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Workshop Goals

1. To introduce attendants to different approaches to computer-aided derivation techniques for 
many-body theory,


2. To exchange ideas regarding state-of-the-art automatic derivation methods between 
quantum chemists and nuclear physicists,


3. To discuss open problems in the field of automatic derivation, including the factorization of 
tensor contractions and identification of identical terms,

 
4. To identify ways to make current automatic derivation tools interoperable as a way to 
validate, benchmark, and expand the capabilities of current codes.



Quantum Chemistry: Computational Chemistry From First Principles
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Hamiltonian operator (fixed nuclei approximation)

Energy as a function of 
nuclear coordinates (R)

Energy levels, potential energy surface

ĤΨ(R) = E(R)Ψ(R)

Time-independent Schrödinger equation

Wave function at time t

Time-dependent Schrödinger equation

iℏ
∂Ψ(R; t)

∂t
= ĤΨ(R; t)

Dynamics (e.g., interaction with external fields)



The Electron Correlation Problem

The electronic wave function is a complex highly-dimensional object
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Chemistry and the Electron Correlation Problem

i1 i2

i3 i4

Orbitals

EThe wave function is a linear combination of all arrangements 
of electrons in a set of orbitals (Slater determinants)

|Ψ⟩ = ∑
I

CI |ΦI⟩ =
K

∑
i1<i2<…<iN

Ci1i2⋯iN |φi1φi2…φiN⟩

Coefficient of a Slater 
determinant (unknown)

Slater determinant
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Chemistry and the Electron Correlation Problem

# of determinants ∝ (K
N)|Ψ⟩ = c0 +cS

Mean field

(MO picture)

Orbital 
relaxation

… + cD

2-electron 
correlation

…
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Enter Many-Body Methods in Quantum Chemistry



Computer-Aided Methods in Quantum Chemistry

Purposes of computer-aided development

๏ Automate the derivation and implementation of 
theories that lead to equations that are too 
complicated to be handled by a human


๏ Provide reference values for the implementation 
of new methods.


๏ Quickly explore new theoretical methods that 
otherwise would take too long to code and 



Counting Diagrams in Coupled-Cluster Theory

⟨Φab⋯
ij⋯ |e−THeT |Φ⟩ = ⟨Φab⋯

ij⋯ | (HeT)conn |Φ⟩ |Φab⋯
ij⋯ ⟩ = ̂a†

a ̂a†
b⋯ ̂aj ̂ai |Φ⟩

For  truncated to order , the 

number of diagrams grows as 

T n
n3

T ≈ T1 + T2 + …Tn

1.Musiał, M., Kucharski, S. A. & Bartlett, R. J. J. Chem. Phys. 116, 4382 (2002).



The First CCSDT Results Were Slightly Incorrect



CCSDTQP Implementation (Human)

Musiał, M., Kucharski, S. A. & Bartlett, R. J. J Chem Phys 116, 4382–4388 (2002).

|ΨCCSDTQP⟩ = eT1+T2+…+T5 |Φ⟩

This is the highest-level CC approximation 
ever implemented by hand



We’re in 2023, Why Can’t We Just Ask ChatGPT To Do It?



Early History of Computer-Aided Quantum Chemistry



1973: Paldus And Wong

Based on Hugenholtz diagrams

Goldstone Hugenholtz



1973: Paldus and Wong



1973: Paldus And Wong

A diagram is represented by a string. This 
is not a unique representation.


Two representations of the same diagram



S1 = 12453243
S2 = 12432453

Diagram consolidation was necessary to 
recognize topologically equivalent diagrams 

Paldus and Wong used adjacency matrices

S1, S2 →



1991: Janssen and Schaefer

Second quantization symbol 
manipulator (SQSYM).

A fundamental contribution to 
the field: This is the first example 
of a complete program 
(derivation + implementation).



1991: Janssen and Schaefer

This paper was cited 145 times!



1991: Janssen and Schaefer

SQSYM is actually two programs. The first one is an interpreter + compiler

declare factor h2
factor space space space space (+(1 2)) (+(3 4)) (+(1 2)(3 4)) …
…

declare factor x
declare factor y
…
(term +1 x(u i) y(i v))

declare the two e 
integrals (ij |kl)

Specify spaces of 
 and the 

permutational 
symmetry

(ij |kl)

Build the 
expression for 

∑
i

xuiyiv

The simplified expressions generated by SQSYM are then executed by the correlation energy 
language interpreter CORR



1991: Janssen and Schaefer

SQSYM was used to implement coupled cluster with singles 
and doubles (CCSD) for high-spin open-shell references

|Φ⟩ = |ψ1ψ1̄⋯ψNψN̄ψN+1⋯ψN+M⟩

T = ta
i

̂Ea
i + ta

x
̂Ea
x + tx

i
̂Ex
i + tba

ji
̂Eb
j

̂Ea
i + …

|Ψ⟩ = eT |Φ⟩
i, j, …

 a, b, …

x, y, …

H̄ = e−THeT ≠ (HeT)conn

In the HSOS case complications arise, so authors consider a partially spin-adapted variant

New contractions are possible with a  on the left since


 destroys an unoccupied ( ) spin orbital in 

T
ta
x ̂a†

aβ
̂axβ

x Φ

H̄ = ←
1
5!

[[[[[H, T]⋯], T] + … Terms involving up to the eight power of  enter into T H̄



1994: Li and Paldus



Determinantal Methods



1998: Kutzelnigg (Why Aren’t We Doing More Benchmark Calculations?)

If we can optimize FCI states with , there is no reason we can’t also 

benchmark coupled cluster methods by expanding  

|Ψ⟩ = ∑
I

|ΦI⟩cI

eT |Φ⟩ = ∑
I

|ΦI⟩cI



How Do Determinant-Based Methods Work?

|v⟩ = ∑
I

|ΦI⟩cI

Express any state (vector) in the full configuration interaction determinant basis

The Hartree–Fock determinant

|Φ⟩ ≡ |Φ0⟩ c = (1,0,…)

cI = (c)I

The coupled-cluster wave function

eT |Φ0⟩ c = eT(1,0,…) where  is the matrix representation of  in the FCI basisT T

The Hamiltonian applied to the coupled-cluster wave function

HeT |Φ0⟩ c = HeT(1,0,…) one can re-use techniques developed for FCI (string-based)



2000: Olsen

GAS1

GAS4 

GAS3
GAS2

Choose  such that


0–2 holes in GAS1

0–4 holes in GAS1 + GAS2

0–2 electrons in GAS4

0–4 holes in GAS3 + GAS4

T



2000: Olsen



2000: Hirata, Nooijen, Bartlett

This paper implemented CC with  truncated 
to rank eight excitations

T This paper extended the previous one to 

equation-of-motion CC with  truncated to 
rank eight excitations

T



2000: Kállay



Application to Jeziorski—Monkhorst Multireference CC Methods

|ΨJM⟩ =
d

∑
μ

eTμ |Φμ⟩cμ

A linear combination of CC states

(zero internal amplitudes)



Application to Alternative CC Methods



Pilot Implementation of Internally-Contracted MRCC Theory

|ΨicMRCC⟩ = eT
d

∑
μ

|Φμ⟩cμ

One operator applied to a linear 
combination of determinants



Diagrammatic Approaches



1999: Harris

The CC energy diagram

F.E. Harris, “Computer generation of coupled-cluster equations,” Int J Quantum Chem 75(4–5), 593–597 (1999).



2001: Nooijen

Discusses the development of the 
Automatic Program Generator (APG)



2001: Nooijen

|Ψ⟩ = eT{eS} R |Φc⟩

open−shell

E.g., for the ionization case R = rm ̂am

In 2001, Nooijen applied AGP to CC to compute states with +1 or –1 electron with respect to a 

closed-shell reference Φc

 is a quasi-particle annihilation operator ( )S S |Φc⟩ = 0



2001: Kállay

CC diagram represented with simple 
numerical strings

Interaction vertices are numbered 1–13



2001: Kállay

Intermediates can be easily identified

Diagrammatically

Diagrammatic intermediates



2004: Bochevarov And Sherrill

This independent work developed a Mathematica 
code called NOSTROMO. 



2008: Shiozaki, Hirata, And Valeev

This paper describes SMITH, a successor to the TCE



2009: Kong Ph.D. Thesis, University of Waterloo (With Nooijen)



2012: Datta And Nooijen

Datta, D., Kong, L. & Nooijen, M. J. Chem. Phys. 134, 214116 (2011).

Datta, D. & Nooijen, M. J. Chem. Phys. 137, 204107 (2012).



2011: Engels-Putzka and Hanrath



Algebraic Approaches



2003: Hirata (TCE)

Hirata, S. Journal Of Physical Chemistry A 107, 9887–9897 (2003).



Single 
contraction

Canonical

form



Output of the TCE

[ + 1.0 ] * f ( p2 h1 )
[ - 1.0 ] * Sum ( h3 ) * f ( h3 h1 ) * t ( p2 h3 )
[ + 1.0 ] * Sum ( p3 ) * f ( p2 p3 ) * t ( p3 h1 )
[ - 1.0 ] * Sum ( h4 p3 ) * t ( p3 h4 ) * v ( h4 p2 h1 p3 )
[ + 1.0 ] * Sum ( h3 p4 ) * f ( h3 p4 ) * t ( p4 p2 h3 h1 )
[ + 0.5 ] * Sum ( h4 h5 p3 ) * t ( p3 p2 h4 h5 ) * v ( h4 h5 h1 p3 )
[ + 0.5 ] * Sum ( h5 p3 p4 ) * t ( p3 p4 h5 h1 ) * v ( h5 p2 p3 p4 )
[ - 1.0 ] * Sum ( h4 p3 ) * t ( p3 h1 ) * t ( p2 h4 ) * f ( h4 p3 )
[ - 1.0 ] * Sum ( h3 h5 p4 ) * t ( p2 h3 ) * t ( p4 h5 ) * v ( h3 h5 h1 p4 )
[ - 1.0 ] * Sum ( h5 p3 p4 ) * t ( p3 h1 ) * t ( p4 h5 ) * v ( h5 p2 p3 p4 )
[ - 0.5 ] * Sum ( h4 h5 p3 p6 ) * t ( p3 p2 h4 h5 ) * t ( p6 h1 ) * v ( h4 h5 p3 p6 )
[ - 0.5 ] * Sum ( h5 h6 p3 p4 ) * t ( p3 p4 h5 h1 ) * t ( p2 h6 ) * v ( h5 h6 p3 p4 )
[ + 1.0 ] * Sum ( h4 h6 p3 p5 ) * t ( p3 p2 h4 h1 ) * t ( p5 h6 ) * v ( h4 h6 p3 p5 )
[ - 1.0 ] * Sum ( h4 h6 p3 p5 ) * t ( p3 h1 ) * t ( p2 h4 ) * t ( p5 h6 ) * v ( h4 h6 p3 p5 )

Terms contributing to the CCSD  amplitude equation T1 ⟨Φp2
h1

|e−THeT |Φ⟩



Output of the TCE

[ + 1.0 ] * v ( p3 p4 h1 h2 )
[ - 1.0 + 1.0 * P( p3 p4 h1 h2 => p4 p3 h1 h2 ) ] * Sum ( h5 ) * t ( p3 h5 ) * v ( h5 p4 h1 h2 )
[ + 1.0 - 1.0 * P( p3 p4 h2 h1 => p3 p4 h1 h2 ) ] * Sum ( p5 ) * t ( p5 h2 ) * v ( p3 p4 h1 p5 )
[ - 1.0 + 1.0 * P( p3 p4 h1 h2 => p3 p4 h2 h1 ) ] * Sum ( h5 ) * f ( h5 h1 ) * t ( p3 p4 h5 h2 )
[ - 1.0 + 1.0 * P( p4 p3 h1 h2 => p3 p4 h1 h2 ) ] * Sum ( p5 ) * f ( p4 p5 ) * t ( p5 p3 h1 h2 )
[ + 0.5 ] * Sum ( h5 h6 ) * t ( p3 p4 h5 h6 ) * v ( h5 h6 h1 h2 )
[ + 1.0 - 1.0 * P( p3 p4 h2 h1 => p4 p3 h2 h1 ) - 1.0 * P( p3 p4 h2 h1 => p3 p4 h1 h2 ) 
+ 1.0 * P( p3 p4 h2 h1 => p4 p3 h1 h2 ) ] * Sum ( h6 p5 ) * t ( p5 p3 h6 h2 ) * v ( h6 p4 h1 p5 )
…

Terms contributing to the CCSD  amplitude equation T2 ⟨Φp3p4
h1h2

|e−THeT |Φ⟩

Permutation 
operator



TCE Optimizations

The TCE applies several optimizations

Expression tree optimization (introducing intermediates)

Loop fusion (minimize memory requirements of 
intermediates)

Tiling of arrays (improve cache performance)

Parallelism (run on multiple nodes)



Applications of the TCE

Used the TCE to implement equation-of-motion 
coupled-cluster methods through CCSDTQ

Used the TCE to implement Piecuch’s 
renormalized CC methods



Automation of Energy Derivatives

Here the base theory is coded and 
the arbitrary-order derivatives with 
respect to some parameter 
(geometry, external field) are 
computed automatically using 
Google’s JAX library.



The End!


