupled cluster method that allows arbitrary excitations from a single
reference-determinant is proposed and tested. The method is based on a generalization of the
formalism of spin-strings and provides a unified method for the storage and manipulation of coupled
cluster operators. An initial implementation of the method is discussed and used to study the
convergence of the coupled cluster hierarchy for H,O and CH, at equilibrium geometry, employing
up to eightfold excitations. The energy and wave function contributions of the various excitation
levels are examined. The dissociation curve of HF is also studied. Using single and double
excitations from a minimal active space, the coupled cluster dissociation curve for HF shows a
largest deviation from full configuration interaction curve of 1.3 mE,,, which decreases by an order
of magnitude up on the addition of triple excitations out of the active space. © 2000 American
Institute of Physics. [S0021-9606(00)30537-2]

TABLE V. Convergence of multireference CC and CI methods for the HF molecule at various geometries using
the cc-pVDZ basis.

R=10Rye R=15Rys R=20Ryr R=25Rye
Era —100.228 633 —100.140 252 —100.063 589 —100.035 692
Enreesn— Erxcr 0.001 280 0.001 192 0.001 091 0.001 060
Eyreisp— Ercr 0.005 816 0.005 744 0.004 924 0.004 316
Ewrecsor— Erct 0.000 096 0.000 108 0.000 106 0.000 104
Engcispro— Exci 0.000 071 0.000 077 0.000 072 0.000 065
Eygcespro— Ercr 0.000 003 0.000 005 0.000 007 0.000 007

GAS4

GAS3
GAS2

GAS1

The coupled-cluster amplitudes and spin—orbital excita-
tion operators are organized and manipulated using the meth-
ods of spin-strings and their graphical representations, as in-
troduced by Knowles and Handy11 for full configuration
interaction (FCI) calculations, and generalized to restricted
CI calculations by Olsen ez al.'? A spin—orbital excitation is
thus written as the product of four strings: a string of alpha-

creation operators [C’)Z;"(I ca)], @ string of beta-creation op-
erators [@Zg"(lc )], a string of alpha-annihilation operators
[OZZQ(IHG)]’ and a string of beta-annihilation operators

[O)f(Lap)],
a.;y= a.iyca.')'t[?')'a.a‘)'tzﬁ
tealcplaatap
=OZ/;Q(ICQ)@ZEB(IC,B)OZZQ(Iaa)OZZ;B(IaB)- (7)

] Choose T such that

i 0-2 holes in GAS1
L Toe_  O-4holesin GAS1+GAS2
[ — 00— 0-2 electrons in GAS4
1 _ee 0-4 holes in GAS3 + GAS4




2000: Olsen

Note added in proof. Two recent papers also introducing
coupled cluster methods allowing higher excitations are
Hirata and Bartlett, Chem. Phys. Lett. 321, 216 (2000) and
Kallay and Surjan, J. Chem. Phys. 113, 1359 (2000).




2000: Hirata, Nooijen, Bartlett

28 April 2000 e
CHEMICAL
PHYSICS
] LETTERS
ELSEVIER Chemical Physics Letters 321 (2000) 216-224

= ——————
www elsevier.nl /locate /cplett

High-order coupled-cluster calculations through connected
octuple excitations

So Hirata, Rodney J. Bartlett *
Quantum Theory Project, University of Florida, Gainesville, FL 32611, USA

Received 3 January 2000; in final form 24 February 2000

This paper implemented CC with 7 truncated
to rank eight excitations

6 OCIObL‘I' 20(» L]
CHEMICAL
PHYSICS
%] LETTERS
ELSEVIER Chemical Physics Letters 328 (2000) 459-468

www.elsevier.nl/locate/cplett

High-order determinantal equation-of-motion coupled-cluster
calculations for ionized and electron-attached states

So Hirata ®, Marcel Nooijen °, Rodney J. Bartlett **

* Quantum Theory Project, University of Florida, P.O. Box 118435, Gainesville, FL. 32611-8435, USA
® Chemistry Department, Princeton University, Princeton, NJ 08540, USA

Received 7 June 2000; received in final form 2 August 2000

This paper extended the previous one to

equation-of-motion CC with 7 truncated to
rank eight excitations



2000: Kallay

JOURNAL OF CHEMICAL PHYSICS VOLUME 113, NUMBER 4 22 JULY 2000

Computing coupled-cluster wave functions with arbitrary excitations

Mihaly Kallay and Péter R. Surjan
Eotvos University, Department of Theoretical Chemistry, H-1518 Budapest 112, POB 32, Hungary

(Received 4 February 2000; accepted 27 April 2000)

An algorithm is presented for solving coupled-cluster (CC) equations by successive diagonalization
of 2X2 matrices. It is more expensive than usual procedures, but it is capable of solving a CC
problem where any arbitrary excitation is included in the cluster operator. Equation-of-motion
coupled-cluster (EOMCC) excitation energies can also be determined by this method regardless of
the type of excitations in the cluster operator and the space where the effective Hamiltonian is
diagonalized. The algorithm is applied to the study of the convergence of CC and EOMCC series
in some small bases. © 2000 American Institute of Physics. [S0021-9606(00)30428-7]



Application to Jeziorski—Monkhorst Multireference CC Methods

THE JOURNAL OF CHEMICAL PHYSICS 125, 154113 (2006)

High-order excitations in state-universal and state-specific multireference
coupled cluster theories: Model systems

Francesco A. Evangelista, Wesley D. Allen,? and Henry F. Schaefer IlI 0,00
Center for Computational Chemistry, University of Georgia, Athens, Georgia 30602-2556
(Received 3 July 2006; accepted 31 August 2006; published online 20 October 2006)
N _ . . & 0.001F .
For the first time high-order excitations (n>2) have been studied in three multireference couple = B B
cluster (MRCC) theories built on the wave operator formalism: (1) the state-universal (SU) method =
of Jeziorski and Monkhorst (JM) (2) the state-specific Brillouin-Wigner (BW) coupled cluster 9 C
method, and (3) the state-specific MRCC approach of Mukherjee (Mk). For the H4, P4, BeH,, and T /E A
‘>'? 0.000 ~
o o P—~—_—]

d A = SRCCSDTQP (&)
B = SRCCSDTQP (dy)
C = 8SUCCSDTQP

) = ) e[ D), :

U 1
S5 05F 1 -
1 1 1 1 1 +

A linear combination of CC states 0
. . 0 0.5 1 1.5 2 2.5 3 3.5 4
(zero internal amplitudes)

FIG. 12. MRCCSDTQP/[Be(3s2p)/H(2s)] energy curves for the 1'A,
ground state of the BeH, model system. See Fig. 9 caption for details.



‘ Application to Alternative CC Methods

THE JOURNAL OF CHEMICAL PHYSICS 134, 224102 (2011) CC method  Energy equation Amplitudes equation
Altel:lnatlveTsr:ngIg—rtalfertet:cebc?tupled cluster approaches for multireference  Traditional E = (®le T Re |@) (@, leTHel |®) =0
robiems: e simpler, the betier . _AAa A AN A
P POk Unitary E = (®le A HeA @) (@, le AR |®) =0
Francesco A. Evangelista? it - .
Institut fiir Physikalische Chemie, Universitit Mainz, D-55099 Mainz, Germany Variational E = (Ple 5 H ;: |P) Re (q>q | eT ( H — E) eT I(b) =0
(Received 13 April 2011; accepted 18 May 2011; published online 10 June 2011) (¢|e2 e |1‘?)* N s _pof
Extended E = (®le*e " He' |®) (Pyle*e " He' |P) =0
We report a general implementation of alternative formulations of single-reference coupled clus- ((D|e):e_T[ I-? s fq]eT |d)) =0
ter theory (extended, unitary, and variational) with arbitrary-order truncation of the cluster operator.
These methods are applied to compute the energy of Ne and the equilibrium properties of HF and
C,. Potential energy curves for the dissociation of HF and the BeH, model computed with the ex-
tended, variational, and unitary coupled cluster approaches are compared to those obtained from the
munltivafs rannlad Al h Af Mulhariaoa ot al [T Cham Dhue 110 A171 /100011 and e UCCSD ((b )
1
THE JOURNAL OF CHEMICAL PHYSICS 133, 234102 (2010) 20 {=UCCSD (®,) - VCCSD (@) .
-ECCSD (®,)
Benchmark studies of variational, unitary and extended _15¢ ECCSD @) |CCSD (@) .
= =1
coupled cluster methods Lg 10+ 2 ; !
Bridgette Cooper and Peter J. Knowles? E
School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom ~ Sr \/ VCCSD ( @ )
(Received 6 August 2010; accepted 5 November 2010; published online 15 December 2010) [Id& 0 } 2
7 -
= -ic-MRCCSD
Comparative benchmark calculations are presented for coupled cluster theory in its standard formu- o] =5 k = Mk-MRCCSD ]
lation, as well as variational, extended, and unitary coupled cluster methods. The systems studied CCSD ((I)z)
include HF, N, and CN, and with cluster operators that for the first time include up to quadruple ex- 1 s
citations. In cases where static correlation effects are weak, the differences between the predictions o &
of molecular properties from each theory are negligible. When, however, static correlation is strong, 9 Ii 1
it is demonstrated that variational coupled cluster theory can be significantly more robust than the 0 — L .
traditional ansatz and offers a starting point on which to base single-determinant reference methods 0.0 0.5 2.0 2.5 3.0 3.5 4.0
that can be used beyond the normal domain of applicability. These conclusions hold at all levels of x

truncation of the cluster operator, with the variational approach showing significantly smaller errors.



Pilot Implementation of Internally-Contracted MRCC Theory

An orbital-invariant internally contracted multireference coupled
cluster approach

Francesco A. Evangelista® and Jirgen Gauss®
Institut fiir Physikalische Chemie, Universitit Mainz, D-55099 Mainz, Germany

(Received 27 October 2010; accepted 4 February 2011; published online 16 March 2011)

We have formulated and implemented an internally contracted multireference coupled cluster
(ic-MRCC) approach aimed at solving two of the problems encountered in methods based on the
Jeziorski-Monkhorst ansatz: (i) the scaling of the computational and memory costs with respect
to the number of references, and (ii) the lack of invariance of the energy with respect to rotations
among active orbitals. The ic-MRCC approach is based on a straightforward generalization of

d
|lPiCMRCC> = eTZ |(I),u>clu
U

One operator applied to a linear
combination of determinants

E(r) - EF(‘I(T) (mE,)

e CCSD (10.88)

e Mk-MRCCSD (2.18)

e MRCISD (0.91)

e ic-MRCCSD (0.11)
© MRACPF (0.15)

e MRAQCC (0.23)

5 6

r(H-F) (bohr)



Diagrammatic Approaches



1999: Harris

Computer Generation of The CC energy diagram
Coupled-Cluster Equations

> CC_Diagrams(0,2,2);

/===== \ [ \
I\ I A |
I ) h(, b, -a, -b)| + | ) h(, b, -p, -b) t(p, -a)l
FRANK E. HARRIS I/ I/ [
Department of Physics, University of Utah, Salt Lake City, Utah 84112 and === b b= I
Quantum Theory Project, Departments of Physics and Chemistry, University of Florida, Gainesville, \(ab) /- \ pab /
Florida 32611
/ -==== \
I\ I
The CC equations state that the energy associ- 1) h(a, b, -p, -q) tlp, g, -a, -b)l
ated with the CC wave function is : / :
\(pq) (ab) /
E — E°=(®|He"|®),, (1)
/=== \
where E° is the energy corresponding to H" ap- + : \) (1/2 h(a, b, -p, - t(q, -b) t(p, _a)):
plied to ®; the cluster coefficients of all sizes are |/ I
given by [----- |
\pagb /

—ety =(P{IHe" D)., )

F.E. Harris, “Computer generation of coupled-cluster equations,” Int J Quantum Chem 75(4-5), 593-597 (1999).
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ELSEVIER Journal of Molecular Structure (Theochem) 547 (2001) 253-267

www.elsevier.com/locate/theochem

Towards a general multireference coupled cluster method:
automated implementation of open-shell CCSD method for
doublet states™

Marcel Nooijen®, Victor Lotrich

Department of Chemistry, Princeton University, Frick Laboratory #123b, Princeton, NJ 08540, USA
Received 22 November 2000; revised 21 February 2001; accepted 21 February 2001

Needless to say, I (MN) changed my mind on these
matters. The complexity of the state-selective intern-
ally contracted CC approaches is such that the only
way to proceed is automation. However, the computa-

Discusses the development of the
Automatic Program Generator (APG)

this paper). This module essentially uses Wick’s theo-
rem and a set of additional elementary operations that
allow us to formulate most many-body methods in
terms of Wick’s theorem. These additional manipula-
tions consist of multiplying by density matrices,
taking symbolic derivatives of the equations, discard-
ing disconnected terms and so forth. An essential
aspect of this module is that every term is written in
a unique way which avoids comparing terms
(diagrams) that are equivalent by changing summa-
tion indices, permutational symmetry, and the like.



2001: Nooijen

In 2001, Nooijen applied AGP to CC to compute states with +1 or -1 electron with respect to a
closed-shell reference @,

E.g., for the ionizationcase R = r, 4
|¥) = e"{e’} R| D) n
_ S is a quasi-particle annihilation operator (S| ®_.) = 0)
open—shell

Int. J. Mol. Sci. 2002, 3, 656-675
International Journal of

Molecular Sciences
ISSN 1422-0067
© 2002 by MDPI

www.mdpi.org/ijms/

State Selective Equation of Motion Coupled Cluster Theory:
Some Preliminary Results

Marcel Nooijen

Department of Chemistry, Princeton University, Princeton NJ 08544.
E-mail: Nooijen@princeton.edu



| 2001: Kdllay

Interaction vertices are numbered 1-13

JOURNAL OF CHEMICAL PHYSICS VOLUME 115, NUMBER 7 5 }-_-_-" (jkl |zl> W(jk, il)
Higher excitations in coupled-cluster theory .
ﬂfﬁflyl}figi‘.’: %’Z,‘fﬁ:ﬁf 3"7%2:2111 Chemistry, H-1518 Budapest 112, POB 32, Hungary 6 l» ] <~7 a| |Zb) W(bj » @y Z)
(Received 20 March 2001; accepted 11 May 2001) y
The viability of treating higher excitations in coupled-cluster theory is discussed. An algorithm is 7 /\' - (zcl |ab) W(abz’ C)

presented for solving coupled-cluster (CC) equations which can handle any excitation. Our method
combines the formalism of diagrammatic many-body perturbation theory and string-based
configuration interaction (CI). CC equations are explicitly put down in terms of antisymmetrized
diagrams and a general method is proposed for the factorization of the corresponding algebraic

expressions. Contractions between cluster amplitudes and intermediates are evaluated by a . . .
ring-based algorithn Incontrat 0 ou previous developments [J. Chem. Phys. 113, 1359 (2000)] CC diagram represented with simple
the operation count of this new method scales roughly as the (22 +2)nd power of the basis set size nu merical Stl’i ngS

where n is the highest excitation in the cluster operator. As a by-product we get a completely new
CI formalism which is effective for solving both truncated and full CI problems. Generalization for

approximate CC models as well as multireference cases is also discussed. © 200! American
Institute of Physics. [DOI: 10.1063/1.1383290] -~— 220 000 000 000 5

— 111 220 000 000 8

- - 111 111 220 000 11

\ é:---.:é / -— 220 222 000 000 11
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Intermediates can be easily identified

220 000 000 000 5 000 000 0005

220 111 000 000 8 000 000 8
— 2204 111

220 111 111 000 11 111 000 11

220 222 000 000 11 | 222 000 000 11

Diagrammatically —

-
] s =xt 0

= e AR

>
=

— Diagrammatic intermediates




| 2004: Bochevarov And Sherrill

JOURNAL OF CHEMICAL PHYSICS VOLUME 121, NUMBER 8

A general diagrammatic algorithm for contraction and subsequent
simplification of second-quantized expressions

Arteum D. Bochevarov® and C. David Sherrill® The unifying idea of Nostromo is that each diagram may
School. of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400 be “enCO de d,, by a text s tring, an d Vice versa, each SUCh
(Received 3 May 2004; accepted 28 May 2004) . . i .

. : _ . string of code may be translated back into a pictorial repre-
We present a general computer algorithm to contract an arbitrary number of second-quantized . . .
expressions and simplify the obtained analytical result. The functions that perform these operations sentation of the second-quantlzed expression—a Goldstone

are a part of the program Nostromo which facilitates the handling and analysis of the complicated . . .
mathematical formulas which are often encountered in modern quantum-chemical models. In dlagr am. We call such a Stl'll’lg of text a fextual dlag ram.
contrast to existing codes of this kind, Nostromo is based solely on the Goldstone-diagrammatic

representation of algebraic expressions in Fock space and has capabilities to work with operators as

well as scalars. Each Goldstone diagram is internally represented by a line of text which is easy to

interpret and transform. The calculation of matrix elements does not exploit Wick’s theorem in a ample the one-particle operator that includes all the particle
direct way, but uses diagrammatic techniques to produce only nonzero terms. The identification of 7’ o
equivalent expressions and their subsequent factorization in the final result is performed easily by creation and annihilation oper ators

analyzing the topological structure of the diagrammatic expressions. © 2004 American Institute of
Physics. [DOI: 10.1063/1.1774977]

h=2 h,,ala, (2.1)
pp’
Thlsmdependent work deveIOpedaMathematlca is written in Nostromo in the following simple way:

code called NOSTROMO. OrOV£7$£7$. The one-particle operator in which the



‘ 2008: Shiozaki, Hirata, And Valeev

PAPER www.rsc.org/pccp | Physical Chemistry Chemical Physics
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Equations of explicitly-correlated coupled-cluster methods¥ SMITH contracts creation and annihilation operators of the
same type between all excitation vertices and an interaction

Toru Shiozaki,” Muneaki Kamiya,” So Hirata** and Edward F. Valeev’ . . L .
vertex and spawns just the topologically distinct diagram

Received 3rd March 2008, Accepted 24th April 2008

First published as an Advance Article on the web 20th May 2008 fragments. This can be performed efficiently by using the

DOI: 10.1039/b803704n . . 47.48 . P
symbolic algorithm™"™" that exhaustively enumerates distinct

The tensor contraction expressions defining a variety of high-rank coupled-cluster energies and permutations of connectable lines and that can be Straightfor-

wave functions that include the interelectronic distances (r;2) explicitly (CC-R12) have been . . .

derived with the aid of a newly-developed computerized symbolic algebra smith. Efficient Wardly ComPUterlZCd- The contraction Step 1S repeated be'

computational sequences to perform these tensor contractions have also been suggested, defining

intermediate tensors—some reusable—as a sum of binary tensor contractions. sMiTH can elucidate

the index permutation symmetry of intermediate tensors that arise from a Slater-determinant

expectation value of any number of excitation, deexcitation and other general second-quantized

operators. SMITH also automates additional algebraic transformation steps specific to R12 TCE could only handle ansitze restricted to a form

methods, i.e. the identification and isolation of the special intermediates that need to be evaluated

analytically and the resolution-of-the-identity insertion to facilitate high-dimensional molecular .~ A N

integral computation. The tensor contraction expressions defining the CC-R12 methods including <(I)0 | (LQR] e Rn)c L (I)0> (32)
Y

which contained one deexcitation L operator, any number of
This paper describes SM |TH, a successor tothe TCE excitation R,---R, operators and one interaction (i.e. neither
excitation nor deexcitation)  operator, which could be var-
iously connected or linked. In conjunction with a certain



2009: Kong Ph.D. Thesis, University of Waterloo (With Nooijen)

Internally Contracted Multireference Coupled Cluster
Method and Normal-Order-Based Automatic Code
Generator

by

Liguo Kong

6.2.1 Term representation: hierarchical class structure

Here is one example of a term:

lth,h:fh.E"mpz Ehg

2'P|P2 hs “hiha2™hs" (6.1())

We define a class Term, to represent this type of quantity. From the example, every term mainly

has two attributes: Coefficient (here, 3t%%2 f/'*) and Operators (here, E}'}? E}'3).

hsy
Following the chain of definitions, we have a hierarchical contraction for a term:

e Operators is a list of Operator’s (here, E,‘]’:ﬁ and E,’::)

e The class Operator has two attributes: ‘upperIndicees’ and ‘lowerIndicees’, which in turn

are lists of indices (for 1;,’::2‘_, [p1,p2] is the ‘upperIndicees’ and [hy, hy) is the ‘lowerIndicees’).

3

e The class Index mainly has two attributes: ‘type’, ‘num’. For the index ‘pl’, ‘type’ = ‘p’
(particle), and ‘num’ = ‘1",

e The class Coefficient has two attributes: ‘const’ and ‘matElement’. For %t;;:,’,‘; Shss ‘const

= 1, ‘matElement’ = [th1}2, f'4]. ‘matElement’ is a list of MatElement.

e The class MatElement mainly has three attributes: ‘name’, ‘matUpperIndicees’ and ‘mat-
LowerIndicees’. For t::,’,’::, ‘name’ = ‘t’, ‘matUpperIndicees’ = [hy, k2], and ‘matLow-
erIndicees’ = [py, p2]. The ‘matUpperIndicees’ and ‘matLowerIndicees’ are lists of indices.

In our program, more attributes are attached to some classes, but the basic structure is as

shown above.
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A state-specific partially internally contracted multireference coupled

cluster approach
Dipayan Datta,"? Liguo Kong,? and Marcel Nooijen’
! Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada -75.00
2Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA 1

(Received 14 February 2011; accepted 29 April 2011; published online 7 June 2011)

Multireference equation-of-motion coupled cluster theory

Dipayan Datta'-? and Marcel Nooijen?
!Institut fiir Physikalische Chemie, Johannes Gutenberg-Universitit Mainz, D-55099 Mainz, Germany
*Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo,

Ontario N2L 3G1, Canada
(Received 13 August 2012; accepted 23 October 2012; published online 26 November 2012)

-75.40

-75.50

Total Energy/Hartree

-75.60

The pIC-MRCC approach follows the first- i
transformation-then-diagonalization route. The IC cluster _—

08 1.2 16 20

amplitudes are solved first, followed by construction of the R/A

transformed Hamiltonian H = e~ 7 He?, which is subse- . lgt pl {5
. . . . FIG. 1. The potential energy curves for the X ' ,°, B' A, and B’ E; states
quently diagonalized in the MRCIS space in an uncontracted of C; molecule obtained using the 6-31G* basis and the MR-EOMCC(mb)

manner to obtain the final wave function and state energy. opooach,

Datta, D., Kong, L. & Nooijen, M. J. Chem. Phys. 134,214116 (2011).
Datta, D. & Nooijen, M. J. Chem. Phys. 137,204107 (2012).
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THE JOURNAL OF CHEMICAL PHYSICS 134, 124106 (2011)

A fully simultaneously optimizing genetic approach to the highly excited
coupled-cluster factorization problem

Anna Engels-Putzka and Michael Hanrath?
Institute for Theoretical Chemistry, University of Cologne, Greinstrafle 4, 50939 Cologne, Germany

(Received 6 November 2010; accepted 14 February 2011; published online 24 March 2011)
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Creation of non redundant
properly scaling contraction terms

[

cf. Fig. 7

Graph of TermGraphs J

Reconstruction of contractions

unfactorized, cf. Fig. 13

Graph: explicit operations J

Parametrization, genetic optimization,
and construction of factorized graph

[

Graph: explicit operations

factorized,

cf. Fig. 14 J

Regeneration of indices and
generation of contraction program
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J. Phys. Chem. A 2003, 107, 9887—9897 9887

Tensor Contraction Engine: Abstraction and Automated Parallel Implementation of
Configuration-Interaction, Coupled-Cluster, and Many-Body Perturbation Theories

So Hirata*

William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory,
P.O.Box 999, Richland, Washington 99352

Received: March 7, 2003; In Final Form: July 16, 2003

We have developed a symbolic manipulation program and program generator (tensor contraction engine or
TCE) that abstracts and automates the time-consuming, error-prone processes of deriving the working equations
of a well-defined model of second-quantized many-electron theories and synthesizing efficient parallel computer
programs on the basis of these equations. Provided an ansatz of a many-electron theory model, TCE performs
valid contractions of creation and annihilation operators according to Wick’s theorem, consolidates identical
terms, and reduces the expressions into the form of multiple tensor contractions acted upon by permutation
operators. It subsequently determines the binary contraction order for each multiple tensor contraction with
the minimal operation and memory cost, factorizes common binary contractions (defines intermediate tensors),
and identifies reusable intermediates. The resulting ordered list of binary tensor contractions, additions, and
index permutations is translated into an optimized program that is combined with the NWCHEM and UTCHEM
computational chemistry software packages. The programs synthesized by TCE take advantage of spin
symmetry (within the spin—orbital formalisms), real Abelian point-group symmetry, and index permutation
symmetry at every stage of the calculations to minimize the number of arithmetic operations and storage
requirement, adjust the peak local memory usage by index-range tiling, and support parallel I/O interfaces
and dynamic load balancing for parallel executions. We demonstrate the utility of TCE through automatic
derivation and implementation of parallel programs for a range of predictive computational methods—
configuration-interaction theory (CISD, CISDT, CISDTQ), generalized many-body perturbation theory [MBPT-
(2), MBPT(3), MBPT(4)], and coupled-cluster theory (LCCD, CCD, LCCSD, CCSD, QCISD, CCSDT, and
CCSDTQ), some for the first time—and discuss the performance of the implemented programs.

Hirata, S. Journal Of Physical Chemistry A 107, 9887-9897 (2003).
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arbitrary, and TCE adopts the following: the tensor parts of
the operators are in alphabetical order, then in the order of their
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among the common indices. All common indices are subse-
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‘ Output of the TCE

Terms contributing to the CCSD T} amplitude equation (Cbiz e~ THe! | @)
1

1.
1.
1.
1.0
1.
0.5
0.
1.
1.
1.
0.
0.
1.
1.

f (p2 hl)
h3 ) * f (h3hl)*t (p2h3)
p3 ) * f Cp2p3 ) *t (p3hl)

Sum (
Sum (
Sum (
Sum (
Sum (
Sum (
Sum (
Sum (
Sum (
Sum (
Sum (
Sum (
Sum (

h4

p3

) *t (p3 h4

) *v ( h4d p2 hl p3 )

p4 ) * f (h3 p4d ) *t (p4 p2 h3 hl )

h5
p3
p3
hS
p3
hS
h6
h6
h6

p3 ) * t ( p3
p4 ) * t ( p3
) *t ( p3 hl
pd ) * t ( p2
p4 ) * t ( p3
p3 p6 ) * t (
p3 p4 ) * t (
p3 pS ) * t (
p3 p5 ) * t (

p2 h4 h5 ) * v ( h4 h5 hl p3 )

p4 hS hl ) * v ( h5 p2 p3 p4 )

) *t (p2hd ) *f (hd p3)

h3 ) *t (Cp4 h5 ) * v ( h3 h5 hl p4 )

hl1 ) *t (Cp4 h5 ) * v ( h5 p2 p3 p4 )

p3 p2 h4 h5 ) *t (p6 hl ) * v ( h4 h5 p3 p6 )

p3 p4 h5hl ) *t (p2 he ) *v ( h5 he p3 p4 )

p3 p2 h4 hl ) *t (p5he ) *v ( h4d he p3 p5 )

p3 hl ) *t (p2h4d ) *t (p5h6) *v (h4d h p3 p5 )




‘ Output of the TCE

Terms contributing to the CCSD T, amplitude equation (@} | e THe! | @)
112

*

p3 p4 hl h2 )
PC p3 p4 hl h2 p4 p3 h1 h2 ) ] * Sum C(h5 ) *t (p3 h5 ) * v ( h5 p4 hl h2 )
PC p3 p4 h2 hl p3 p4 hl1 h2 ) ] * Sum C p5 ) t (p5h2) *v (p3p4 hl p5 )
PC p3 p4 hl h2 p3 p4 h2 h1 )] *Sum (h5 ) * f (h5hl ) *t ( p3 p4 h5 h2 )
.0 * PC p4 p3 hl h2 p3 p4 h1 h2 ) ] * Sum C p5 ) * f ( p4 p5 ) t Cp5 p3 hl h2 )
Sum C h5he ) *t (p3 p4dh5ho ) *v (h5 hé hl h2 )
.0 * PCp3 p4 h2 hl =>p4 p3 h2hl ) -1.0* PCp3 p4 h2 hl = p3 p4 hl h2 )
PCp3 p4d h2 hl =>p4dp3 hlh2)] *Sum (Chop5)*t((p5p3 heh2) *v (hdpsd hl p5 )
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1.
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1.
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Permutation
operator



TCE Optimizations

Simple Code
Generator

/ I

h 4

Tensor Expressions

.

TCE Language
Parser

Optimizations

|
Simple Expression Tree !
|

Loop Fuser

Abstract Syntax Tree
Generator

Abstract Syntax Tree
Optimizations

___________ Jreooeeees

Generated Code

/ Code Generator

The TCE applies several optimizations

Expression tree optimization (introducing intermediates)
Loop fusion (minimize memory requirements of

intermediates)

Tiling of arrays (improve cache performance)

Parallelism (run on multiple nodes)

Sabij = Z A acite Bre1C it D cdel -

cefkl

I1=0; I2=0; 8=0;

Ipeqy = Zl?l‘”’f’ X D.gel l;or b, &, d, e £, 1
el | ITlbecas += Bpefl Dedel
i = Z“sz_r x Cagjk t_'o‘r’ Hy & di ¢ J £ .
& L '—zbcjk += Ll}:)t_‘d[. Cafik
) For: a; by Gy 35 k
\"nInJ — [

| Sabij *= I2pcik Aacik

E [21)(‘]}; X -"lam)v
{,}-'

(a) Formula sequence (b) Direct implementation (unfused

code)

for b, ©

[ I1f = 0; I2f = 0;
foxr «d;: £
for e, 1
[ I1f += Bpef1 Dcdel
for j, k
: I2f5 += I1f Caryx
for a; 1, J; k
| [ Sabij += I2f3x Aacik

(c) Memory-reduced implementation
(fused)



‘ Applications of the TCE

JOURNAL OF CHEMICAL PHYSICS VOLUME 121, NUMBER 1 1 JULY 2004

Higher-order equation-of-motion coupled-cluster methods

So Hirata®
William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory,
Richland, Washington 99352

(Received 2 February 2004; accepted 1 April 2004)

The equation-of-motion coupled-cluster (EOM-CC) methods truncated after double, triple, or
quadruple cluster and linear excitation operators (EOM-CCSD, EOM-CCSDT, and
EOM-CCSDTQ) have been derived and implemented into parallel execution programs. They
compute excitation energies, excited-state dipole moments, and transition moments of closed- and
open-shell systems, taking advantage of spin, spatial (real Abelian), and permutation symmetries
simultaneously and fully (within the spin—orbital formalisms). The related A equation solvers for
coupled-cluster (CC) methods through and up to connected quadruple excitation (CCSD, CCSDT,
and CCSDTQ) have also been developed. These developments have been achieved, by virtue of the
algebraic and symbolic manipulation program that automated the formula derivation and
implementation altogether. The EOM-CC methods and CC A equations introduce a class of second
quantized ansatz with a de-excitation operator (?), a number of excitation operators (X), and a
physical (e.g., the Hamiltonian) operator (A), leading to the tensor contraction expressions that can
be performed in the order of ((-**((yx)x) - -)x)a or ((---((ax)x)- - -)x)y at the minimal peak operation
cost, where x, y, and a are basis-set representations (i.c., tensors) of the respective operators X, ¥,
and A. Any intermediate tensor resulting from either contraction order is shown to have at most six
groups of permutable indices, and this knowledge is used to guide the computer-synthesized
programs to fully exploit the permutation symmetry of any tensor to minimize the arithmetic and
memory costs. © 2004 American Institute of Physics.
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Arbitrary-Order Derivatives of Quantum Chemical Methods via
Automatic Differentiation Here the base theory is coded and

Adam S. Abbott, Boyi Z. Abbott, Justin M. Turney, and Henry F. Schaefer, III* the arbitra ry-order derivatives With
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o LLil respect to some parameter
ACCESS | |l Metrics & More [B3 Article Recommendations \ © Supporting Information (geo met ry’ exte rna I fi e I d) are
el el ol o o il (el computed automatically using

oz
chemistry methods. By leveraging modern advances in automatic differentiation software, we o ~ ’ .
demonstrate that exact derivatives can be obtained for any method. This innovation D Goog I e S JAX I | b ra ry
completely bypasses the issues associated with the computational stability of applying L - °
numerical differentiation methods and dispenses the need to derive challenging formulae for oG
analytic energy derivatives. We describe a freely available and open-source software o
implementation of our scheme and demonstrate its use in obtaining exact nuclear derivatives
of energies from Hartree—Fock theory, second-order Moller—Plesset perturbation theory
(MP2), and coupled cluster theory with single, double, and perturbative triple excitations g 9E LE JE
[CCSD(T)]. Our sample computations include up to sextic derivatives and span a variety of dx? dx3
test systems with up to 100 basis functions, confirming the viability of this scheme for a wide :
range of applications. Many of the results obtained have hitherto been unobtainable by exact
means due to a lack of higher-order derivative formulae. The details of our implementation and
possible further developments are discussed.
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