
Automatic Generation of Computer Codes
for Correlated Wavefunction Calculations

Anastasios Papadopoulos, Hang Xu, Frank Neese

June 6, 2023

Max-Planck-Institut für Kohlenforschung

Aim of Quantum Chemistry

Solve Schrödinger equation for molecular (many-body) system

Ĥ|Ψ⟩ = E |Ψ⟩ (1)

Why?

• Powerful tool to predict and support spectroscopic data

• Gain insight into the electronic structure and estimate reactivity

No analytic solution for many-electron systems → find numerical solution

1

Aim of Quantum Chemistry

Solve Schrödinger equation for molecular (many-body) system

Ĥ|Ψ⟩ = E |Ψ⟩ (1)

Why?

• Powerful tool to predict and support spectroscopic data

• Gain insight into the electronic structure and estimate reactivity

No analytic solution for many-electron systems → find numerical solution

1

Aim of Quantum Chemistry

Solve Schrödinger equation for molecular (many-body) system

Ĥ|Ψ⟩ = E |Ψ⟩ (1)

Why?

• Powerful tool to predict and support spectroscopic data

• Gain insight into the electronic structure and estimate reactivity

No analytic solution for many-electron systems → find numerical solution

1

Finding a Solution to the Schrödinger Equation

Approximations

• Born-Oppenheimer → split nuclear and electronic coordinates

ĤBO = T̂e + V̂ne + V̂ee + Vn (2)

• Variational solution can be described as a linear combination of
Slater determinants (antisymmetrized product of one-electron
functions)

• Basis set expansion

Even with all these approximations, it is unfeasible to evaluate this
equation by hand!

2

Finding a Solution to the Schrödinger Equation

Approximations

• Born-Oppenheimer → split nuclear and electronic coordinates

ĤBO = T̂e + V̂ne + V̂ee + Vn (2)

• Variational solution can be described as a linear combination of
Slater determinants (antisymmetrized product of one-electron
functions)

• Basis set expansion

Even with all these approximations, it is unfeasible to evaluate this
equation by hand!

2

Software and Quantum Chemistry

Software allows us to calculate energies and properties of systems as large
as proteins nowadays

Myoglobin (heme group removed), ∼ 2.4k atoms

PBE

def2-SV(P), ∼ 19k basis functions
def2-mTZVP/J, ∼ 43k auxiliary basis functions

16 cores

100000 MB memory per core

total calculation: 3.5h (14 iterations)

3

Correlated Wavefunction Methods

For highly-accurate calculations, correlation methods are required, such
as configuration-interaction (CI) or coupled-cluster (CC),

|ΨCI ⟩ = (1 + Ĉ) |0⟩ (3)

|ΨCC ⟩ = eT̂ |0⟩ (4)

with |0⟩ being the reference wavefunction, typically taken from a
Hartree-Fock calculation (Slater determinant, mean-field solution). They
aim to include dynamical correlation.

T̂ = T̂1 + T̂2 + · · ·+ T̂N (5)

=
∑
ia

tai a
†
aai +

1
4

∑
ijab

tabij a
†
aa

†
bajai + · · · (6)

To reduce the cost of the calculation, these Ansätze are truncated. Most
often only singles and doubles (CISD/CCSD) excitations are included. To
improve the accuracy, higher-order excitations can be added.

4

Complexity of Quantum Chemical Methods

CC equations:

ECC = ⟨0| e−T̂ ĤeT̂ |0⟩ (7)

0 = ⟨Φµ|e−T̂ ĤeT̂ |0⟩ (8)

By including additional excitations, the equations become increasingly
complex.

Could take years to manually optimise those equations. The advantage is
that they can be systematically improved.

5

Complexity of Quantum Chemical Methods

Could take years to manually optimise those equations. The advantage is
that they can be systematically improved.

All 74 diagrams contributing to T4 in the CCSDTQ equations.1

1Kucharski, S. A.; Bartlett, R. J. Theor. Chim. Acta 1991, 80, 387–405. 5

Complexity of Quantum Chemical Methods

CC equations:

ECC = ⟨0| e−T̂ ĤeT̂ |0⟩ (7)

0 = ⟨Φµ|e−T̂ ĤeT̂ |0⟩ (8)

By including additional excitations, the equations become increasingly
complex.

Could take years to manually optimise those equations. The advantage is
that they can be systematically improved.

5

Automated Generation

Systematic work is what computers do best.

Benefits

• Reduce implementation time

• Remove human-error (e.g. accidental sign flipping)

• Consistent implementations, reference for manual implementations

• Improvements to toolchain are easily transferred to all methods

Already succesfully applied to many methods, such as CI, CC, MBPT,
both single- and multi-reference.1,2,3,4,5

1Kállay, M.; Surján, P. R. J. Chem. Phys. 2001, 115, 2945–2954.
2Hirata, S. J. Phys. Chem. A 2003, 107, 9887–9897.
3MacLeod, M. K.; Shiozaki, T. J. Chem. Phys. 2015, 142, 051103.
4Krupička, M. et al. J. Comput. Chem. 2017, 38, 1853–1868.
5Evangelista, F. A. J. Chem. Phys. 2022, 157, 064111.

6

Automated Generation

Systematic work is what computers do best.

Benefits

• Reduce implementation time

• Remove human-error (e.g. accidental sign flipping)

• Consistent implementations, reference for manual implementations

• Improvements to toolchain are easily transferred to all methods

Already succesfully applied to many methods, such as CI, CC, MBPT,
both single- and multi-reference.1,2,3,4,5

1Kállay, M.; Surján, P. R. J. Chem. Phys. 2001, 115, 2945–2954.
2Hirata, S. J. Phys. Chem. A 2003, 107, 9887–9897.
3MacLeod, M. K.; Shiozaki, T. J. Chem. Phys. 2015, 142, 051103.
4Krupička, M. et al. J. Comput. Chem. 2017, 38, 1853–1868.
5Evangelista, F. A. J. Chem. Phys. 2022, 157, 064111.

6

Defining an automated toolchain

Formulate general protocol. Example: arbitrary-order coupled cluster

1. Define your Ansatz (input!)

|ΨCC ⟩ = eT̂ |0⟩ (9)

T̂ =
∑
ia

tai a
†
aai +

1
4

∑
ijab

tabij a
†
aa

†
bajai + · · · (10)

2. Formulate your equations in a general fashion

σab...
ij... = ⟨Φab...

ij... |e−T̂ ĤeT̂ |0⟩ (11)

ECC = ⟨0|e−T̂ ĤeT̂ |0⟩ (12)

e−T̂ ĤeT̂ = Ĥ + [Ĥ, T̂] + [[Ĥ, T̂], T̂] + . . . (13)

3. Generate equations

4. Process equations

5. Transform equations into source code

7

Defining an automated toolchain

Formulate general protocol. Example: arbitrary-order coupled cluster

1. Define your Ansatz (input!)

|ΨCC ⟩ = eT̂ |0⟩ (9)

T̂ =
∑
ia

tai a
†
aai +

1
4

∑
ijab

tabij a
†
aa

†
bajai + · · · (10)

2. Formulate your equations in a general fashion

σab...
ij... = ⟨Φab...

ij... |e−T̂ ĤeT̂ |0⟩ (11)

ECC = ⟨0|e−T̂ ĤeT̂ |0⟩ (12)

e−T̂ ĤeT̂ = Ĥ + [Ĥ, T̂] + [[Ĥ, T̂], T̂] + . . . (13)

3. Generate equations

4. Process equations

5. Transform equations into source code

7

Defining an automated toolchain

Formulate general protocol. Example: arbitrary-order coupled cluster

1. Define your Ansatz (input!)

|ΨCC ⟩ = eT̂ |0⟩ (9)

T̂ =
∑
ia

tai a
†
aai +

1
4

∑
ijab

tabij a
†
aa

†
bajai + · · · (10)

2. Formulate your equations in a general fashion

σab...
ij... = ⟨Φab...

ij... |e−T̂ ĤeT̂ |0⟩ (11)

ECC = ⟨0|e−T̂ ĤeT̂ |0⟩ (12)

e−T̂ ĤeT̂ = Ĥ + [Ĥ, T̂] + [[Ĥ, T̂], T̂] + . . . (13)

3. Generate equations

4. Process equations

5. Transform equations into source code

7

Defining an automated toolchain

Formulate general protocol. Example: arbitrary-order coupled cluster

1. Define your Ansatz (input!)

|ΨCC ⟩ = eT̂ |0⟩ (9)

T̂ =
∑
ia

tai a
†
aai +

1
4

∑
ijab

tabij a
†
aa

†
bajai + · · · (10)

2. Formulate your equations in a general fashion

σab...
ij... = ⟨Φab...

ij... |e−T̂ ĤeT̂ |0⟩ (11)

ECC = ⟨0|e−T̂ ĤeT̂ |0⟩ (12)

e−T̂ ĤeT̂ = Ĥ + [Ĥ, T̂] + [[Ĥ, T̂], T̂] + . . . (13)

3. Generate equations

4. Process equations

5. Transform equations into source code

7

Defining an automated toolchain

Formulate general protocol. Example: arbitrary-order coupled cluster

1. Define your Ansatz (input!)

|ΨCC ⟩ = eT̂ |0⟩ (9)

T̂ =
∑
ia

tai a
†
aai +

1
4

∑
ijab

tabij a
†
aa

†
bajai + · · · (10)

2. Formulate your equations in a general fashion

σab...
ij... = ⟨Φab...

ij... |e−T̂ ĤeT̂ |0⟩ (11)

ECC = ⟨0|e−T̂ ĤeT̂ |0⟩ (12)

e−T̂ ĤeT̂ = Ĥ + [Ĥ, T̂] + [[Ĥ, T̂], T̂] + . . . (13)

3. Generate equations

4. Process equations

5. Transform equations into source code 7

Meet the Automated Generator Environment (AGE)

Write inputs
for chosen

ansatz

Obtain working
equations

𝐴 = 𝐵𝐶
𝐴 = 𝐵𝐶

𝐴 = 2𝐵𝐶

Reorder
tensors for

optimal scaling

𝐴 = 𝐵𝐶𝐷𝐸

𝑋 = 𝐵𝐶
𝑌 = 𝑋𝐷
𝐴 = 𝑌𝐸

𝐴 = 𝐶𝐵
𝐴 = 𝐷𝐵

𝐴 = 𝐶 + 𝐷 𝐵

Find optimal
index order of

tensors

Generate C++
code

Modular toolchain

• Rewritten in C++ for increased performance
• Backend of math utilities (definition for indices, tensors,

contractions, symmetry, etc.)
• Interface is a single equation (.eq) file 8

Meet the Automated Generator Environment (AGE)

Write inputs
for chosen

ansatz

Obtain working
equations

𝐴 = 𝐵𝐶
𝐴 = 𝐵𝐶

𝐴 = 2𝐵𝐶

Reorder
tensors for

optimal scaling

𝐴 = 𝐵𝐶𝐷𝐸

𝑋 = 𝐵𝐶
𝑌 = 𝑋𝐷
𝐴 = 𝑌𝐸

𝐴 = 𝐶𝐵
𝐴 = 𝐷𝐵

𝐴 = 𝐶 + 𝐷 𝐵

Find optimal
index order of

tensors

Generate C++
code

Modular toolchain

• Rewritten in C++ for increased performance
• Backend of math utilities (definition for indices, tensors,

contractions, symmetry, etc.)
• Interface is a single equation (.eq) file 8

Equation generation

Meet the Automated Generator Environment (AGE)

Write inputs
for chosen

ansatz

Obtain working
equations

𝐴 = 𝐵𝐶
𝐴 = 𝐵𝐶

𝐴 = 2𝐵𝐶

Reorder
tensors for

optimal scaling

𝐴 = 𝐵𝐶𝐷𝐸

𝑋 = 𝐵𝐶
𝑌 = 𝑋𝐷
𝐴 = 𝑌𝐸

𝐴 = 𝐶𝐵
𝐴 = 𝐷𝐵

𝐴 = 𝐶 + 𝐷 𝐵

Find optimal
index order of

tensors

Generate C++
code

Modular toolchain

• Rewritten in C++ for increased performance
• Backend of math utilities (definition for indices, tensors,

contractions, symmetry, etc.)
• Interface is a single equation (.eq) file 8

Factorisation

Meet the Automated Generator Environment (AGE)

Write inputs
for chosen

ansatz

Obtain working
equations

𝐴 = 𝐵𝐶
𝐴 = 𝐵𝐶

𝐴 = 2𝐵𝐶

Reorder
tensors for

optimal scaling

𝐴 = 𝐵𝐶𝐷𝐸

𝑋 = 𝐵𝐶
𝑌 = 𝑋𝐷
𝐴 = 𝑌𝐸

𝐴 = 𝐶𝐵
𝐴 = 𝐷𝐵

𝐴 = 𝐶 + 𝐷 𝐵

Find optimal
index order of

tensors

Generate C++
code

Modular toolchain

• Rewritten in C++ for increased performance
• Backend of math utilities (definition for indices, tensors,

contractions, symmetry, etc.)
• Interface is a single equation (.eq) file 8

Code Generation

AGE Interface – .eq file

Once the equations are generated, we need some way to communicate
these to the rest of the toolchain.

.eq file

• AlcompHeader - contains information regarding tensor storage,
permutational symmetry, etc.

• Equations
– i , j , k, . . . denote occupied indices
– a, b, c, . . . denote virtual indices
– t, u, v , . . . denote active indices
– Summed indices are denoted by capitalised letters

Sab
ij ← −

∑
kc

(ki |bc)τ ackj (14)

Sijab(a0 ,i0,b0,j0) += -1.0 I(K0 ,i0,b0,C0) Tau(a0,K0 ,C0,j0)

9

AGE Interface – .eq file

Once the equations are generated, we need some way to communicate
these to the rest of the toolchain.

.eq file

• AlcompHeader - contains information regarding tensor storage,
permutational symmetry, etc.

• Equations
– i , j , k, . . . denote occupied indices
– a, b, c, . . . denote virtual indices
– t, u, v , . . . denote active indices
– Summed indices are denoted by capitalised letters

Sab
ij ← −

∑
kc

(ki |bc)τ ackj (14)

Sijab(a0 ,i0,b0,j0) += -1.0 I(K0 ,i0,b0,C0) Tau(a0,K0 ,C0,j0)
9

Equation Generation - Commutators

Use commutators to change the order of operators

E p
q = a†pαaqα + a†pβaqβ (15)

[E p
q ,E

r
s] = E p

s δrq − E r
qδps (16)

E i
p |Φ0⟩ = 2δip |Φ0⟩ , ⟨Φ0|E p

i = 2δip ⟨Φ0| (17)

E p
a |Φ0⟩ = 0, ⟨Φ0|E a

p = 0 (18)

• Universally applicable (spin-free, spin-orbital)

• Simple

• Slow

• Redundant terms

10

Equation Generation - Commutators

Use commutators to change the order of operators

E p
q = a†pαaqα + a†pβaqβ (15)

[E p
q ,E

r
s] = E p

s δrq − E r
qδps (16)

E i
p |Φ0⟩ = 2δip |Φ0⟩ , ⟨Φ0|E p

i = 2δip ⟨Φ0| (17)

E p
a |Φ0⟩ = 0, ⟨Φ0|E a

p = 0 (18)

• Universally applicable (spin-free, spin-orbital)

• Simple

• Slow

• Redundant terms

10

Equation Generation – Wick’s Theorem

Wick&d6

a†i aj = δij aaa
†
b = δab (19)

⟨Φa
i |F̂N |0⟩ =

∑
pq

fpq ⟨0| {a†i aaa
†
paq} |0⟩ = fai (20)

• Difficult to program

• Fast

• Redundant terms

6Evangelista, F. A. J. Chem. Phys. 2022, 157, 064111.

11

Equation Generation – Diagrams

MRCC7

⟨Φa
i |F̂N |0⟩ = = fai (21)

• Difficult to program

• Fast

• No redundant terms are generated

7Kállay, M.; Surján, P. R. J. Chem. Phys. 2001, 115, 2945–2954.

12

Equation Generation – Canonicalisation

Generating equations with commutators generates many redundant
equations

ECC ← ⟨0| ĤT̂2 |0⟩ (22)

ECC ←
∑
ijab

(ia|jb)T ab
ij (23)

ECC ←
∑
ijab

(jb|ia)T ab
ij (24)

These equations can be merged by utilising permutational symmetry

ECC ← 2
∑
ijab

(ia|jb)T ab
ij (25)

13

Equation Generation – Canonicalisation

Generating equations with commutators generates many redundant
equations

ECC ← ⟨0| ĤT̂2 |0⟩ (22)

ECC ←
∑
ijab

(ia|jb)T ab
ij (23)

ECC ←
∑
ijab

(jb|ia)T ab
ij (24)

These equations can be merged by utilising permutational symmetry

ECC ← 2
∑
ijab

(ia|jb)T ab
ij (25)

13

Equation Generation – Canonicalisation

Generating equations with commutators generates many redundant
equations

ECC ← ⟨0| ĤT̂2 |0⟩ (22)

ECC ←
∑
ijab

(ia|jb)T ab
ij (23)

ECC ←
∑
ijab

(jb|ia)T ab
ij (24)

These equations can be merged by utilising permutational symmetry

ECC ← 2
∑
ijab

(ia|jb)T ab
ij (25)

13

Factorisation – Factorizer

• Factorize in terms of binary contractions
• Ensures formal scaling, such as O(N6) for CCSD
• Identifies intermediates
• Finds "best" possible intermediates and contraction order
• Identifies common intermediates

Given the following contraction,

A = BCDEF , (26)

this can be factorised in several ways:

A = (((BC)D)E)F (27)

A = B((CD)(EF)) (28)

A = (BC)(D(EF)) (29)

. . .

Pick the best one according to the cost model

14

Factorisation – Factorizer

• Factorize in terms of binary contractions
• Ensures formal scaling, such as O(N6) for CCSD
• Identifies intermediates
• Finds "best" possible intermediates and contraction order
• Identifies common intermediates

Given the following contraction,

A = BCDEF , (26)

this can be factorised in several ways:

A = (((BC)D)E)F (27)

A = B((CD)(EF)) (28)

A = (BC)(D(EF)) (29)

. . .

Pick the best one according to the cost model

14

Factorisation – Factorizer

• Factorize in terms of binary contractions
• Ensures formal scaling, such as O(N6) for CCSD
• Identifies intermediates
• Finds "best" possible intermediates and contraction order
• Identifies common intermediates

Given the following contraction,

A = BCDEF , (26)

this can be factorised in several ways:

A = (((BC)D)E)F (27)

A = B((CD)(EF)) (28)

A = (BC)(D(EF)) (29)

. . .

Pick the best one according to the cost model
14

Cost Model

In order to find the best possible intermediates and factorization, we need
to have an estimate how long each contraction should take

15

Cost Model

Heuristic model that determines the FLOP count for a given contraction
based on index space sizes

Example:
E(T) ←

∑
ijkabc

tai t
abc
ijk (jb|kc) (30)

X bc
jk =

∑
ia

tai t
abc
ijk (31)

E(T) ←
∑
jkab

X bc
jk (jb|kc) (32)

X a
i =

∑
jkbc

tabcijk (jb|kc) (33)

E(T) ←
∑
ia

tai X
a
i (34)

16

Cost Model

Heuristic model that determines the FLOP count for a given contraction
based on index space sizes

Example:
E(T) ←

∑
ijkabc

tai t
abc
ijk (jb|kc) (30)

X bc
jk =

∑
ia

tai t
abc
ijk (31)

E(T) ←
∑
jkab

X bc
jk (jb|kc) (32)

X a
i =

∑
jkbc

tabcijk (jb|kc) (33)

E(T) ←
∑
ia

tai X
a
i (34)

16

Cost Model

Heuristic model that determines the FLOP count for a given contraction
based on index space sizes

Example:
E(T) ←

∑
ijkabc

tai t
abc
ijk (jb|kc) (30)

X bc
jk =

∑
ia

tai t
abc
ijk (31)

E(T) ←
∑
jkab

X bc
jk (jb|kc) (32)

FLOP = 6.402 · 1010

X a
i =

∑
jkbc

tabcijk (jb|kc) (33)

E(T) ←
∑
ia

tai X
a
i (34)

FLOP = 6.400 · 1010

16

Factorisation – Distributive Law

Reduce prefactor for method, O(xNy), by applying the distributive law

S ← AC (35)

S ← BC (36)

Addition is cheaper than multiplication

D ← A+ B (37)

S ← DB (38)

17

Factorisation – Distributive Law

Reduce prefactor for method, O(xNy), by applying the distributive law

S ← AC (35)

S ← BC (36)

Addition is cheaper than multiplication

D ← A+ B (37)

S ← DB (38)

17

I/O Minimisation for Intermediates

By default, all rank-4 tensors are stored on disk to reduce memory usage

tabij → [tab]ij (39)

However, disk I/O is rougly 10-100 times slower than RAM, so we must
minimise it to retain performance

18

I/O Minimisation for Intermediates

By default, all rank-4 tensors are stored on disk to reduce memory usage

tabij → [tab]ij (39)

However, disk I/O is rougly 10-100 times slower than RAM, so we must
minimise it to retain performance

Example:
[σab]ij ← [X ij]ab (40)

for each i:
for each j:

load matrix Sij // a x b
for each a:

5 for each b:
load matrix Xab // i x j
Sij(a,b) += Xab(i,j)

store matrix Sij

18

I/O Minimisation for Intermediates

By default, all rank-4 tensors are stored on disk to reduce memory usage

tabij → [tab]ij (39)

However, disk I/O is rougly 10-100 times slower than RAM, so we must
minimise it to retain performance

Example:
[σab]ij ← [X ab]ij (41)

for each i:
for each j:

load matrix Sij // a x b
load matrix Xij // a x b

5 Sij += Xij // entire matrix copy
store matrix Sij

18

Code Generator

Once all equations have been factorised, the generator translates
equations into ORCA source code

1. Determine I/O-minimal loop order for each contraction (cost model)

2. Load quantities from disk

3. If possible, apply hand-written functions to evaluate contractions
with batching or use only BLAS

4. Otherwise, generate "naive" contraction code (explicit loops and
element-wise access)

5. Package generated code into a module that can easily be interfaced
with orca_autoci

Anytime an improvement has been made in the AGE, all old modules can
easily be updated to the newer version

19

Code Generator – Resorting of 4-index tensors

One such improvement was on-the-fly resorting of 4-index "matrix
containers" to enable more BLAS operations (resorted containers are
stored on disk)

[Γbi]ia ←
∑
j

C b
j C

a
j (42)

[Γba]ii ←
∑
j

C b
j C

a
j (43)

RHF CISD 2RDM calculation, def2-TZVP, linear alkanes

20

Code Generator – Resorting of 4-index tensors

One such improvement was on-the-fly resorting of 4-index "matrix
containers" to enable more BLAS operations (resorted containers are
stored on disk)

[Γbi]ia ←
∑
j

C b
j C

a
j (42)

[Γba]ii ←
∑
j

C b
j C

a
j (43)

RHF CISD 2RDM calculation, def2-TZVP, linear alkanes

20

Code Generator – Resorting of 4-index tensors

One such improvement was on-the-fly resorting of 4-index "matrix
containers" to enable more BLAS operations (resorted containers are
stored on disk)

[Γbi]ia ←
∑
j

C b
j C

a
j (42)

[Γba]ii ←
∑
j

C b
j C

a
j (43)

RHF CISD 2RDM calculation, def2-TZVP, linear alkanes
20

Code Generator – TTGT

Known from literature as "Transpose-Transpose-DGEMM-Transpose"8

Any tensor contraction can be reformulated as a matrix multiplication,

Cij =
∑
k

AikBkj , (44)

in which compound indices i , j , k may refer to none, one, or multiple
actual indices

If BLAS is still not possible at this point, try resorting with the TTGT
(except matrix containers) to enforce BLAS

8Springer, P.; Bientinesi, P. ACM Trans. Math. Softw. 2018, 44, 1–29.

21

Code Generator – Parallelised Code

The AGE’s code generator is able to generate MPI parallelised code on a
per-contraction basis

Average sigma iteration, def2-TZVP, linear alkenes

22

Code Generator – Parallelised Code

Average sigma iteration, def2-TZVP, linear alkenes 22

Comparison Generated and Hand-Written Code

Average sigma iteration, def2-TZVP, linear alkenes, serial

Generated code is competitive with the hand-written code!

23

Correlation Methods Analytic Gradients

The starting point for deriving an analytic gradient for any
non-variational method is to define a Lagrangian

LCC = ⟨0| (1 + Λ̂)e−T̂ ĤeT̂ |0⟩+
∑
p>q

zpqfpq (45)

The goal is to formulate that Lagrangian in terms of density matrices. At
that point the rest of the gradient derivation is method independent.
Only amplitude equations and density matrices need to be generated.

24

CC Analytic Gradients – Performance

Single gradient step, def2-TZVP, linear alkenes

• CC gradients with 400 routinely achievable

• Decent parallel scaling

• Much faster than numerical gradients

25

CC Analytic Gradients – Performance

Single gradient step, def2-TZVP, linear alkenes

• CC gradients with 400 routinely achievable

• Decent parallel scaling

• Much faster than numerical gradients

25

Higher-Order Derivatives with the AGE

According to the 2n+ 1 and 2n+ 2 rules, perturbed equations need to be
solved

• Symbolic level:
1. Apply product rule and add perturbation labels to the wavefunction

parameters (e.g. CC amplitudes) and integrals
2. Split the LHS (perturbed amplitudes) with the RHS (perturbed

integrals)

• Numerical level:
1. Perturbed integrals (MO basis, relaxed & unrelaxed)

While generating the new set of equations, non-contributing terms are
filtered out (e.g. perturbed integrals where the basis functions do not
depend on the external perturbation)

26

Alternative Strategies for Generating Perturbed Equations

Instead of using the product rule and string manipulation, change the
kernel

Ĥeff = e−T̂ ĤeT̂ = (ĤeT̂)C (46)

Ĥχ
eff =Ĥχ + [Ĥ, T̂]χ +

1
2!
[[Ĥ, T̂], T̂]χ

+
1
3!
[[[Ĥ, T̂], T̂], T̂]χ +

1
4!
[[[[Ĥ, T̂], T̂], T̂], T̂]χ + . . . (47)

=(ĤχeT̂)C + ([Ĥ, T̂χ]eT̂)C

This way we can already screen non-contributing terms in cases where
tensors do not depend on the perturbation

27

fic-MRCI/MRCC

in
ac
tiv
e

ac
tiv
e

vi
rtu
al

IA

IJ
AB

IJ
AB IJ
TA

IJ
TU

IT
AB

IT
AU

IT
U
A

IT
U
V

TU
AB

TU
VA

single-reference multireference

fic-MRCI:

EMRCI = ⟨0| Ĥ |ΨMRCI ⟩ (48)

0 = ⟨Φµ|(Ĥ − E) |ΨMRCI ⟩ (49)

fic-MRCC:

EMRCC = ⟨0| e−T̂ ĤeT̂ |0⟩ (50)

0 = ⟨Φµ|Ĥ + [Ĥ, T̂] +
1
2
[[Ĥ, T̂], T̂] |0⟩ (51)

28

fic-MRCI/MRCC – Performance

Growing polyenes calculations, def2-SVP, CAS(ncarbons , ncarbons)

Multireference calculations with CAS(14,14) are a reality!

29

fic-MRCI/MRCC – Performance

Growing polyenes calculations, def2-SVP, CAS(ncarbons , ncarbons)

Multireference calculations with CAS(14,14) are a reality!

29

Conclusion

A general code generation toolchain has been built that generates
competitive, consistent and parallelised code

CI/CC gradients have been achieved in ORCA using the AGE, which
can be used for routine calculations of systems with 400 basis
functions

Able to generate 2nd order derivatives

Multi-reference correlation calculations have been performed
succesfully on systems with a CAS(14,14) space

30

Future of Automated Generation

Code generation will play an important role in future quantum
chemistry. It enables us to implement "impossibly complicated"
theories.

In the future, we could only keep a wavefunction Ansatz in the
repository and generate the code during compile time. All
improvements are immediately transferred to the program.

31

Acknowledgements

Hang Xu

Kantharuban Sivalingam

Ute Becker

Marvin Lechner

AGE team

Frank Neese

32

