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1. Introduction

|ψ("c1)〉, |ψ("c2)〉, · · · , |ψ("cNs )〉

H("c)|ψ("c)〉 = E("c)|ψ("c)〉. (1)

The typical parametrization of the shell-model Hamiltonian is
the following:

H = H(1) + H(2) =
∑

ac

h(1)
ac c†acc +

1
4

∑

abcd

h(2)
abcdc†ac†bcdcc, (2)

H(2) =
1
4

∑

abcdJM

Nab(J)Ncd(J)A†(ab; JM)A(cd; JM)VJ(abcd),

(3)

Nab(J) = [(1 + δab)]1/2 ,Ncd(J) = [(1 + δcd)]1/2 , (4)

A†(ab; JM) =
∑

ma,mb

( jama jbmb|JM)c†jama
c†jbmb

(5)

A(cd; JM) =
∑

mc,md

( jcmc jdmd |JM)c jdmd c jcmc (6)

H̃"v = λN"v, (7)
H̃i, j = 〈ψ("ci)|H("c#)|ψ("c j)〉, (8)
Ni, j = 〈ψ("ci)|ψ("c j)〉. (9)

Then, the original eigenpairs can be approximated as

E("c#) $ λ, (10)

|ψ("c#)〉 $
Ns∑

i=1

vi|ψ("ci)〉 ≡ |ψEC("c#)〉. (11)

〈Ô〉 $ 〈ψEC("c#)|Ô|ψEC("c#)〉, (12)

〈Ô〉 = 〈ψ("c#)|Ô|ψ("c#)〉. (13)

H̃i, j =
∑

k

h(1)
k × OBTDk +

∑

k

VJ(abcd)k × TBTDk, (14)

log L("c) = − 1
N

N∑

i=1

(EEC,i("c) − EExp.,i)2

2σ2
err,i

, (15)

σ2
err,i = σ

2
EC,typ. + σ

2
EC,i, (16)

log Pr("c) = −Λ
2
||H("c) − H("cref.)||2. (17)

EExact(4+1 ) = −75.951 MeV, QExact(4+1 ) = +28.340 efm2,

EExact(4+2 ) = −75.454 MeV, QExact(4+2 ) = −25.682 efm2,

EEC(4+1 ) = −74.751 MeV, QEC(4+1 ) = −25.635 efm2,

EEC(4+2 ) = −73.825 MeV, QEC(4+2 ) = +27.599 efm2. (18)

OBTD( f i; ja jb; λ) ≡ 1√
2λ + 1

〈ψJ f M f ||[c†ja ⊗ c̃ jb ](λ)||ψJi Mi〉,

(19)

OBTDk ≡
√

2 jk + 1
2Ji + 1

OBTD(ii; jk jk; 0) = 〈ψJi Mi ||Nk ||ψJi Mi〉,
(20)

TBTD( f i; abcd; JabJcd; λ)

≡ 1√
2λ + 1

〈ψJ f Mf ||[A†(ab; JabMab) ⊗ Ã(cd; Jcd Mcd)](λ)||ψJi Mi〉,

(21)

Ã(cd; Jcd Mcd) ≡ (−1)Jcd+Mcd A( jc jd; Jcd − Mcd), (22)

TBTD ≡
√

2Jab + 1
2Ji + 1

TBTD( f i; abcd; JabJab; 0), (23)
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Fig. 1. A new work!ow of the shell-model calculations: (a) EC can be used as an emulator of shell-
model calculations, (b) preprocessed exact calculations for target quantities, (c) making another sample
eigenvector to improve the accuracy of the emulator. See main text for more details.

calculations, i.e., how such a research procedure using shell-model calculations can be acceler-
ated. In Fig. 1, we show a schematic picture of the work!ow. As will be detailed in the following,
the key ingredient is the eigenvector continuation (EC).

While a great deal of effort has been spent on calibrating input parameters for nuclear mod-
els (e.g., low-energy constants in chiral EFT and phenomenological shell-model interactions),
one still needs expensive numerical samplings in a high-dimensional parameter space to "nd a
reasonable range of those parameters and to quantify the associated uncertainties in the pa-
rameters and the target observables for a deeper understanding of the properties of nuclei.

Recently, the importance of the uncertainty quanti"cation (UQ) has been widely pointed out
in various contexts, such as parameter calibration of the chiral EFT potentials [18–20] and
nuclear observables [21–25]. This also applies to the shell model, but the UQ for the valence
shell-model studies are limited up to the sd shell [26,27]. This is due to the rapid growth in
the size of matrices to be diagonalized as the number of valance nucleons or the size of the
model space (also called valence space) increases. To reduce the computational cost for UQ,
an approximation method using the principal component analysis was proposed in Ref. [27].
However, additional effort and/or ef"cient methods are still needed for parameter calibration
and UQ to enlarge the scope to a heavier or neutron/proton-rich region.

The paper is organized as follows. In Sect. 2, we explain some basics of shell-model calcula-
tions and the eigenvector continuation. We show a couple of applications of EC as an emulator
and as a preprocessing method in Sect. 3, and conclude and give an outlook in Sect. 4. Tech-
nical details on formulations, codes, and results are given in the online supplementary material
for reproducibility.

2. Formalism
2.1 Nuclear shell model
In shell-model calculations, the problem of interest is to solve the Schödinger equation under
a given effective interaction for valence nucleons, which is dependent on some parameter !c:

H (!c)|ψ (!c)〉 = E (!c)|ψ (!c)〉. (1)

The typical parametrization of the shell-model Hamiltonian is the following:

H = H (1) + H (2) =
∑

ac

h(1)
ac c†

acc + 1
4

∑

abcd

h(2)
abcd c†
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bcd cc, (2)
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Table 1. Average sizes of two errors by EC estimates for the !ve yrast states of the four sd-shell nuclei:
One is the relative error (%) of absolute energies, and the other one is the error of excitation energies.
The sample size Ns means the product of the number of random interactions and the number of excited
states used as the sample eigenvectors in Eqs. (8)–(9). Ns = 250∗ with σ int. = 3 means that the standard
deviation to generate the random interactions is increased from the default value σ int. = 1, and Ns =
250∗ (LHS, L = 2) corresponds to the result using Latin hypercube sampling (LHS).

Ns relative error (%) ex. error (MeV)

(# interaction ×# states) 28Si 26Al 25Mg 24Mg 28Si 26Al 25Mg 24Mg

50 (50 × 1) 1.4 2.1 1.8 1.3 0.66 1.22 0.62 0.65
50∗ (25 × 2) 1.8 2.3 2.1 1.7 0.82 1.16 0.61 0.97
150 (50 × 3) 0.9 1.2 1.1 0.7 0.44 0.85 0.42 0.62
250 (50 × 5) 0.7 0.9 0.8 0.5 0.39 0.70 0.37 0.51
250∗ (50 × 5; σ int. = 3) 2.8 3.3 3.1 2.3 1.35 2.35 1.09 1.96
250∗ (50 × 5; LHS, L = 2) 0.8 1.0 0.9 0.6 0.47 0.73 0.40 0.57

the symbols are on the diagonal (dotted line) while the absolute values of energy under the
validation set are spread over a relatively large range.

In Table 1, we summarize the typical sizes of two types of errors by EC estimates compared
to the exact results. One is the relative error of absolute energy values, and the other one is the
error in terms of the excitation energies:

relative error(%) ≡ 100
∣∣∣∣
Eexact − EEC

Eexact

∣∣∣∣ , (14)

ex. error (MeV) ≡ |E ex.
exact − E ex.

EC|. (15)

Since excitation energies themselves are dependent on the level ordering, we restrict ourselves
to measuring excitation energies from the 0+(1/2+) state for even (odd) nuclei.

As shown in Table 1, the typical size of the relative errors is less than 1%, when all the Ns =
250 samples for each J are used. Here we chose the four nuclei in the middle of the sd shell (28Si,
26Al, 25Mg, and 24Mg) as examples. We found that the relative errors for the odd–odd nucleus,
26Al, are worse than those for the others.

In the context of nuclear structure, the excitation energy may be of interest rather than the
absolute value of the energy. As shown in Table 1, the typical size of the error is on the order of a
few hundred keV or 1 MeV. The errors for excitation energies show relatively slower convergence
to the exact ones compared to their absolute energies. This is a general tendency because the
excitation energies are sensitive to the relative convergence speed of the EC wavefunctions. The
origin of this tendency will be examined in Sect. 3.7.

To show the dependence on the sampling procedure, we summarize the results for !ve differ-
ent Ns in Table 1. The sample size Ns is the product of the number of random interactions and
the number of excited states used as the sample eigenvectors for EC, and some cases are marked
with an asterisk to indicate that the detailed conditions differ from the others. For example, the
Ns = 50∗ case means that only the !rst and second lowest states under the !rst half of the 50
random interactions are used, while the Ns = 250∗ (σ int. = 3) case corresponds to the result
using the samples where the size of Gaussian noise σ int. increased from 1 to 3. The eigenvalues
of the !ve yrast states of 28Si under Ns = 250∗ (σ int. = 3) are spread over a wide range of −350
to −50 MeV, but the relative errors are still ∼ 3%. This indicates that one can make use of the
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Table 1. Average sizes of two errors by EC estimates for the !ve yrast states of the four sd-shell nuclei:
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states used as the sample eigenvectors in Eqs. (8)–(9). Ns = 250∗ with σ int. = 3 means that the standard
deviation to generate the random interactions is increased from the default value σ int. = 1, and Ns =
250∗ (LHS, L = 2) corresponds to the result using Latin hypercube sampling (LHS).
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250∗ (50 × 5; LHS, L = 2) 0.8 1.0 0.9 0.6 0.47 0.73 0.40 0.57

the symbols are on the diagonal (dotted line) while the absolute values of energy under the
validation set are spread over a relatively large range.

In Table 1, we summarize the typical sizes of two types of errors by EC estimates compared
to the exact results. One is the relative error of absolute energy values, and the other one is the
error in terms of the excitation energies:
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Since excitation energies themselves are dependent on the level ordering, we restrict ourselves
to measuring excitation energies from the 0+(1/2+) state for even (odd) nuclei.

As shown in Table 1, the typical size of the relative errors is less than 1%, when all the Ns =
250 samples for each J are used. Here we chose the four nuclei in the middle of the sd shell (28Si,
26Al, 25Mg, and 24Mg) as examples. We found that the relative errors for the odd–odd nucleus,
26Al, are worse than those for the others.

In the context of nuclear structure, the excitation energy may be of interest rather than the
absolute value of the energy. As shown in Table 1, the typical size of the error is on the order of a
few hundred keV or 1 MeV. The errors for excitation energies show relatively slower convergence
to the exact ones compared to their absolute energies. This is a general tendency because the
excitation energies are sensitive to the relative convergence speed of the EC wavefunctions. The
origin of this tendency will be examined in Sect. 3.7.

To show the dependence on the sampling procedure, we summarize the results for !ve differ-
ent Ns in Table 1. The sample size Ns is the product of the number of random interactions and
the number of excited states used as the sample eigenvectors for EC, and some cases are marked
with an asterisk to indicate that the detailed conditions differ from the others. For example, the
Ns = 50∗ case means that only the !rst and second lowest states under the !rst half of the 50
random interactions are used, while the Ns = 250∗ (σ int. = 3) case corresponds to the result
using the samples where the size of Gaussian noise σ int. increased from 1 to 3. The eigenvalues
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Table 1. Average sizes of two errors by EC estimates for the !ve yrast states of the four sd-shell nuclei:
One is the relative error (%) of absolute energies, and the other one is the error of excitation energies.
The sample size Ns means the product of the number of random interactions and the number of excited
states used as the sample eigenvectors in Eqs. (8)–(9). Ns = 250∗ with σ int. = 3 means that the standard
deviation to generate the random interactions is increased from the default value σ int. = 1, and Ns =
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Since excitation energies themselves are dependent on the level ordering, we restrict ourselves
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As shown in Table 1, the typical size of the relative errors is less than 1%, when all the Ns =
250 samples for each J are used. Here we chose the four nuclei in the middle of the sd shell (28Si,
26Al, 25Mg, and 24Mg) as examples. We found that the relative errors for the odd–odd nucleus,
26Al, are worse than those for the others.

In the context of nuclear structure, the excitation energy may be of interest rather than the
absolute value of the energy. As shown in Table 1, the typical size of the error is on the order of a
few hundred keV or 1 MeV. The errors for excitation energies show relatively slower convergence
to the exact ones compared to their absolute energies. This is a general tendency because the
excitation energies are sensitive to the relative convergence speed of the EC wavefunctions. The
origin of this tendency will be examined in Sect. 3.7.

To show the dependence on the sampling procedure, we summarize the results for !ve differ-
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with an asterisk to indicate that the detailed conditions differ from the others. For example, the
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random interactions are used, while the Ns = 250∗ (σ int. = 3) case corresponds to the result
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• sample not only g.s. but also excited states if you want to know excited states too

• odd or odd-odd nuclei are more difficult than even (even-even) ones 
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Fig. 7. Relative errors with Ns = 250 samples against J-scheme dimensions for 24, 25Mg, 26Al, 28Si (lower
panel), 46V, and 47, 48Ti (upper panel). The !lled symbols correspond to the samples generated by varying
all the parameters with σ int. = 1 around the reference values (USDB and GXPF1A). The open symbols
in the upper panel show the results with samples in which only the 32 parameters related to f7/2 and p3/2
were varied with the same σ int..

dimension and total J clearer. As a whole, the relative errors are increasing functions of J-
scheme dimension, and lower J states show relatively faster convergence to the exact ones. Since
a smaller J generally gives a smaller J-scheme dimension, the results indicate that the number of
effective degrees of freedom governs the accuracy. From Fig. 7, we can understand the reason
why the excitation energies show slower convergence to the exact one compared to the absolute
values, as already shown in Table 1.

In addition to the four sd-shell nuclei discussed above, we show the results with lower
pf-shell nuclei (46V and 47, 48Ti) to see the model-space dependence. For the pf-shell model
space, there are 199 parameters (4 SPEs and 195 TBMEs) in the isospin formalism, which is
three times larger than the sd-shell case, and we used the GXPF1A interaction [32] as a ref-
erence in the preparation of the random samples. The other steps such as generating samples
are the same as in the case of the sd shell. On the whole, the relative errors become worse than
the sd-shell case, when we use σ int. = 1 for 199 parameters. For the target nuclei (46V and 47, 48Ti),
it seems that the SPEs and TBMEs involved in f7/2 and p3/2 mainly affect the wavefunctions,
so random samples made in such a way that all the parameters are independent can be less
informative to span the exact eigenvectors, thereby giving larger errors than the sd-shell case.
Indeed, if we restrict the sampling space to the parameters related only to 0f7/2 and 1p3/2 (i.e.,
the other parameters are !xed as the reference values), the relative errors against the validation
set are improved, especially for higher J states. The corresponding results are shown by the open
symbols in Fig. 7.

For larger model spaces, it is expected that a strategy such as principal component analysis
to sample mainly in low-dimensional subspaces that are sensitive to wavefunctions will be nec-
essary to achieve the same level of accuracy as in the sd-shell case. Additionally, if one goes
beyond the sd shell and lower pf shell, we need code development with massive parallelization
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(craziest application of EC method !?)

Dotted lines are results considering 

only the samples spread over f7/2&p3/2

it is better to sample over a subspace 

more relevant to what you want to know

Q. What is a better sampling strategy? 

Is there any way to maximize 
information gain from a next observation?

no answer will be shown in this talk though...



As a preprocessor

q: size of initial “block” vector

n: # of excited states of interest

dotted: initialized by random vectors

solid: initialized by EC eigenvectors

Exception => (q, n) = (4,10)

since the emulator is trained with 5 lowest states,
such emulator do not have much info. on higher states

Starting from better initial guess,
# of manipulation could be reduced!!

Number of H operation during the (block) Lanczos method
converged results are obtained at ●/◆
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sample eigenvectors
under given interactions
(random, VS-IMSRG, etc.)

approximate eigenpairs

target quantity

Preprocessed shell-model calculation

using as the initial vector(s)

(a)
(a)

(b)(c)

Equations

Sota Yoshida1,

1. Introduction

|ψ("c1)〉, |ψ("c2)〉, · · · , |ψ("cNs )〉

H("c)|ψ("c)〉 = E("c)|ψ("c)〉. (1)

The typical parametrization of the shell-model Hamiltonian is
the following:

H = H(1) + H(2) =
∑

ac

h(1)
ac c†acc +

1
4

∑

abcd

h(2)
abcdc†ac†bcdcc, (2)

H(2) =
1
4

∑

abcdJM

Nab(J)Ncd(J)A†(ab; JM)A(cd; JM)VJ(abcd),

(3)

Nab(J) = [(1 + δab)]1/2 ,Ncd(J) = [(1 + δcd)]1/2 , (4)

A†(ab; JM) =
∑

ma,mb

( jama jbmb|JM)c†jama
c†jbmb

(5)

A(cd; JM) =
∑

mc,md

( jcmc jdmd |JM)c jdmd c jcmc (6)

H̃"v = λN"v, (7)
H̃i, j = 〈ψ("ci)|H("c#)|ψ("c j)〉, (8)
Ni, j = 〈ψ("ci)|ψ("c j)〉. (9)

Then, the original eigenpairs can be approximated as

E("c#) $ λ, (10)

|ψ("c#)〉 $
Ns∑

i=1

vi|ψ("ci)〉 ≡ |ψEC("c#)〉. (11)

〈Ô〉 $ 〈ψEC("c#)|Ô|ψEC("c#)〉, (12)

〈Ô〉 = 〈ψ("c#)|Ô|ψ("c#)〉. (13)

H̃i, j =
∑

k

h(1)
k × OBTDk +

∑

k

VJ(abcd)k × TBTDk, (14)

log L("c) = − 1
N

N∑

i=1

(EEC,i("c) − EExp.,i)2

2σ2
err,i

, (15)

σ2
err,i = σ

2
EC,typ. + σ

2
EC,i, (16)

log Pr("c) = −Λ
2
||H("c) − H("cref.)||2. (17)

EExact(4+1 ) = −75.951 MeV, QExact(4+1 ) = +28.340 efm2,

EExact(4+2 ) = −75.454 MeV, QExact(4+2 ) = −25.682 efm2,

EEC(4+1 ) = −74.751 MeV, QEC(4+1 ) = −25.635 efm2,

EEC(4+2 ) = −73.825 MeV, QEC(4+2 ) = +27.599 efm2. (18)

OBTD( f i; ja jb; λ) ≡ 1√
2λ + 1

〈ψJ f M f ||[c†ja ⊗ c̃ jb ](λ)||ψJi Mi〉,

(19)

OBTDk ≡
√

2 jk + 1
2Ji + 1

OBTD(ii; jk jk; 0) = 〈ψJi Mi ||Nk ||ψJi Mi〉,
(20)

TBTD( f i; abcd; JabJcd; λ)

≡ 1√
2λ + 1

〈ψJ f Mf ||[A†(ab; JabMab) ⊗ Ã(cd; Jcd Mcd)](λ)||ψJi Mi〉,

(21)

Ã(cd; Jcd Mcd) ≡ (−1)Jcd+Mcd A( jc jd; Jcd − Mcd), (22)

TBTD ≡
√

2Jab + 1
2Ji + 1

TBTD( f i; abcd; JabJab; 0), (23)
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Ø You don’t need to explicitly calculate H(C⊙)|ψ(cj) > for each parameter C⊙
to evaluate H-tilde above:

Ø If you want to increase sample number (for better accuracy),

prepare new sample (green) and calc. overlap (transition densities)

between new w.f. and previous samples (red)

To feed more samples...
Sampling itself is not easy ...

Equations

Sota Yoshida1,

1. Introduction

|ψ("c1)〉, |ψ("c2)〉, · · · , |ψ("cNs )〉

H("c)|ψ("c)〉 = E("c)|ψ("c)〉. (1)

The typical parametrization of the shell-model Hamiltonian is
the following:

H = H(1) + H(2) =
∑

ac

h(1)
ac c†acc +

1
4

∑

abcd

h(2)
abcdc†ac†bcdcc, (2)

H(2) =
1
4

∑

abcdJM

Nab(J)Ncd(J)A†(ab; JM)A(cd; JM)VJ(abcd),

(3)

Nab(J) = [(1 + δab)]1/2 ,Ncd(J) = [(1 + δcd)]1/2 , (4)

A†(ab; JM) =
∑

ma,mb

( jama jbmb|JM)c†jama
c†jbmb

(5)

A(cd; JM) =
∑

mc,md

( jcmc jdmd |JM)c jdmd c jcmc (6)

H̃"v = λN"v, (7)
H̃i, j = 〈ψ("ci)|H("c#)|ψ("c j)〉, (8)
Ni, j = 〈ψ("ci)|ψ("c j)〉. (9)
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|ψ("c#)〉 $
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〈Ô〉 $ 〈ψEC("c#)|Ô|ψEC("c#)〉, (12)

〈Ô〉 = 〈ψ("c#)|Ô|ψ("c#)〉. (13)

H̃i, j =
∑

k

h(1)
k × OBTDk +

∑

k

VJ(abcd)k × TBTDk, (14)

log L("c) = − 1
N

N∑

i=1

(EEC,i("c) − EExp.,i)2

2σ2
err,i

, (15)

σ2
err,i = σ

2
EC,typ. + σ

2
EC,i, (16)

log Pr("c) = −Λ
2
||H("c) − H("cref.)||2. (17)

EExact(4+1 ) = −75.951 MeV, QExact(4+1 ) = +28.340 efm2,

EExact(4+2 ) = −75.454 MeV, QExact(4+2 ) = −25.682 efm2,

EEC(4+1 ) = −74.751 MeV, QEC(4+1 ) = −25.635 efm2,

EEC(4+2 ) = −73.825 MeV, QEC(4+2 ) = +27.599 efm2. (18)

OBTD( f i; ja jb; λ) ≡ 1√
2λ + 1

〈ψJ f M f ||[c†ja ⊗ c̃ jb ](λ)||ψJi Mi〉,

(19)

OBTDk ≡
√

2 jk + 1
2Ji + 1

OBTD(ii; jk jk; 0) = 〈ψJi Mi ||Nk ||ψJi Mi〉,
(20)

TBTD( f i; abcd; JabJcd; λ)

≡ 1√
2λ + 1

〈ψJ f Mf ||[A†(ab; JabMab) ⊗ Ã(cd; Jcd Mcd)](λ)||ψJi Mi〉,

(21)

Ã(cd; Jcd Mcd) ≡ (−1)Jcd+Mcd A( jc jd; Jcd − Mcd), (22)

TBTD ≡
√

2Jab + 1
2Ji + 1

TBTD( f i; abcd; JabJab; 0), (23)
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← most time-consuming part 

<""|H|"">

< !(#′) |H|!!>

s: sampled w.f.s

<!(#!) |H|!(#′) >

10

SY and N.Shimizu, PTEP 2022 053D02.

all you need is 1&2-body transition densities

8

SPEs TBMEs
i,j i,j



Outline

u EC + valence shell model 

u A Julia package for nuclear structure calculations

u IMSRG-Net: a surrogate model for IMSRG

u Summary

NuclearToolkit.jl



Why I developed NuclearToolkit.jl

Ø A single method (code) can be lengthy ~ 100,000 lines

two language problem (Fortran/C++ & shell/Python)

Ø Especially in Japan, research methods are “clusterized” (localized) 

to a specific group. This can be an obstacle to 

collective intelligence or co-creation

seen in e.g. ML community through ML frameworks

Ø Educations for next generation

※These are my personal opinions

can circumvent the situation...?

secret sauce (source)
in Prof. XX Group

17 9



NuclearToolkit.jl
l ChiEFTint ～ 8000 lines

u NN potential, Entem-Machleidt(N3LO), EMN(EKMN, N4LO) 
u SRG in momentum space (NN-only)
u effective NN from 3NF
u valence NN interaction ≠ effective interaction
u input for No-core shell model (in KSHELL fmt)
u genuine 3NF (only in Jacobi HO form) 

※plz use NuHamil (by Takayuki Miyagi@TUDarmstadt)

l HartreeFock ～ 3000 lines
u spherical HF (from snt/snt.bin/memory)
u HFMBPT Energy=> 3rd order, Scaler operator => 2nd order
u Normal ordering w.r.t. target reference, ensemble normal ordering

l IM-SRG ~2700 lines
free space

u IMSRG(2) calculation => g.s. properties
u consistent IMSRG flow of operators with Magnus expansion

valence space (VS-IMSRG)
u derive effective interaction for a target model space
u effective operators (only scaler ones for now)

l ~5000 lines
u eigenvector continuation (fast emulator of exact wavefunctions)

16
SY. Journal of Open Source Software, 7(79), 4694

: Julia package for structure calculations
SY, Journal of Open Source Software, 7(79), 4694,(2022)

~ 20,000 lines
(including document)

Do you think it’s lengthy?!

10



Documenter.jl
Docs are automatically generated from docstring (in markdown)

docstring

18 11



Workflow w/ GitHub Actions

developer/user make
changes to code/docstring

pull request to GitHub repository

・Automatic generation and 
deployment of the Docs

・Execute test codes with 
specified OS / version of Julia

avoiding destructive changes/releases

GitHub Actions

・see the docs
・play with the code
using NuclearToolkit
your_own_function()

c.f. CI/CD: Continuous Integration／Continuous Delivery

19 12



How to start NuclearToolkit.jl (within 5 min.)

uInstallation of Julia

Download Julia binary and add to PATH

uInstallation of NuclearToolkit.jl

Download src (recommended)

$git clone https://github.com/SotaYoshida/NuclearToolkit.jl

Note:

NuclearToolkit.jl was registered as a Julia package.

You can install the package in Julia’s REPL 

like “pip” in Python

21 13



Outline

u EC + valence shell model 

u A Julia package for nuclear structure calculations

u IMSRG-Net: a surrogate model for IMSRG

u Summary

NuclearToolkit.jl



In-medium Similarity Renormalization Group (IMSRG)12

IMSRGflow: 
#$ %
#% = η # , % # ,

0-body: scaler, E! s = < % & >

1-body: (n,n) matrix (n = # of sps, block structure)

2-body: (d", d")matrix (i is label of {J,P,Tz})

S.R.Stroberg et al., Annu. Rev. Nucl. Part. Sci. 2019. 69:307‒62 (2019) 

under HF reference state,

divide single particle states as 

P: hole

Q: particle  

! "

NS69CH12_Stroberg ARjats.cls July 25, 2019 16:40
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Figure 2
A schematic showing how the in-medium similarity renormalization group approach obtains the effective
interaction Heff by progressively suppressing the off-diagonal terms of H . (a) s = 0. (b) s = 5. (c) s = 30.

!ow parameter s and applied to the Hamiltonian through the !ow equation

dH (s)
ds

= [η(s),H (s)], 11.

where the generator η(s) is formally de"ned as

η(s) ≡ dU (s)
ds

U †(s) = −η†(s). 12.

We split the !owing Hamiltonian H (s) into diagonal and off-diagonal pieces:

H (s) = Hd (s) +Hod (s), 13.

such that

Hod (s) = PH (s)Q+QH (s)P, 14.

where the projection operators P and Q have the same meaning as in the previous sections. Our
goal, then, is to devise a generator η(s) such that

lim
s→∞

Hod (s) = 0 15.

and, therefore,

lim
s→∞

Hd (s) = Heff. 16.

In the language of the RG,Heff is a "xed point of the RG !ow.
One choice for η(s), which is used in the calculations we describe here, is the White genera-

tor (145, 169):

ηWh(s) ≡ Hod (s)
"(s)

. 17.

For present and future use, we have introduced a convenient superoperator notation (170), in
which we indicate division of the operator O by an energy denominator ":

〈
φi

∣∣∣∣
O
"

∣∣∣∣φ j
〉

≡
〈φi|O|φ j〉
εi − ε j

, 18.

www.annualreviews.org • Nonempirical Interactions for the Nuclear Shell Model 317

A
nn

u.
 R

ev
. N

uc
l. 

Pa
rt.

 S
ci

. 2
01

9.
69

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ity
 o

f T
ok

yo
 o

n 
09

/1
0/

19
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 

NS69CH12_Stroberg ARjats.cls July 25, 2019 16:40

P

Q

P

Q

P

Q

dH
ds

P Q P Q P Q

a b c

dH
ds

Figure 2
A schematic showing how the in-medium similarity renormalization group approach obtains the effective
interaction Heff by progressively suppressing the off-diagonal terms of H . (a) s = 0. (b) s = 5. (c) s = 30.

!ow parameter s and applied to the Hamiltonian through the !ow equation

dH (s)
ds

= [η(s),H (s)], 11.

where the generator η(s) is formally de"ned as

η(s) ≡ dU (s)
ds

U †(s) = −η†(s). 12.

We split the !owing Hamiltonian H (s) into diagonal and off-diagonal pieces:

H (s) = Hd (s) +Hod (s), 13.

such that

Hod (s) = PH (s)Q+QH (s)P, 14.

where the projection operators P and Q have the same meaning as in the previous sections. Our
goal, then, is to devise a generator η(s) such that

lim
s→∞

Hod (s) = 0 15.

and, therefore,

lim
s→∞

Hd (s) = Heff. 16.

In the language of the RG,Heff is a "xed point of the RG !ow.
One choice for η(s), which is used in the calculations we describe here, is the White genera-

tor (145, 169):

ηWh(s) ≡ Hod (s)
"(s)

. 17.

For present and future use, we have introduced a convenient superoperator notation (170), in
which we indicate division of the operator O by an energy denominator ":

〈
φi

∣∣∣∣
O
"

∣∣∣∣φ j
〉

≡
〈φi|O|φ j〉
εi − ε j

, 18.

www.annualreviews.org • Nonempirical Interactions for the Nuclear Shell Model 317

A
nn

u.
 R

ev
. N

uc
l. 

Pa
rt.

 S
ci

. 2
01

9.
69

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ity
 o

f T
ok

yo
 o

n 
09

/1
0/

19
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 

NS69CH12_Stroberg ARjats.cls July 25, 2019 16:40

P

Q

P

Q

P

Q

dH
ds

P Q P Q P Q

a b c

dH
ds

Figure 2
A schematic showing how the in-medium similarity renormalization group approach obtains the effective
interaction Heff by progressively suppressing the off-diagonal terms of H . (a) s = 0. (b) s = 5. (c) s = 30.

!ow parameter s and applied to the Hamiltonian through the !ow equation

dH (s)
ds

= [η(s),H (s)], 11.

where the generator η(s) is formally de"ned as

η(s) ≡ dU (s)
ds

U †(s) = −η†(s). 12.

We split the !owing Hamiltonian H (s) into diagonal and off-diagonal pieces:

H (s) = Hd (s) +Hod (s), 13.

such that

Hod (s) = PH (s)Q+QH (s)P, 14.

where the projection operators P and Q have the same meaning as in the previous sections. Our
goal, then, is to devise a generator η(s) such that

lim
s→∞

Hod (s) = 0 15.

and, therefore,

lim
s→∞

Hd (s) = Heff. 16.

In the language of the RG,Heff is a "xed point of the RG !ow.
One choice for η(s), which is used in the calculations we describe here, is the White genera-

tor (145, 169):

ηWh(s) ≡ Hod (s)
"(s)

. 17.

For present and future use, we have introduced a convenient superoperator notation (170), in
which we indicate division of the operator O by an energy denominator ":

〈
φi

∣∣∣∣
O
"

∣∣∣∣φ j
〉

≡
〈φi|O|φ j〉
εi − ε j

, 18.

www.annualreviews.org • Nonempirical Interactions for the Nuclear Shell Model 317

A
nn

u.
 R

ev
. N

uc
l. 

Pa
rt.

 S
ci

. 2
01

9.
69

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ity
 o

f T
ok

yo
 o

n 
09

/1
0/

19
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 

NS69CH12_Stroberg ARjats.cls July 25, 2019 16:40

P

Q

P

Q

P

Q

dH
ds

P Q P Q P Q

a b c

dH
ds

Figure 2
A schematic showing how the in-medium similarity renormalization group approach obtains the effective
interaction Heff by progressively suppressing the off-diagonal terms of H . (a) s = 0. (b) s = 5. (c) s = 30.

!ow parameter s and applied to the Hamiltonian through the !ow equation

dH (s)
ds

= [η(s),H (s)], 11.

where the generator η(s) is formally de"ned as

η(s) ≡ dU (s)
ds

U †(s) = −η†(s). 12.

We split the !owing Hamiltonian H (s) into diagonal and off-diagonal pieces:

H (s) = Hd (s) +Hod (s), 13.

such that

Hod (s) = PH (s)Q+QH (s)P, 14.

where the projection operators P and Q have the same meaning as in the previous sections. Our
goal, then, is to devise a generator η(s) such that

lim
s→∞

Hod (s) = 0 15.

and, therefore,

lim
s→∞

Hd (s) = Heff. 16.

In the language of the RG,Heff is a "xed point of the RG !ow.
One choice for η(s), which is used in the calculations we describe here, is the White genera-

tor (145, 169):

ηWh(s) ≡ Hod (s)
"(s)

. 17.

For present and future use, we have introduced a convenient superoperator notation (170), in
which we indicate division of the operator O by an energy denominator ":

〈
φi

∣∣∣∣
O
"

∣∣∣∣φ j
〉

≡
〈φi|O|φ j〉
εi − ε j

, 18.

www.annualreviews.org • Nonempirical Interactions for the Nuclear Shell Model 317

A
nn

u.
 R

ev
. N

uc
l. 

Pa
rt.

 S
ci

. 2
01

9.
69

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ity
 o

f T
ok

yo
 o

n 
09

/1
0/

19
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 

“off-diagonal” component, P-Q

“diagonal” component, P-P, Q-Q
adopting a certain generator η to achieve this “decoupling” 

! " = 0,!& ⇒ ! "

→ better E0(s)

NO2B→IMSRG(2)

14
K. Tsukiyama, S. K. Bogner, and A. Schwenk, PRL 106, 222502 (2011). 
K. Tsukiyama, S. K. Bogner, and A. Schwenk, PRC 85, 061304 (2012). 



Magnus formulation of IMSRG
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such that
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goal, then, is to devise a generator η(s) such that

lim
s→∞

Hod (s) = 0 15.
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formulation with Magnus expansion

PHYSICAL REVIEW C 92, 034331 (2015)

Magnus expansion and in-medium similarity renormalization group

T. D. Morris,* N. M. Parzuchowski,† and S. K. Bogner‡

National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy,
Michigan State University, East Lansing, Michigan 48824, USA

(Received 3 August 2015; published 30 September 2015)

We present an improved variant of the in-medium similarity renormalization group (IM-SRG) based on the
Magnus expansion. In the new formulation, one solves flow equations for the anti-Hermitian operator that, upon
exponentiation, yields the unitary transformation of the IM-SRG. The resulting flow equations can be solved
using a first-order Euler method without any loss of accuracy, resulting in substantial memory savings and modest
computational speedups. Since one obtains the unitary transformation directly, the transformation of additional
operators beyond the Hamiltonian can be accomplished with little additional cost, in sharp contrast to the standard
formulation of the IM-SRG. Ground state calculations of the homogeneous electron gas (HEG) and 16O nucleus
are used as test beds to illustrate the efficacy of the Magnus expansion.

DOI: 10.1103/PhysRevC.92.034331 PACS number(s): 13.75.Cs, 21.30.Fe, 21.60.De, 27.20.+n

I. INTRODUCTION

The quest to predict and understand the properties of
exotic nuclei starting from the underlying nuclear forces
represents a cornerstone of modern nuclear theory. Already
for stable nuclei, there are computational and theoretical
challenges that make the ab initio description of nuclear
structure quite difficult. Nevertheless, tremendous progress
has been made over the past two decades, where it is
now possible to perform quasi-exact calculations including
three-nucleon interactions of nuclei up through carbon or
so in quantum Monte Carlo (QMC) and no-core shell
model (NCSM) calculations, and N = Z nuclei up through
28Si in lattice effective field theory with Euclidean time
projection [1–3].

Since exact methods scale unfavorably with system size,
it is necessary to develop approximate, but systematically im-
provable methods to extend the reach of ab initio theory beyond
light nuclei. Over the past decade, coupled cluster (CC) theory,
self-consistent Green’s functions (SCGF), auxiliary field dif-
fusion Monte Carlo (AFDMC), and the in-medium similarity
renormalization group (IM-SRG) have been successfully
applied to calculate properties of selected medium mass nuclei
and infinite nuclear matter [4–10]. Early applications of these
methods were limited primarily to ground state properties of
stable nuclei near shell closures with two-nucleon forces only.
In recent years, however, substantial progress has been made
on including three-nucleon forces [5,9,11,12], targeting ex-
cited states and observables besides energy [13,14], and mov-
ing into the more challenging terrain of open-shell and unstable
nuclei [15–19].

The IM-SRG is a particularly appealing method due to
its flexibility to target ground and excited state properties for
closed- and open-shell systems. As discussed in Sec. II, the
essence of the IM-SRG is to perform a continuous unitary

*morrist@nscl.msu.edu
†parzuchowski@frib.msu.edu
‡bogner@nscl.msu.edu

transformation on the Hamiltonian (and all other observables
of interest) to drive it to a diagonal or block-diagonal form.
The transformation is implemented by solving a coupled set
of flow equations for the matrix elements of the Hamiltonian
and any other operators of interest:

H (s) = U †(s)HU (s) ⇔ dH (s)
ds

= [η(s),H (s)],
(1)

O(s) = U †(s)OU (s) ⇔ dO(s)
ds

= [η(s),O(s)],

where s is a continuous flow parameter, and the choice of the
generator η(s) ≡ dU †

ds
U implicitly defines the transformation

U (s). Despite the flexibility to tailor η to a wide range of
problems and the modest computational scaling with system
size, the formulation in Eq. (1) suffers from the following
difficulties:

(i) The coupled ordinary differential equations (ODEs)
can become stiff for certain choices of generator and/or
for systems with strong correlations.

(ii) The numerical integration of Eq. (1) requires a
high-order ODE solver to accurately preserve the
eigenvalues of the evolved Hamiltonian. The use of a
high-order solver consumes a large amount of memory
since multiple copies of the solution vector (e.g.,
15–20 for the predictor-corrector solver of Shampine
and Gordon [20]) need to be stored at each time step.

(iii) For each additional observable of interest, the number
of coupled ODEs that need to be solved is roughly
doubled, assuming a comparable level of truncation
for the evolved operator as the Hamiltonian. Moreover,
the flow equations for the additional observable(s) can
exacerbate the problems with stiff ODEs, since the
time scales for the operator evolution may be very
different from those of the Hamiltonian.
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In the present paper we use the White generator [26], though
we deviate slightly from recent implementations that use
Epstein-Nesbett energy denominators [12], opting for the
simpler Møller-Plosset energy denominators

η =
∑

ai

fai

fa − fi

: a†
aai :

+ 1
4

∑

abij

"abij

fa + fb − fi − fj

: a†
aa

†
bajai : −H.c., (22)

where fa = faa , etc. The use of Møller-Plosset denominators
has minimal impact on the results of ground state IM-SRG(2)
calculations, but it has the virtue of revealing the connection
to MBPT. In a subsequent work, this connection will be used
to develop approximations that go beyond the IM-SRG(2).

C. Magnus expansion

IM-SRG calculations typically use ODE solvers based
on high-order Runge-Kutta or predictor-corrector methods to
solve Eq. (3). The use of a high-order method is essential
as the accumulation of time-step errors will destroy the
unitary equivalence between H (s) and H (0), even if no
truncations are made in the flow equations. State-of-the-art
solvers can require the storage of 15–20 copies of the solution
vector in memory, which becomes problematic for large
model spaces. The problem is exacerbated if one wants
to calculate additional observables, roughly doubling the
memory requirements assuming the same NO2B truncation as
for the Hamiltonian. Moreover, the additional flow equations
for each observable can evolve with rather different timescales
than the Hamiltonian, which increases the likelihood of the
ODEs becoming stiff.

To bypass these limitations, we now describe an alternative
method to solving Eq. (3) using the Magnus expansion [32].
In the notation of our present problem, our starting point is the
differential equation obeyed by the unitary transformation,

dU (s)
ds

= −η(s)U (s), (23)

where U (0) = 1 and U †(s)U (s) = U (s)U †(s) = 1. This can
be formally integrated and written as the time-ordered expo-
nential

U (s) = Ts{e−
∫ s

0 η(s ′)ds ′} (24)

≡ 1 −
∫ s

0
ds ′η(s ′) +

∫ s

0
ds ′

∫ s ′

0
ds ′′η(s ′)η(s ′′) + · · · .

(25)

Equation (25) is not very useful in practical calculations since
(i) there is no guidance on how the series should be truncated,
(ii) one would need to store η for multiple s values, and (iii) it
is not obvious how to consistently transform the Hamiltonian
and other observables in a fully linked, size-extensive manner
with the truncated series.

The Magnus expansion is essentially a statement that, given
a few technical requirements on η(s), a solution of the form

U (s) = e#(s) (26)

exists, where #†(s) = −#(s) and #(0) = 0. In most previous
applications of the Magnus expansion, one typically expands
#(s) in powers of η(s) as

# =
∞∑

n=1

#n . (27)

For issues of convergence and mathematical details, see
Refs. [33,34]. Combining this with the formally exact deriva-
tive

d#

ds
=

∞∑

k=0

Bk

k!
adk

#(η),

ad0
#(η) = η, (28)

adk
#(η) = [#,adk−1

# (η)],

where Bk are the Bernoulli numbers and adk
#(η) the recur-

sively defined nested commutators, one can obtain explicit
expressions for the #n(s),

#1(s) = −
∫ s

0
ds1η(s1),

#2(s) = 1
2

∫ s

0
ds1

∫ s1

0
ds2[η(s1),η(s2)],

...

(29)

As expected, rewriting the time-ordered exponential as a true
matrix exponential moves the complications of time ordering
into the expression for #(s). The utility of the Magnus
expansion lies in the fact that, even if # is truncated to
low-orders in η, the resulting transformation in Eq. (26) using
the approximate # is unitary, in contrast to any truncated
version of Eq. (24).

For large-scale IM-SRG calculations, the expressions in
Eq. (29) are of limited value since they require the storage
of η(s) over a range of s values. Therefore, in the present
work we instead construct #(s) by numerically integrating
Eq. (28), subject to certain approximations discussed below.
The transformed Hamiltonian, and any other operator of
interest, can then be constructed by applying the Baker-
Cambell-Hausdorff (BCH) formula,

H (s) = e#H e−# =
∞∑

k=0

1
k!

adk
#(H ), (30)

O(s) = e#O e−# =
∞∑

k=0

1
k!

adk
#(O). (31)

Before discussing how we truncate Eqs. (28) and (30) in
practical calculations, it is instructive to study a simple matrix
model that can be solved without any truncations. Consider
the initial Hamiltonian

H = T + V =
(

1 1
1 −1

)
, (32)
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where the new coef!cients can be obtained from the old coef!cients by

E0 =
∑

a

nataa + 1
2

∑

ab

nanbVabab + 1
6

∑

abc

nanbncVabcabc,

fi j = ti j +
∑

a

naVia ja + 1
2

∑

ab

nanbViab jab, 24.

!i jkl =Vi jkl +
∑

a

naVi jakla,

Wijklmn =Vi jklmn.

Operators other than the Hamiltonian can be rewritten in the same way.
In Equation 24, na is the occupation of orbit a in the reference (i.e., na = 〈"|a†aaa|"〉), and for a

Slater determinant reference, na is either zero or one. In Section 4.1, we discuss a different choice
of reference for which a can have fractional occupation. One may also use a correlated reference,
constructed out of a linear combination of Slater determinants, in which case one must use the
generalized normal ordering presented by Kutzelnigg &Mukherjee (173). This is the basis of the
multireference IMSRG (MR-IMSRG)method,which is used in ground-state energy comparisons
in Section 4.1 (125, 146).

The advantage of expressing operators in normal-ordered form is that it puts as much infor-
mation as possible from the higher-particle-rank (i.e., many-body) operators into the lower-rank
operators. This is evident in Equation 24, where the normal-ordered zero-body term E0 contains
contributions from the free one-, two-, and three-body terms. If the reference |"〉 is a good ap-
proximation of the exact wave function |#〉, then the expectation value 〈#|{a†a†a†aaa}|#〉 ≈ 0,
and even formally nonvanishing 3N interactionsWijklmn, can be neglected to a good approxima-
tion. Consequently, normal ordering may be thought of as a way to improve the convergence of
the cluster expansion described at the beginning of this section.

2.3.2. Magnus formulation. A particularly convenient formulation of the IMSRG approach
relies on the Magnus expansion (174, 175). The idea is to express the more general uni-
tary IMSRG transformation as the true exponential of the anti-Hermitian Magnus operator
$(s) = −$†(s). The evolved Hamiltonian can then be expressed in terms of an in!nite series of
nested commutators

H (s)= e$(s)H (0)e−$(s),

=H (0) + [$(s),H (0)] + 1
2
[$(s), [$(s),H (0)]] + . . . . 25.

This formulation of the IMSRG allows for a more transparent comparison with canonical
transformation theory (169, 176) and the unitary CCmethod (177) used in quantum chemistry, as
well as with canonical perturbation theory (178), where the expansion in Equation 25 is evaluated
perturbatively.

Considering the "ow equation (Equation 11), we see that under an in!nitesimal step ds wemay
write

H (s + ds)=H (s) + [η(s),H (s)]ds,

= eη(s)dsH (s)e−η(s)ds, 26.

= eη(s)dse$(s)H (0)e−$(s)e−η(s)ds.
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Operators other than the Hamiltonian can be rewritten in the same way.
In Equation 24, na is the occupation of orbit a in the reference (i.e., na = 〈"|a†aaa|"〉), and for a

Slater determinant reference, na is either zero or one. In Section 4.1, we discuss a different choice
of reference for which a can have fractional occupation. One may also use a correlated reference,
constructed out of a linear combination of Slater determinants, in which case one must use the
generalized normal ordering presented by Kutzelnigg &Mukherjee (173). This is the basis of the
multireference IMSRG (MR-IMSRG)method,which is used in ground-state energy comparisons
in Section 4.1 (125, 146).

The advantage of expressing operators in normal-ordered form is that it puts as much infor-
mation as possible from the higher-particle-rank (i.e., many-body) operators into the lower-rank
operators. This is evident in Equation 24, where the normal-ordered zero-body term E0 contains
contributions from the free one-, two-, and three-body terms. If the reference |"〉 is a good ap-
proximation of the exact wave function |#〉, then the expectation value 〈#|{a†a†a†aaa}|#〉 ≈ 0,
and even formally nonvanishing 3N interactionsWijklmn, can be neglected to a good approxima-
tion. Consequently, normal ordering may be thought of as a way to improve the convergence of
the cluster expansion described at the beginning of this section.

2.3.2. Magnus formulation. A particularly convenient formulation of the IMSRG approach
relies on the Magnus expansion (174, 175). The idea is to express the more general uni-
tary IMSRG transformation as the true exponential of the anti-Hermitian Magnus operator
$(s) = −$†(s). The evolved Hamiltonian can then be expressed in terms of an in!nite series of
nested commutators

H (s)= e$(s)H (0)e−$(s),

=H (0) + [$(s),H (0)] + 1
2
[$(s), [$(s),H (0)]] + . . . . 25.

This formulation of the IMSRG allows for a more transparent comparison with canonical
transformation theory (169, 176) and the unitary CCmethod (177) used in quantum chemistry, as
well as with canonical perturbation theory (178), where the expansion in Equation 25 is evaluated
perturbatively.

Considering the "ow equation (Equation 11), we see that under an in!nitesimal step ds wemay
write

H (s + ds)=H (s) + [η(s),H (s)]ds,

= eη(s)dsH (s)e−η(s)ds, 26.

= eη(s)dse$(s)H (0)e−$(s)e−η(s)ds.
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Figure 2
A schematic showing how the in-medium similarity renormalization group approach obtains the effective
interaction Heff by progressively suppressing the off-diagonal terms of H . (a) s = 0. (b) s = 5. (c) s = 30.

!ow parameter s and applied to the Hamiltonian through the !ow equation

dH (s)
ds

= [η(s),H (s)], 11.

where the generator η(s) is formally de"ned as

η(s) ≡ dU (s)
ds

U †(s) = −η†(s). 12.

We split the !owing Hamiltonian H (s) into diagonal and off-diagonal pieces:

H (s) = Hd (s) +Hod (s), 13.

such that

Hod (s) = PH (s)Q+QH (s)P, 14.

where the projection operators P and Q have the same meaning as in the previous sections. Our
goal, then, is to devise a generator η(s) such that

lim
s→∞

Hod (s) = 0 15.

and, therefore,

lim
s→∞

Hd (s) = Heff. 16.

In the language of the RG,Heff is a "xed point of the RG !ow.
One choice for η(s), which is used in the calculations we describe here, is the White genera-

tor (145, 169):

ηWh(s) ≡ Hod (s)
"(s)

. 17.

For present and future use, we have introduced a convenient superoperator notation (170), in
which we indicate division of the operator O by an energy denominator ":

〈
φi

∣∣∣∣
O
"

∣∣∣∣φ j
〉

≡
〈φi|O|φ j〉
εi − ε j

, 18.
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H (s) = Hd (s) +Hod (s), 13.

such that

Hod (s) = PH (s)Q+QH (s)P, 14.

where the projection operators P and Q have the same meaning as in the previous sections. Our
goal, then, is to devise a generator η(s) such that

lim
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Hod (s) = 0 15.

and, therefore,

lim
s→∞

Hd (s) = Heff. 16.

In the language of the RG,Heff is a "xed point of the RG !ow.
One choice for η(s), which is used in the calculations we describe here, is the White genera-
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. 17.
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U †(s) = −η†(s). 12.

We split the !owing Hamiltonian H (s) into diagonal and off-diagonal pieces:

H (s) = Hd (s) +Hod (s), 13.

such that

Hod (s) = PH (s)Q+QH (s)P, 14.

where the projection operators P and Q have the same meaning as in the previous sections. Our
goal, then, is to devise a generator η(s) such that

lim
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Hod (s) = 0 15.

and, therefore,

lim
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Hd (s) = Heff. 16.

In the language of the RG,Heff is a "xed point of the RG !ow.
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goal, then, is to devise a generator η(s) such that
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Figure 2
A schematic showing how the in-medium similarity renormalization group approach obtains the effective
interaction Heff by progressively suppressing the off-diagonal terms of H . (a) s = 0. (b) s = 5. (c) s = 30.

!ow parameter s and applied to the Hamiltonian through the !ow equation

dH (s)
ds

= [η(s),H (s)], 11.

where the generator η(s) is formally de"ned as

η(s) ≡ dU (s)
ds

U †(s) = −η†(s). 12.

We split the !owing Hamiltonian H (s) into diagonal and off-diagonal pieces:

H (s) = Hd (s) +Hod (s), 13.

such that

Hod (s) = PH (s)Q+QH (s)P, 14.

where the projection operators P and Q have the same meaning as in the previous sections. Our
goal, then, is to devise a generator η(s) such that

lim
s→∞

Hod (s) = 0 15.

and, therefore,

lim
s→∞

Hd (s) = Heff. 16.

In the language of the RG,Heff is a "xed point of the RG !ow.
One choice for η(s), which is used in the calculations we describe here, is the White genera-

tor (145, 169):

ηWh(s) ≡ Hod (s)
"(s)

. 17.

For present and future use, we have introduced a convenient superoperator notation (170), in
which we indicate division of the operator O by an energy denominator ":

〈
φi

∣∣∣∣
O
"

∣∣∣∣φ j
〉

≡
〈φi|O|φ j〉
εi − ε j

, 18.
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P => valence, Q => q-spaceVS-IMSRG:

V

V V

V

MIYAGI, STROBERG, HOLT, AND SHIMIZU PHYSICAL REVIEW C 102, 034320 (2020)

intractable cases now decouple smoothly. Nevertheless, in
practice, we find that center-of-mass contamination remains
problematic. We therefore discuss a procedure for removing
these spurious states in ab initio valence-space approaches
and show that this can be achieved for particular choices of
multishell spaces. We use these Hamiltonians to explore the
physics of the island of inversion in the neon, magnesium, and
silicon isotopes, showing that the expected interplay between
normal and intruder orbits in ground and excited states can
be successfully described within our approach. We then turn
to other interesting applications such as the computation of
the excitation spectrum of doubly magic 16O, benchmarking
against coupled-cluster theory [41] and experiment, finding
overall good agreement. Finally, we investigate the trends of
ground-state energies and charge radii in the oxygen and radii
isotope shift in calcium isotopic chains.

II. IMSRG AND NOVEL MULTISHELL GENERATOR

In the valence-space framework, the single-particle Hilbert
space is partitioned into core, valence, and outside spaces. In
the final calculation, the core (e.g., 4He, 16O, 40Ca) and out-
side orbits are taken to be inactive, and a Hamiltonian in the
valence space, containing the essential degrees of freedom to
reproduce the low-lying states, is where we consider all pos-
sible configurations through exact diagonalization. Our goal
here is to construct an effective Hamiltonian where excitations
out of the core or into the outside space are explicitly decou-
pled. To this end, in the IMSRG we evolve the Hamiltonian
using the flow equation:

dH (s)
ds

= [η(s), H (s)], (1)

where the Hamiltonian, which depends on the flow parameter
s, is expressed in second-quantized form:

H (s) = E0(s) +
∑

ab

fab(s){a†
aab} + 1

4

∑

abcd

"abcd{a†
aa†

bad ac}.

(2)

E0, fab, and "abcd are zero-, one-, two-body matrix elements of
the Hamiltonian, respectively. The operator aa (a†

a) annihilates
(creates) the particle in the orbit a, and {. . .} indicates normal
ordering with respect to the single-determinant or ensem-
ble reference state [33]. The anti-Hermitian operator η(s) is
known as the generator:

η =
∑

ai

ηai{a†
aai} +

∑

abi j

ηabi j{a†
aa†

ba jai} − H.c. (3)

with

ai ∈ {pc, ov}, abi j ∈ {pp′cc′, pp′vc, opvv′}. (4)

The indices c, v, and o indicate core, valence, and outside-
space orbits, respectively, and p indicates either v or o.

In this work, for purposes of deriving effective Hamil-
tonians across multiple major shells, we define a new

generator:

ηai = 1
2

arctan
(

2 fai

faa − fii + "aiai + #

)
, (5)

ηabi j = 1
2

arctan
(

2"abi j

faa + fbb − fii − f j j + Gabi j + #

)
, (6)

Gabi j = "abab + "i ji j − ("aiai + "b jb j + [a ↔ b]). (7)

Here we have introduced the energy denominator shift #,
which solves issues inherent in decoupling multishell Hamil-
tonians, as discussed in more detail below. Note that our
choice is the same as the generator used in many earlier works
[30,31,33] except for the energy shift #. Adding # can be re-
garded as simply taking another generator, similar to choosing
from the standard Wegner, White, or imaginary-time gener-
ators used in IMSRG calculations [32]. Instead of directly
integrating the flow equation (1), we use the Magnus formula-
tion of the IMSRG [42]. This approach explicitly produces the
unitary transformation, which enables a much more efficient
treatment of observables [34]. Finally, the IMSRG evolution
induces three- and higher-body terms, which should be kept in
principle, but are inconvenient in practice. Here, we keep up to
two-body terms (known as IMSRG(2) approximation), which
has been observed to be an effective many-body truncation in
many cases [29,32,43–48].

III. NUMERICAL ANALYSES

Throughout this work, our calculations are done with NN
and 3N interactions derived from chiral effective field the-
ory [49,50]. We work in the harmonic oscillator basis, with
frequency h̄ω = 16 MeV, defined by emax = max(2n + l ),
where n and l are the radial quantum number and angular
momentum, respectively. The full treatment of three-body
matrix element is challenging due the memory limitations, so
we apply the additional truncation E3 max = max(2n1 + l1 +
2n2 + l2 + 2n3 + l3). The IMSRG calculations to generate the
effective valence-space Hamiltonians, radii, and E2 operators
were performed with the IMSRG++ code [51], and the final
diagonalization within the valence space and calculations for
corresponding transition densities are done with the KSHELL
code [52].

A. Effects of the energy denominator shift

To illustrate the role of the energy denominator shift #, in
Fig. 1 we show the flow of the neutron single-particle ener-
gies, i.e., fa(s) ≡ faa(s), for 0s (core), 0p and 1s0d (valence),
and 1p0 f (outside) orbits for a calculation decoupling a psd
valence space, using an 16O reference. With # = 0 MeV
[Fig. 1(a)], we find that as the flow parameter s increases, the
trajectory of some outside levels causes them to drop below
the valence-space levels, and flow does not converge. Note
that # = 0 MeV corresponds to the generator used in the
earlier works [31,33], and similar unstable patterns were occa-
sionally observed even in cases of single-shell valence-space
decoupling. According to the figure, the ill-behaved flow be-
gins where dfo/ds < 0, where, fo is a single-particle energy
of an outside orbit. We can understand how this quantity can

034320-2

denominator Delta: prescription for multi-shell interaction
see T. Miyagi et.al., PRC 102, 034320 (2020)

adopting a certain generator η to achieve this “decoupling” 

Hv(s→∞) = Effective interactions for a valence space

16

(※ core is still considered in VS-IMSRG calculations, this figure is edited (by me) to focus on v-space)

※

S.R.Stroberg,et al., PRL 118, 032502 (2017)
S.R.Stroberg et al., Annu. Rev. Nucl. Part. Sci. 2019. 69:307‒62 (2019)
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One-body Hamiltonians <a|V|b>

Two-body Hamiltonians <ab|V|cd>_{JPTz}

Three-body ... (ignored in IMSRG(2) truncation)
{JPTz}
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Appendix A. Fundamental commutators

For convenience, we collect the expressions for the fundamental commutators which are required for the derivation of
the IM-SRG flow equations and Wegner-type generators. We write one-, two-, and three-body operators as

A(1)
=

X

ij

Aij :aÑi aj : , (A.1)

A(2)
=

1
(2!)2

X

ijkl

Aijkl :aÑi a
Ñ
j alak : , (A.2)

A(3)
=

1
(3!)2

X

ijklmn

Aijklmn :aÑi a
Ñ
j a

Ñ
kanamal : , (A.3)

where the two- and three-body matrix elements are assumed to be fully anti-symmetrized. Single-particle indices refer to
natural orbitals, so that occupation numbers are ni = 0, 1, and we use the notation n̄a = 1 � na. We also recall that the
commutator of two operators of rankM and N can only have contributions of rank |M � N|, . . . ,M + N � 1,

[A(M), B(M)
] =

M+N�1X

k=|M�N|

C (k). (A.4)

A.1. [A(1), �]

[A(1), B(1)
]
(1)

=

X

ij

X

a
:aÑi aj :

�
AiaBaj � BiaAaj

�
(A.5)

[A(1), B(1)
]
(0)

=

X

ij

AijBji(ni � nj) (A.6)

[A(1), B(2)
]
(2)

=
1
4

X

ijkl

X

a
:aÑi a

Ñ
j alak :

�
(1 � Pij)AiaBajkl � (1 � Pkl)AakBijal

 
(A.7)

[A(1), B(2)
]
(1)

=

X

ij

X

ab

:aÑi aj :
�
(na � nb)AabBbiaj

 
(A.8)

[A(1), B(3)
]
(3)

=
1
36

X

ijklmn

X

a
:aÑi a

Ñ
j a

Ñ
kanamal : ⇥

�
(1 � Pij � Pik)AiaBajklmn � (1 � Plm � Pln)AalBijkamn

 
(A.9)

[A(1), B(3)
]
(2)

=

X

ijkl

X

ab

:aÑi a
Ñ
j alak : . (na � nb) AabBbijakl (A.10)

A.2. [A(2), �]

[A(2), B(2)
]
(3)

=
1
36

X

ijklmn

X

a
:aÑi a

Ñ
j a

Ñ
kanamal : ⇥ P(ij/k)P(l/mn)

�
AijlaBakmn � BijlaAakmn

�
(A.11)

[A(2), B(2)
]
(2)

=
1
4

X

ijkl

X

ab

:aÑi a
Ñ
j alak :

⇢
1
2
(AijabBabkl � BijabAabkl)(1 � na � nb)

+ (na � nb)(1 � Pij � Pkl + PijPkl)AaibkBbjal

�
(A.12)

[A(2), B(2)
]
(1)

=
1
2

X

ij

X

abc

:aÑi a
Ñ
j :

�
AciabBabcj � BciabAabcj

�
(n̄an̄bnc + nanbn̄c) (A.13)

[A(2), B(2)
]
(0)

=
1
4

X

ijkl

ninjn̄kn̄l
�
AijklBklij � BijklAklij

�
(A.14)

214 H. Hergert et al. / Physics Reports 621 (2016) 165–222

Appendix A. Fundamental commutators

For convenience, we collect the expressions for the fundamental commutators which are required for the derivation of
the IM-SRG flow equations and Wegner-type generators. We write one-, two-, and three-body operators as

A(1)
=

X

ij

Aij :aÑi aj : , (A.1)

A(2)
=

1
(2!)2

X

ijkl

Aijkl :aÑi a
Ñ
j alak : , (A.2)

A(3)
=

1
(3!)2

X

ijklmn

Aijklmn :aÑi a
Ñ
j a

Ñ
kanamal : , (A.3)

where the two- and three-body matrix elements are assumed to be fully anti-symmetrized. Single-particle indices refer to
natural orbitals, so that occupation numbers are ni = 0, 1, and we use the notation n̄a = 1 � na. We also recall that the
commutator of two operators of rankM and N can only have contributions of rank |M � N|, . . . ,M + N � 1,

[A(M), B(M)
] =

M+N�1X

k=|M�N|

C (k). (A.4)

A.1. [A(1), �]

[A(1), B(1)
]
(1)

=

X

ij

X

a
:aÑi aj :

�
AiaBaj � BiaAaj

�
(A.5)

[A(1), B(1)
]
(0)

=

X

ij

AijBji(ni � nj) (A.6)

[A(1), B(2)
]
(2)

=
1
4

X

ijkl

X

a
:aÑi a

Ñ
j alak :

�
(1 � Pij)AiaBajkl � (1 � Pkl)AakBijal

 
(A.7)

[A(1), B(2)
]
(1)

=

X

ij

X

ab

:aÑi aj :
�
(na � nb)AabBbiaj

 
(A.8)

[A(1), B(3)
]
(3)

=
1
36

X

ijklmn

X

a
:aÑi a

Ñ
j a

Ñ
kanamal : ⇥

�
(1 � Pij � Pik)AiaBajklmn � (1 � Plm � Pln)AalBijkamn

 
(A.9)

[A(1), B(3)
]
(2)

=

X

ijkl

X

ab

:aÑi a
Ñ
j alak : . (na � nb) AabBbijakl (A.10)

A.2. [A(2), �]

[A(2), B(2)
]
(3)

=
1
36

X

ijklmn

X

a
:aÑi a

Ñ
j a

Ñ
kanamal : ⇥ P(ij/k)P(l/mn)

�
AijlaBakmn � BijlaAakmn

�
(A.11)

[A(2), B(2)
]
(2)

=
1
4

X

ijkl

X

ab

:aÑi a
Ñ
j alak :

⇢
1
2
(AijabBabkl � BijabAabkl)(1 � na � nb)

+ (na � nb)(1 � Pij � Pkl + PijPkl)AaibkBbjal

�
(A.12)

[A(2), B(2)
]
(1)

=
1
2

X

ij

X

abc

:aÑi a
Ñ
j :

�
AciabBabcj � BciabAabcj

�
(n̄an̄bnc + nanbn̄c) (A.13)

[A(2), B(2)
]
(0)

=
1
4

X

ijkl

ninjn̄kn̄l
�
AijklBklij � BijklAklij

�
(A.14)

111

110

122

121

222

221

220

How can we accelerate...

Oabcd

c.f. talk by

- Jacob Davison, TRIUMF workshop 2023
- H. Hergert, INT Program 21r-1c “Tensor Networks in 
Many Body and Quantum Field Theory”, 2023
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hopefully, it will be available on arXiv&GitHub within a couple of days weeks !!

IMSRG-Net: A machine-learning based solver for In-Medium Similarity Renormalization Group

Sota Yoshida1, ⇤

1
Institute for Promotion of Higher Academic Education,

Utsunomiya University, Mine, Utsunomiya, 321-8505, Japan

(Dated: May 19, 2023)

We propose a machine-learning based solver for in-medium Similarity Renormalization Group (IMSRG),
named IMSRG-Net. This IMSRG-Net is designed to approximate the Magnus operators ⌦(s) in the IMSRG
flow equation with the aim of replacing computationally demanding parts of the IMSRG calculations. The key
idea of IMSRG-Net is its design of the loss function inspired from physics-informed neural networks to encode
physics, i.e. IMSRG flow equation, into the model. Using ten points around s = 20, corresponding to about a
quarter to an eighth of the whole flow, as training data, very accurate extrapolations can be made for the ground
state energies and charge radii of 16O and 40Ca.

The in-medium Similarity Renormalization Group (IM-
SRG) method [1–5] is a powerful tool to study nuclear many-
body systems. This method has the nature as an ab initio

method to study ground state properties of nuclei near sub-
shell closures, and, at the same time, as a systematic method to
derive e�ective interactions and operators for a valence space.
The IMSRG method is based on the unitary transformation
of the operators like Hamiltonian through the flow equation
with the aim of decoupling a target subspace from the rest
of the many-body Hilbert space. In the case of ground state
calculations, the aim is to decouple particle-hole excitations
from the reference state. In the case of deriving e�ective in-
teractions, the valence space is to be decoupled from the core
and outer-space. In recent works, the scope of the ab initio
calculations using the IMSRG has been extended to heavier
nuclei like 132Sn and 208Pb [6, 7].

The IMSRG method is powerful, but also computationally
demanding to repeat number of calculations for di�erent nu-
clei and di�erent input nuclear interactions. Along this line,
it is important to develop e�cient methods to perform IM-
SRG calculations. Constructing such emulators or surrogatre
models is one of the hottest topics in nuclear physics com-
munity, and is playing key roles to understand and evaluate
the uncertainties of nuclear many-body calculations and nu-
clear forces. A representative example of such emulators is
one using the eigenvector continuation (EC) method [8–10].
Within a couple of years, the EC method has been applied to
various nuclear many-body problems [11–20], and it is now
being understood from more broader context as model order
reduction [21]. However, applications of the EC method to
IMSRG calculations are not straightforward. This is because
the typical workplace of the EC method is the many-body
wavefunctions (eigenvectors of a Hamiltonian), while the IM-
SRG calculations are performed on the many-body operators
like a Hamiltonian.

In this paper, we try to construct a surrogate model of IM-
SRG from slightly di�erent point of view, which is a data-
driven approach using machine learning techniques. In nuclear
physics community, there are several examples of machine-
learning based models to mimic or to assist nuclear many-body

⇤ syoshida@cc.utsunomiya-u.ac.jp

calculations, see e.g., Refs. [22].
In this work, we propose a machine-learning based solver

for the IMSRG flow equation, named IMSRG-Net, and demon-
strate its accuracy for the ground state energies and charge
radii of 16O and 40Ca. The role of this work is to provide a
proof of concept, i.e. to exploit and explore the possibilities
of data-driven approaches for constructing a surrogate model
for IMSRG methods rather than to accelerate the cutting-edge
IMSRG calculations on supercomputers.

Here, we briefly review the basics of in-medium similarity
renormalization group (IMSRG) method.

In IMSRG methods, one starts from a normal-ordered
Hamiltonian H(s = 0) on a reference state, and then performs
the unitary transformation U(s) to decouple particle-hole ex-
citations from the reference state

H(s) = U(s)H(0)U†(s), (1)

where s is the flow parameter. This gives the following
IMSRG-flow equation:

dH(s)

ds
= [⌘(s), H(s)] , (2)

⌘(s) ⌘ dU(s)

ds
U†(s) = �⌘†(s). (3)

In the last decade, the way to solve the IMSRG flow equation
has been established, i.e. one utilizing Magnus expansion [23].
In the Magnus formulation of IMSRG, the unitary transforma-
tion in Eq. (1) is explicitly calculated by an exponential ansatz

U(s) = e⌦(s), (4)
d⌦(s)

ds
= ⌘(s), (5)

with the anti-Hermitian Magnus operator ⌦(s). The second
equation follows from Eq. (3). By doing this, one can write
down the transformations of any operators O(s) including the
Hamiltonian H(s) as

O(s) = e⌦(s)O(0)e�⌦(s) (6)

The flow equation Eq. (2) is now translated into the ordinary

One may expect... ”If we feed neural networks many data, they will learn underlying law”.

It is usually not the case. We need some “inductive biases” or more constraints.
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Results: g.s. energies of 16O and 40Ca 15

prediction errors are less than 1 keV (~ 0.5 keV level)

Upper panels:  g.s. energy, dotted = IMSRG(2), solid = IMSRG-Net using 10 points around s=20
Lower panels:  energy diff., solid = IMSRG-Net, dashed = naïve(?) ANN 

Symbols: s = 20 or the point giving converged IMSRG(2) 

19

Aim is to predict E(s) or O(s) at s=∞ giving converged IMSRG(2) results

“2n3n” = density dependent 3NF added



Results: Energy and charge radii 15

prediction errors of IMSRG-Net are much smaller than the residuals

to be gained through the rest IMSRG flow (s = from 20 to ∞)

4

TABLE I. The ground state energies and charge radii of 16O and 40Ca by IMSRG(2) and IMSRG-Net. The s = 1 corresponds to the one
giving converged value of IMSRG(2).

Energy (MeV) Rch (fm)
s = 20 s = 1 s = 20 s = 1

target interection emax IMSRG(2) IMSRG-Net IMSRG(2) IMSRG-Net IMSRG(2) IMSRG-Net IMSRG(2) IMSRG-Net
16O EM500 4 -156.9474 -156.9474 -156.9611 -156.9607 2.2578 2.2578 2.2612 2.2610

6 -163.4079 -163.4079 -163.4153 -163.4150 2.2526 2.2526 2.2547 2.2546
8 -165.1876 -165.1875 -165.1932 -165.1927 2.2482 2.2482 2.2499 2.2497

10 -165.5309 -165.5309 -165.5359 -165.5357 2.2469 2.2469 2.2485 2.2484
EMN500+2n3n 4 -111.8453 -111.8453 -111.8470 -111.8462 2.3600 2.3600 2.3607 2.3605

6 -114.4895 -114.4895 -114.4925 -114.4918 2.3681 2.3681 2.3692 2.3690
8 -115.5894 -115.5894 -115.5930 -115.5925 2.3735 2.3735 2.3748 2.3746

10 -115.9040 -115.9040 -115.9079 -115.9082 2.3751 2.3751 2.3765 2.3765
40Ca EM500 4 -555.6791 -555.6791 -555.6884 -555.6879 2.5947 2.5947 2.5959 2.5958

6 -582.4293 -582.4293 -582.4350 -582.4351 2.5960 2.5960 2.5967 2.5967
8 -591.5783 -591.5782 -591.5822 -591.5821 2.5915 2.5915 2.5920 2.5920

10 -594.0215 -594.0215 -594.0242 -594.0246 2.5890 2.5890 2.5894 2.5895
EMN500+2n3n 4 -293.3474 -293.3474 -293.3486 -293.3487 2.8579 2.8579 2.8581 2.8581

6 -315.6334 -315.6334 -315.6411 -315.6409 2.9082 2.9082 2.9089 2.9088
8 -321.3233 -321.3232 -321.3320 -321.3319 2.9201 2.9200 2.9209 2.9208

10 -323.3519 -321.3520 -323.3605 -323.3613 2.9252 2.9252 2.9260 2.9260

IMSRG(2) and IMSRG-Net in the lower panels. The solid
lines in the lower panels are the results of IMSRG-Net, and the
dashed ones represents cases when �⌘ = 0. It is clearly seen
that introducing the loss term on ⌘ is critical to train the net-
work and to obtain better extrapolation in the larger s region.
The extrapolations are done with an accuracy less than 1 keV.

In the Table I, the ground state energies and charge radii
of 16O and 40Ca evaluated by IMSRG(2) and IMSRG-Net are
summarized. The only digits that di�er between IMSRG(2)
and IMSRG-Net are emphasized in bold. Since we extrapo-
lated not the energies but the Magnus operators ⌦ to achive
unitary transformations, Eqs. (4-6), we can also calculate the
charge radii in a straightforward manner. From the Table I, one
can see that the IMSRG(2) results of charge radii are also well
reproduced by IMSRG-Net. In both cases, one can see that
the deviation between IMSRG(2) and IMSRG-Net are much
smaller than the redisuals which are to be gained through the
rest IMSRG flow from s = 20 to s = 1. It can be regarded
as a su�cient accuracy to replace the rest flow s > 20 by the
proposed model.

To summarize, we expolered a possibility to replace the
part of the IMSRG-flow by a machine-learning based model
in this study. By using a proposed neural network, IMSRG-
Net, inspired from PINNs, we could achieve extrapolation
with a satisfactory accuracy. The energies are extrapolated
with an accuracy less than 1 keV and the charge radii are also
well reproduced with small errors ⇠ 0.0001 fm. Once one
could obtain good approximations for the Magnus operators
⌦(s), one can evolve any operators of interest with the help of
Magnus formulation of IMSRG.

Note that we show the results with a single run, specifying

a random seed. Since the results can be di�erent with other
environments and random seeds, results can be either better or
worse than the values shown in this work. One can reproduce
the results with the same environment including the versions
of libraries used in this work. For further information to
reproduce the entire results, see the repository on GitHub [34].

While we have investigated that IMSRG-Net works empir-
ically on various datasets, one must keep in mind that there
will always be exceptions, cases where this network structure
or learning strategy can break down.

To further improve the accuracy of extrapolated results and
robustness to various interactions and nuclei, one may need
to introduce some additional inductive biases and/or re-design
the network architecture. It is also important to develop a more
computationary e�cient models. Since the current IMSRG-
Net is directly using ⌦(s) having a large dimension as the
output layer of the neural network, it is hard for emax larger
than 10 cases to put them all on VRAM. It prevents ones from
trying IMSRG-Net for cutting-edge applications of IMSRG
methods with larger emax.

To further accelerate such research workflows in the com-
munity using IMSRG methods, various extentensions of the
proposed method should be further explored. This work may
open a new paradigm for IMSRG method and open many pos-
sible applications of machine learning techniques to nuclear
many-body problems. For one example, it would be useful to
construct more compact expression of operators retaining as
much information as possible by means of tensor decomposi-
tion.
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IMSRG-Net for a valence space
- same architecture and training strategy
- trained w/ earlier VS-IMSRG(2) flow

sd shell pf shell 

※Some show ~10 keV error, attributed not to IMSRG-Net, but numerical instability of VS-IMSRG 

shell-model results agree in  typically ≦ 1 keV level !!
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EC + (valence) shell model

IMSRG-Net

ML-based alternative of IMSRG solver. Stay tuned!!

sample eigenvectors
under given interactions
(random, VS-IMSRG, etc.)

approximate eigenpairs

target quantity

Preprocessed shell-model calculation

using as the initial vector(s)

(a)
(a)

(b)(c)

Equations

Sota Yoshida1,

1. Introduction

|ψ("c1)〉, |ψ("c2)〉, · · · , |ψ("cNs )〉

H("c)|ψ("c)〉 = E("c)|ψ("c)〉. (1)

The typical parametrization of the shell-model Hamiltonian is
the following:

H = H(1) + H(2) =
∑

ac

h(1)
ac c†acc +

1
4

∑

abcd

h(2)
abcdc†ac†bcdcc, (2)

H(2) =
1
4

∑

abcdJM

Nab(J)Ncd(J)A†(ab; JM)A(cd; JM)VJ(abcd),

(3)

Nab(J) = [(1 + δab)]1/2 ,Ncd(J) = [(1 + δcd)]1/2 , (4)

A†(ab; JM) =
∑

ma,mb

( jama jbmb|JM)c†jama
c†jbmb

(5)

A(cd; JM) =
∑

mc,md

( jcmc jdmd |JM)c jdmd c jcmc (6)

H̃"v = λN"v, (7)
H̃i, j = 〈ψ("ci)|H("c#)|ψ("c j)〉, (8)
Ni, j = 〈ψ("ci)|ψ("c j)〉. (9)

Then, the original eigenpairs can be approximated as

E("c#) $ λ, (10)

|ψ("c#)〉 $
Ns∑

i=1

vi|ψ("ci)〉 ≡ |ψEC("c#)〉. (11)

〈Ô〉 $ 〈ψEC("c#)|Ô|ψEC("c#)〉, (12)

〈Ô〉 = 〈ψ("c#)|Ô|ψ("c#)〉. (13)

H̃i, j =
∑

k

h(1)
k × OBTDk +

∑

k

VJ(abcd)k × TBTDk, (14)

log L("c) = − 1
N

N∑

i=1

(EEC,i("c) − EExp.,i)2

2σ2
err,i

, (15)

σ2
err,i = σ

2
EC,typ. + σ

2
EC,i, (16)

log Pr("c) = −Λ
2
||H("c) − H("cref.)||2. (17)

EExact(4+1 ) = −75.951 MeV, QExact(4+1 ) = +28.340 efm2,

EExact(4+2 ) = −75.454 MeV, QExact(4+2 ) = −25.682 efm2,

EEC(4+1 ) = −74.751 MeV, QEC(4+1 ) = −25.635 efm2,

EEC(4+2 ) = −73.825 MeV, QEC(4+2 ) = +27.599 efm2. (18)

OBTD( f i; ja jb; λ) ≡ 1√
2λ + 1

〈ψJ f M f ||[c†ja ⊗ c̃ jb ](λ)||ψJi Mi〉,

(19)

OBTDk ≡
√

2 jk + 1
2Ji + 1

OBTD(ii; jk jk; 0) = 〈ψJi Mi ||Nk ||ψJi Mi〉,
(20)

TBTD( f i; abcd; JabJcd; λ)

≡ 1√
2λ + 1

〈ψJ f Mf ||[A†(ab; JabMab) ⊗ Ã(cd; Jcd Mcd)](λ)||ψJi Mi〉,

(21)

Ã(cd; Jcd Mcd) ≡ (−1)Jcd+Mcd A( jc jd; Jcd − Mcd), (22)

TBTD ≡
√

2Jab + 1
2Ji + 1

TBTD( f i; abcd; JabJab; 0), (23)
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〈Ô〉 $ 〈ψEC("c#)|Ô|ψEC("c#)〉, (12)
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A. Transition densities

It is convenient to introduce the so-called transition densities. In this appendix, we summa-

rize our definition of the transition densities in Eq. (13) in the main text, assuming that the

shell-model wave functions are given in the M -scheme, |ψJ,M 〉.
The one-body transition densities (OBTDs) is given as

OBTD(fi; jajb;λ) ≡
1√

2λ+ 1
〈ψJfMf

||[c†ja ⊗ c̃jb ]
(λ)||ψJiMi

〉, (A1)

where we introduced c̃jb ≡ (−1)jb−mbcjb , and 〈|| · ||〉 means taking the so-called reduced

matrix element, and the notation [·⊗ ·](λ) is for the rank-λ irreducible tensor operators.

For more details on the tensor algebra, see e.g., [1, 2]. Since we are interested in the λ = 0

(scaler in terms of irreducible tensor operator) and the diagonal (f = i, Jf = Ji, Mf = Mi)

component, which contributes to H̃ in Eq. (13) in the main text. OBTD for the k-th single

particle state is defined as

OBTDk ≡
√

2jk + 1

2Ji + 1
OBTD(ii; jkjk; 0) = 〈ψJiMi

||Nk||ψJiMi
〉, (A2)

where Nk is the occupation number of the k-th orbital, and the factor
√

(2jk + 1)/(2Ji + 1)

is introduced to make OBTDk identical with the occupation number of k-th orbital.
The two-body transition densities (TBTDs) are defined as

TBTD(fi; abcd; JabJcd;λ)

≡ 1√
2λ+ 1

〈ψJfMf
||[A†(ab; JabMab)⊗ Ã(cd; JcdMcd)]

(λ)||ψJiMi
〉, (A3)

Ã(cd; JcdMcd) ≡ (−1)Jcd+McdA(jcjd; Jcd −Mcd), (A4)

where A† and A are the same as in Eqs. (5-6).For the factorization in Eq. (13). the TBTD

for a two-body interaction VJ(abcd) is defined as follows

TBTD ≡
√

2Jab + 1

2Ji + 1
TBTD(fi; abcd; JabJab; 0), (A5)

where only the term with λ = 0, Jcd = Jab,Mcd = Mab, Jf = Ji,Mf = Mi is needed due to

the symmetry.

B. Sample codes for ShellModel.jl

We provide the following sample codes in the GitHub repository [3] for reproducibility of

the results discussed in the main text:

(a) 10 lowest states of a target nucleus

(b) 10 lowest states of the target with a specific J

(c) EC estimates of 10 lowest states of the target with the J

(d) (b) with the preprocessing

A short guide for installation and running the sample program is given below. First, one

should prepare Julia environment, which is easily done by downloading a binary from the

official website of the Julia Language or wget in a Linux-like environment. Second, make a

clone of ShellModel.jl repository and execute $julia src/package_install.jl to install

other packages. Then, execute e.g., $julia -t 12 sample_run.jl , where “-t” specifies the

number of threads to be used. Documentation for major functions is also available in the

repository.

For the transition density matrices needed for (c), we provide the one with the smaller

sample size Ns = 50, because the files for Ns > 50 are too large to share on the GitHub.

The transition densities with a larger sample size are available upon request from the

corresponding author.

C. MCMC settings

In this section, we summarize the detailed MCMC settings for the results in Sec. 3.3 and,

the distributions of the posterior and the energy eigenvalues.

Under the likelihood (Eq. (14)) and the prior (Eq. (16)), we generated 100,000 MCMC

samples after 10,000 burn-in. The sampling is done on the 66-dimensional parameter space

in the isospin formalism, and it can be extended to the so-called proton-neutron formalism or

some linear combination of two-body matrix elements. The variance for the proposal is fixed

6.e-2, and the resultant acceptance rate was around 0.23, which is close to the well-known

asymptotic optimal value 0.234 for independent and identically distributed Gaussian [4].

When discussing highly multimodal distributions, it is recommended to use more efficient
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18μ&Q moments
magnetic moments & quadrupole moments for the lowest states

just two iterations just two iterations



18Why Julia ?

→ High readability and productivity like Python
→ High performance like C++/Fortran

• MIT LICENSE
• Multiple dispatch
• Dynamically typed 
• JIT(Just-In-Time) compilation by LLVM
• Fast as C++/Fortran
• Macros like Lisp
• Package manager
• Easy to call Python, C, Fortran, etc.

Since 2012:
Becoming popular in physics, DS, Machine Learning, etc.

If you are “greedy”, you should consider to use Julia !
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