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Neutron stars...

R~9—13km

ne ~ 4 —8ng

R ~ 1737km
M ~ 4 x107% Mg

R~ 6371 km

ne ~ ng = 2.7 x 10** g/cm?

M ~3x10"°Mg



GW170817: first binary neutron star merger observed

+ Virgo (Italy)




Simultaneous mass—-radius measurements

M = 2.08 £ 0.07 Mg

Rao = 12.397; 50 km

Ry = 13.71’%:2 km

Neutron star Interior Composition ExploreR @ ISS



Structure of cold neutron stars

equation of state observation
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TOV equations

Abbott et al. (2018)

Credit: A. Steiner

The general relativistic equation for hydrostatic
equilibrium determines the neutron star structure




FRIB and FRIB Science
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Opportunity & challenge for nuclear theory

Coordinated efforts are
paramount:

We just entered a

unique opportunity to obtain a
fundamental understanding of
strongly interacting matter, with
great potential for discovery

Nuclear theory: How do we

e interpret these experiments & observations microscopically
e predict outcomes when experiments are not feasible
e quantify & propagate our theoretical uncertainties

Overarching questions include:

e How do nuclear phenomena emerge from
fundamental principles?

e Where do heavy elements like Gold come from?

e How are stars born? And how do they die?

Major efforts:

Bayesian methods for calibration, uncertainty quantification and
propagation, experimental design, sensitivity studies, ...

Reduced Order Models (ROM) enable these methods, especially
efficient MC sampling of model parameter spaces

Last week’s ESNT workshop Eigenvector continuation method in nuclear structure and
reaction theory (slides available): https://esnt.cea.fr/Phocea/Page/index.php?id=109



Ab initio workflow (idealized)

Here: nuclear equation of state (EOS)

(structure, reactions, astrophysics, ...) energy per particle (and derived quantities)
E baryon density n
—(n, 6, T)  neutron excess &
A temperature T
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EFT

polytropic

Chirpl2)n, expansion
EFT
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theory of strong interactions
QCD is nonperturbative at the low energies

CD & Bogner, Few Body Syst. 62, 109 relevant for nuclear physics (cf. pQCD & LQCD)
CD, Haxton, McElvain, Mereghetti et al., PPNP 121, 103888

(CalLat, HALQCD, NPLQCD, ...)




Ab initio workflow (idealized)
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(structure, reactions, astrophysics, ...)

many-body theory

exact QMC, NCSM, ...
approximate CC, IMSRG, MBPT, SCGF, ...
phenomenological SM, DFT, ...

| renormalization group I

(Weinberg, van Kolck, Kaiser, LENPIC, Idaho, ...)

(CalLat, HALQCD, NPLQCD, ...)

CD & Bogner, Few Body Syst. 62, 109

H(0) [¢(0)) = E(0) [1(8))

Here: nuclear equation of state (EOS)
energy per particle (and derived quantities)

%(n, 6, T)

solves the (many-body) Schrodinger equation
requires a nuclear potential as input

chiral effective field theory
provides microscopic interactions consistent with
the symmetries of low-energy QCD

theory of strong interactions
QCD is nonperturbative at the low energies

relevant for nuclear physics (cf. pPQCD & LQCD)



Major process: CEFT, many-body theory, and UQ!

theory — experiment
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Ab initio workflow (idealized)

H(0) [¢(0)) = E(0) [1(8))

Nuclear Equation of State at T =0

Here: nuclear equation of state (EOS)
energy per particle (and derived quantities)

%(n, 6, T)
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Here: many-body perturbation theory (MBPT)

computationally efficient method (HPC-friendly)
allows to estimate many-body uncertainties

Widely applicable:

uncertainty quantification
Energy per Particle E/A [MeV]

=15 B - v’ arbitrary proton fractions

0 B L L L L I L L L L I L L L L @ L L I L / finite tempera.ture : :

0.00 0.05 0.10 0.15 0.20 v’ optical potentials, linear response, nuclei, ...
Density n [fm™]

Other frameworks include quantum Monte Carlo,
coupled cluster, and self-consistent Green’s functions

CD & Bogner, Few Body Syst. 62, 109



Many-body perturbation theory (MBPT) in a nutshell

normal-ordered

0 . . .
£© ) effective potential genuine NN forces 3N forces

V=g 2 (0 Vawlid) ®

particles:

ab,c,... @ @

second order i) = [kioiTi) typically requires approximations | involved at N3LO+

N2LO 3N  N3LO 3N :

L ii\ CD, Carbone et al., ]
b '\ PRC 94, 054307
v )

) i/i‘_ ?{ '

involved partial-wave decomposition

E/N [MeV]

L

see Coraggio, Holt et al., PRC 89, 044321 b ey MBPT(3)vs |
T=0 MeV SCGF

HF 2nd 3rd SCGF

third order nonperturbative benchmarks in neutron matter




Example: second-order contribution

p
(2) 4
E - 1-ng)(d
[ ] NN4+3N 1 / dkl (2) 2n ( nks
. N 1;[ [TrgiTrT OO (12| V@ [34))] -
L i) = |kjo;7;) )
Partial-wave method (spin sums) ® previous approach: manual partial-wave

special case: PNM (no isospin terms)

Tolos, Friman, Schwenk, NPA 806 105

decomposition of each diagram: tedious
& error-prone, especially in ANM

Instead: perform MBPT calculations
directly in a single-particle basis

second order

Alternative avenue: Automated Momentum Coupling (AMC)
Tichai, Wirth et al., EPJ A 56, 272; https://github.com/radnut/amc



Example: second-order contribution

-
(2) 4 -
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Partial-wave method (spin sums) ® previous approach: manual partial-wave
decomposition of each diagram: tedious
& error-prone, especially in ANM
® |Instead: perform MBPT calculations

directly in a single-particle basis

second order

Alternative avenue: Automated Momentum Coupling (AMC)
Tichai, Wirth et al., EPJ A 56, 272; https://github.com/radnut/amc



Many-body interactions

CD, Hebeler, Schwenk, PRL 122, 042501
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L (binary number)

= <(O‘1/7'1/) ... (O‘A/TA/) |.AAVAN (ﬁ,ﬁ/) | (0‘17'1) ... (O‘ATA)>

complex-valued,
antisymmetrized

(binary number)

represent interactions as matrices in spin-isospin space ,

® automated generation (via symbolic calculations) using analytic
expressions: NN, 3N, 4N forces up to N3LO implemented

® matrix elements are analytic functions of the single-particle
momenta, written in C** (no approximations involved)

® (Physics-based) optimization (symmetries, common subexpr., ...) \Q

2 16
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(sparse)
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Only 44 (2A) are nonzero!

Al )
momentum
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(likewise for ~ pspin _ I+o;- g
isospin) Y 2 )




Many-body interactions CD, Hebeler, Schwenk, PRL 122, 042501

( )

1o/ / complex-valued,
(12 ... A | AaVan |12... A)

antisymmetrized

= <(0‘1/7'1/) e (O‘A/TA/) |.AAVAN (ﬁ,ﬁ/) | (0‘17'1) ... (O‘ATA)>

\. y,
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(ignore spin for brevity) . o0 v y

We identify the isospin singl/et and friplet states with eigenvalues A\ = (QT(T + 1) — 3)



Many-body interactions

CD, Hebeler, Schwenk, PRL 122, 042501
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Efficient Monte-Carlo framework CD, Hebeler, Schwenk, PRL 122, 042501
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What if the analytic expressions of the interactions are unknown?
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Rigorous UQ for nuclear matter e e

NN forces 3N forces 4N forces

Chiral Effective Field Theory (nucleons & pions)

solid: nucleons

0
LO (Q9) dashed: pions

dominant approach for deriving microscopic interactions

o consistent with the symmetries of low-energy QCD
NLO (Q2

three- and four-neutron forces predicted through N3LO

O enables uncertainty quantification (EFT truncation)

NLooh 08 fit the unknown (low-energy) couplings to
: : experimental (or lattice) data, such as phase shifts,
N4LO (@5) IR IR LA S I A e -++1 +-X¥-1.. binding energies, charge radii, etc.

An example:
symmetric matter

E

- = - 3
y=7, k=4 (N’LO)

Uncertainty bands depict

68% credibility regions NLO N2LO0 N3LO

0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3
Density n [fm™?] Density n [fm™?] Density n [fm™?] Density n [fm™?]

Y =Yk + 0y




3N forces up to N3LO partial-wave decomposed

see also: Miyagi, Stroberg et al., Phys. Rev. C 105, 014302
Hebeler, Durant et al., Phys. Rev. C 107, 024310




Renaissance of M BPT CD, Hebeler, Schwenk, PRL 122, 042501

CD, McElvain et al., in prep.

high-order MBPT

calculations of the EOS

Efficient evaluation of MBPT diagrams automated code
with NN, 3N, and 4N forces generation
® implementation of arbitrary diagrams has become
straightforward (up to numerical precision)
® multi-dimensional momentum integrals: improved Vegas
® GPU-accelerated normal ordering of 3N interactions analytic expressions
® propagation of importance sampling distributions interaction & MBPT diagrams
® controlled evaluation of 1000s of MBPT diagrams
® acceleration: MPI + openMP + GPU (CUDA) MPI_JM Job Manager-
Application to dilute Fermi gas: Berkowitz, Jansen, McElvain, and Walker-Loud,

Wellenhofer, CD, Schwenk, PRC 104, 014003 & PLB 802, 135247 EPJ Web Conf. 175, 09007 (2018 Gordon Bell finalists)



(Rule-based) Automated Code Generation

(inverse) factor F = +1,
numerator V ={{a, b,1,j}, {i,c,a,k}, {j,k,b,c}},

an example: third order ph diagram denominator D = {{i,j,a, b}, {j,k,b,c}}

Derive the MBPT diagram of interest and its
corresponding analytic expression Pqo tPp»=DPi tDPj,

{a,b,c, 1,7, k} Pi +Pc =Pa + Pk
Pj+pk=pb+pc:

Determine labels determined by momentum conservation
Generate LaTeX output for documentation

Momentum conservation determines N — 1
momenta in MBPT(N)

Symbolic integration reduces
dimensionality of the integrals

Check internal consistency of the analytic expression;
Do the vertices conserve momentum?

Trust but verify (spot check some of the diagrams)
Run code generator and compile the output

Choose one configuration:

repeat for each diagram
(embarrassingly parallel)

Evaluate diagram for a given (n, x, T) and Hamiltonian
and store the result in a database

Offline-online decomposition



(Rule-based) Automated Code Generation

(inverse) factor F = +1,
numerator V ={{a,b,1,j}, {i,c,a,k}, {j,k,b,c}},

an example: third order ph diagram denominator D = {{i,j,a, b}, {j,k,b,c}}

Set up integrator (Integrate over all particle & hole labels Holes: inside the Fermi sphere (T = 0) {CL i ] k}
not determined by momentum conservation) Particles: outside the Fermi sphere P

Use spherical coordinates due to momentum

Perform variable transforms (to Cartesian momenta) s ) }
distribution functions, e.g., n, =9( ke - | p | )

Use momentum conservation to determine momenta not ( \ Gauss-Legendre quadrature
integrated over and assign momenta to all vertices CPU Lebedev

N/
Pre-store all interaction matrices (including those with .
normal ordering) and single-particle energies — _|_ f /‘V3N :}

———

Contract the interaction matrices (weighted by the GPU
energy denominator) and multiply by overall factor normal-ordered NN+3N vertices

e



High-order MBPT for nuclear matter

General paradigm:
evaluate all diagrams consistently

The number of diagrams increases rapidly! or none at all

1, 3, 39. 840, 27 300, 1232280,

n= 2 3 4 5 6 7

Integer sequence A064732:

E Number of labeled Hugenholtz diagrams with n nodes.

with automated diagram generation to MBPT for nuclear matter
Stevenson, Int. J. Mod. Phys. C 14, 1135

Arthuis et al., Comput. Phys. 240, 202 for residual 3N contributions, see Xu, Li, and Xu, arXiv:1810.08804




Bogner et al., Prog. Part. Nucl. Phys. 65

Implementing 3N interactions Hergert et al.. Phys. Rep. 621. 165

Normal-ordering w.r.t. a finite-density reference state. Here: HF reference state.

General three-body Hamiltonian in second-quantized form:

Z (123|V®)|456)al alalagasas
123456

1
H = Z Typalas + —— Z (12|V|34)alalagas +
12

1
(21)2 2~ (31)2

/

all operators are normal-
ordered w.r.t. the vacuum

H = E0+Z flg{alag}-l- (21')2 Z <12|F|34>{CLJ{CL£CL4CL3}+ (31')2

/ 12 1234

where the zero-, one-, and two-body normal-ordered terms are given by

Z (123]0®|456){alalalagasas}
123456

1 1
D|H|®) = zlennl +35 %: (12|V]12)manz + o %; (123|V®|123)nynons

. : 1 . .
12 + Z(11|V|2z)ni + 5 2(12]|W|2z]>ninj ,

ij

includes (dominant) 3N (12|7(34) = (12|V[34) + > (12i[V®)|34i)n,

contributions density-dependent two-body potential




Roth et al. (CC calculations),

Normal-ordered 3N Hamiltonian Phys. Rev. Lett. 109, 052501 (2012)

Normal ordering shifts contributions from the three-body Hamiltonian operator to effective
lower-body operators plus a residual (reduced) three-body operator.

Density-dependent (effective) two-body potential

(12|T[34) = (12|V[34) H> (12i|V®|34i)n;, | ——>

(3

Its matrix elements are obtained by summing one
particle over the occupied states in the reference state

for residual 3N contributions, see Xu, Li, and Xu, arXiv:1810.08804

Hence, a many-body framework built only for NN interactions can then
incorporate a density-dependent effective two-body potential

derived from 3N forces by replacing: Normal ordering has become the

standard approach to implementing
(dominant) 3N contributions in ab
(] initio many-body calculations.

The combinatorial factor ¢ is determined by Wick's theorem and
depends on the many-body calculation of interest.



For nuclei, e.g., see Roth et al.,

Common approximations Phys. Rev. Lett. 109, 052501 (2012)

#1 In contrast to the (Galilean-invariant) NN potential, the
effective two-body potential depends on the center-of-

mass momentum P of the two remaining particles. p

Hence, both potentials cannot be straightforwardly  Ayajable at arbitrary proton fractions, densities, and
combined in a partial-wave basis. temperatures based on different 3N interactions (up to N3LO+)
Different approximations for the P dependence have semi-analytic calculations: P = 0

been used to enable applications to nuclear matter. PW-based calculations: average over all angles of P
Automated MBPT does not require any of these How accurate are these approximations?

approximations.

Errors of two approximations for
the 3N HF energy as a function

of the density n =n, + n,

What about higher orders?\x
with the proton fraction x = n,/n
of infinite nuclear matter

Drischler, Hebeler, and Schwenk,
Phys. Rev. C 93, 054314



Residual 3N contributions

#2 The three-body term in the normal-ordered
Hamiltonian cannot be implemented using effective
two-body potentials.

These residual 3N contributions have been studied in
CC and MBPT (Kaiser, Hagen et al., CD et al.)

They are expected to be smaller than EFT truncation
error (and other MBPT diagrams at the same order)

They are relatively inexpensive to evaluate using
automated MBPT.

- second order
1 diagram

—0.

[V}

—04T Hebeler+ 1 7

Hebeler+ 2
Hebeler+ 3 +
Hebeler+ 4
Hebeler+ 5 |
Hebeler+ 6

—0.6

—0.8F

Typically small, but
hints of large cutoff
dependence

Energy per particle E/A [MeV]

1 1 1
0.15 0.20 0.25
3

Density n [fm™]

1
0.10 0.30

0.

0.

—0.

—0.

—0.

—0.

—0.

—0.

Residual third-order terms were first studied in closed-shell nuclei:
from 4He to 48Ca by Hu, Li, and Xu, arXiv:1810.08804

For relevant references, see Section 2.5 in:
CD, Holt, and Wellenhofer, ARNPS 71, 403

1

of

third order:
14 diagrams

one, two, or three 3N vertices

<

1f

R
3t
Not small compared

to second order.
Negligible?

n

5

N
0.05

1 1 1
0.15 0.20 0.25
3

Density n [fm™"]

1
0.10 0.30

(work in progress)



High-order MBPT for nuclear matter

24 MC integration algorithms include:

30 ® Vegas (traditional | enhanced)
18 e FOAM
21; 24, 27 ® Importance sampling using

normalizing flows Brady et al.,
Phys. Rev. Lett. 127, 062701

(effective) number of diagrams to be computed.
Accounts for:

® complex conjugated pairs Do not
g 19 P contribute
® anomalous diagrams Wellenhofer, Holt et al., PRC 89, 064009 atT=0

Keller et al., PRC 103, 055806



MBPT: an HPC application
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CD, McElvain et al., in prep. )




How well do we know the saturation point?  co.vcevainetal, in prep.

numerical
uncertainties

smaller than (2.0/2.5) “

marker size (1.8/2.0)

Hebeler+ interactions: Asrg/AsN

nuclear saturation | symmetric nuclear matter

&

MBPT(n) 2 3 4 5

NN+3N norm. ord. v v
residual BN | v (1) X X
v PRL (2019) new X not planned

Remarkable many-body convergence for these
soft(ened) chiral NN+3N interactions

Empirical saturation point (gray box) typically not
well reproduced by these chiral interactions



Many challenges were overcome! CD, Hebeler, Schwenk, PRL 122, 042501

Higher orders: particle-hole contributions
Coraggio et al., PRC 89, 044321; Holt, Kaiser, PRC 95, 034326

Approximated normal-ordering
Holt et al., PRC 81, 024002; Hebeler, Schwenk, PRC 82, 014314

Neglected residual 3N diagrams &
Hagen et al., PRC 89, 014319; Kaiser, EPJ A 48, 58 <{ }}

i e

Automated Monte Carlo
framework for MBPT

Higher many-body forces
Hebeler et al., PRC 91, 044001




(Pionless) Effective field theory ~  jelemercomsscen:

. E(m) n
apply many-body perturbation theory B, X kr
4 /2 2 N
W Visto) = [Co -+ G T g

0 O X O(A —p)O(A —p')
Q

C (p'q'|Vanlpg') = [Do;_; +}
x O(A — p) O(A — p"YO(A — ¢) O(A — ¢')

Q2 @) . /

C,,C%, ...
match LECs to effective-range expansion
o dma Qs 4ma’
C — S C _ C sls C, _ D
0 Vi 2 075 5 T
Q4 ?1 A 9 . .
| IMBPT ~ dgq 4 | renormalize LECs perturbatively
o q2—p? | tocancel divergences: A = «

v
Expansion

Fermi-momentum expansion for the

ground-state energy density
Hammer, Furnstahl, Nucl. Phys. A 678, 277

Kaplan, Savage, Wise, Nucl. Phys. B 534, 329



ke a.— expansion for the ground-state energy

diagrams with * (xx) have
UV power (logarithmic) divergences

7 — 0 1 2 \

k2 [3 2 4 ~ ,
~o—— | = — — s+ ——=(11 — krag
E(kr) 0507 [5 +(g 1){37[_]{51:‘@ + 357r2( 21n2)(kras)

+ (0.0755732 + 0.0573879(g — 3)) (kpas)?’}

1 2, 1 3
N 1)(kras)*kers + — (9 + 1) (kra,)

4 0 |+ Ey(kp)H- O(kp In k‘p)]
\

11-16 (pp-hh ladders)
Kaiser, Resummation of Fermionic
In-Medium Ladders to All Orders, NPA 860 I I

Regular diagrams

Baker, Singularity Structure of the

Perturbation Series for the Ground-State IR
Energy of a Many-Fermion System,

RMP 43

see also Baker, PRC 60, 054311



Two-particle reducible diagrams PRC 104, 014003 and PLB 803, 135247

\.

energy-denominator divergences )

\

Eym(4748) A—oo, V3

In(A/kg) » 69~ Dgsgre

Still diverges logarithmically

see also: Baker, Rev. Mod. Phys. 43, 479 (Sec. II.C) . . . .
Feldman, Salmhofer, Trubowitz, J. Stat. Phys. 84, 1209 (Sec. |)® improves overall numerical uncertainty & speed-up gains

@

cancels at the singularity:

energy-denominator divergences

e arise due to repeated energy denominators

e generic feature of zero-temperature MBPT

e are removed adding to their companions IlI(1+8) [also 1lI(2+10)]

Suggests: evaluate diagrams in groups, not individually
e group diagrams according to their particle-hole content
e regularize energy denominators and probe sensitivity



Ground-state energy: third order  2570's: so0s o els 03, 195267

due to Pauli-blocking: expansion is analytic in (kg ag) for g = 2

3 B(ke) = Fo [ 1+ i X, (kpa.)” L uncertainty estimate at order N
F) — L0 v \RFQsg Ami
v—1 HarXN—l—l — imaX[XugN]zw

3 k2
Eolke) = 50901

QMC: Gandolfi et al., ARNPS 65, 303 QMC: Pilati et al., PRL 105, 030405



Ground-state energy: fourth order e comisover.

due to Pauli-blocking: expansion is analytic in (kg ag) for g = 2

4 E(kp)=Eo [ 1+ i X, (kpas)” uncertainty estimate at order N
= U a/s
) : ' XnN41 = tmax| X, <n]

v=1

3 k2
Eolke) = 50901

QMC: Gandolfi et al., ARNPS 65, 303 QMC: Pilati et al., PRL 105, 030405



Ground-state energy: fourth order el comissver,

due to Pauli-blocking: expansion is analytic in (kg ag) for g = 2

4 Bertsch parameter &, = 0.33...0.54 Padé reSU;:Tnatlon j
is consistent with cold atomic gases: &, = 0.45 (n, m] = J—T(l) P; _
Ku et al., Science 335, 563 L4+ ey @
3 k2
Bolkr) = Zo537

QMC: Gandolfi et al., ARNPS 65, 303 QMC: Pilati et al., PRL 105, 030405



More details? Recent review article

FRIB

Keywords:

Chiral EFT | neutron stars | MBPT

nuclear matter at zero and finite temperature
Bayesian uncertainty quantification

recent neutron star observations

see also in the same journal:
James Lattimer, Annu. Rev. Nucl. Part. Sci. 71, 433

see also for finite nuclei:
Tichai, Roth, and Duguet, Front. Phys. 8, 00164

Open Access




Take-away points A

unique opportunity to obtain a
fundamental understanding of
strongly interacting matter, with
great potential for discoveries

multi-messenger
nuclear precision era
FRIB

Upcoming observational (and experimental) campaigns will
provide stringent constraints on the properties of neutron stars.

Chiral EFT enables microscopic predictions of nuclear matter (and nuclei)
with quantified uncertainties to interpret these empirical constraints.

Automated MBPT: efficient EOS calculations across a wide range of densities,
isospin asymmetries, and temperatures, as well as nuclear interactions.

Bayesian methods: powerful tools for quantifying & propagating uncertainties
in EFT-based calculations (driven by fast & accurate emulators).

R. Furnstahl A. Garcia P. Guiliani S.Han J.W. Holt J. Lattimer A. Lovell K. McElvain

Many thanks to: "y i cndez F.Nunes D.Phillips M.Prakash S.Reddy C.Wellenhofer X.Zhang T.Zhao



Interesting avenues (wish list?)

Automated Diagram Generation (ADG):

e Automated identification of divergent diagram pairs
e residual 3N interactions (n > 2)
e different reference states (free, second order, ...)

e finite temperature (anomalous, pole removal, n > 3)

MBPT convergence studies:

How does Diagrammatic Monte Carlo
handle these pairs?

e Resummation methods (Padé, Borel, more advanced ML)

e Nonperturbative benchmarks

e (in-medium) Weinberg eigenvalue analysis (esp. ph channel)

e How does the SRG tame nonperturbative behaviour in
different many-body channels?

How can we exploit the Petrov-Galerkin
nature of coupled cluster equations?




