## Emulator of shell-model calculations via eigenvector continuation

 a surrogate model for IMSRG
## Utsunomiya University

Sota Yoshida

- EC + valence shell model
- A Julia package for nuclear structure calculations


## ShellModel.jl $\quad$ -

NuclearToolkit.jl

- IMSRG-Net: a surrogate model for IMSRG
- Summary


## Constructing approximate shell-model

wavefunctions by eigenvector continuation


FIG. 1
original problem:

$$
\begin{gathered}
H(\vec{c})|\psi(\vec{c})\rangle=E(\vec{c})|\psi(\vec{c})\rangle \\
H=H^{(1)}+H^{(2)}=\sum_{a c}^{\sum_{\text {SPEs }}^{h_{a c}^{(1)}} c_{a}^{\dagger} c_{c}+\frac{1}{4} \sum_{a b c d}{\underset{\text { TBMEs }}{(2)}}_{h_{a b c d}^{\dagger}}^{c_{a}^{\dagger} c_{b}^{\dagger} c_{d} c_{c},}} .
\end{gathered}
$$

## EC + shell model:

$$
\begin{aligned}
\tilde{H} \vec{v} & =\lambda N \vec{v}, \\
\tilde{H}_{i, j} & =\left\langle\psi\left(\vec{c}_{i}\right)\right| H\left(\vec{c}_{\odot}\right)\left|\psi\left(\vec{c}_{j}\right)\right\rangle, \\
N_{i, j} & =\left\langle\psi\left(\vec{c}_{i}\right) \mid \psi\left(\vec{c}_{j}\right)\right\rangle .
\end{aligned}
$$

## small dense matrix

$$
\text { Dim. }=\# \text { of sample } \sim 100
$$

large sparse matrix

$$
\text { e.g., }{ }^{24} \mathrm{Mg} \text { M-scheme Dim. }=28,503
$$

row \& column: many-body configurations

row \& column:
indices for EC samples
~ sec.
~ msec. (or less?)

## Sample eigenvectors

Example:
sd-shell ( ${ }^{16} \mathrm{O}$ core $+0 \mathrm{~d} 5 / 0 \mathrm{~d} 3 / 1 \mathrm{~s} 1$ valence orbits)

$$
\begin{aligned}
\tilde{H} \vec{v} & =\lambda N \vec{v}, & E\left(\vec{c}_{\odot}\right) \simeq \lambda, \\
\tilde{H}_{i, j} & =\left\langle\psi\left(\vec{c}_{)}\right)\right| H\left(\vec{c}_{\odot}\right)\left|\psi\left(\vec{c}_{j}\right)\right\rangle, & \left|\psi\left(\vec{c}_{\odot}\right)\right\rangle \simeq \sum_{i=1}^{N_{s}} v_{i}\left|\psi\left(\vec{c}_{i}\right)\right\rangle \equiv\left|\psi_{E C}\left(\vec{c}_{\odot}\right)\right\rangle .
\end{aligned}
$$

parameters: 66 (3 SPEs \& 63 TBMEs, w/ isospin)
target nuclei: ${ }^{25} \mathrm{Mg}$ ( $v p=4, v n=5$ ), ${ }^{28} \mathrm{Si}(v p=v n=6$, dim. $\sim 90,000)$
sampling 5 states for given total J at 50 (random) different points ( $5 \times 50=250$ samples) around USDB

$$
\text { "validation" for } 100 \text { random parameters }
$$



EC approximates energies within a few percent accuracy

Table 1. Average sizes of two errors by EC estimates for the five yrast states of the four $s d$-shell nuclei: One is the relative error (\%) of absolute energies, and the other one is the error of excitation energies. The sample size $N_{s}$ means the product of the number of random interactions and the number of excited states used as the sample eigenvectors in Eqs. (8)-(9). $N_{s}=250^{*}$ with $\sigma_{\text {int. }}=3$ means that the standard deviation to generate the random interactions is increased from the default value $\sigma_{\text {int. }}=1$, and $N_{s}=$ 250* (LHS, $L=2$ ) corresponds to the result using Latin hypercube sampling (LHS).

| $N_{S}$ | mean of | relative error $(\%) \equiv 100\left\|\frac{E_{\text {exact }}-E_{\mathrm{EC}}}{E_{\text {exact }}}\right\|$ |  |  | mean of ex |  | ex. $\operatorname{error}(\mathrm{MeV}) \equiv\left\|E_{\text {exact }}^{\text {exa }}-E_{\text {ECC }}^{\text {ex }}\right\|$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (\# interaction $\times$ \# states) | ${ }^{28} \mathrm{Si}$ | i $\quad{ }^{26} \mathrm{Al}$ | ${ }^{25} \mathrm{Mg}$ | ${ }^{24} \mathrm{Mg}$ | ${ }^{28} \mathrm{Si}$ | ${ }^{26} \mathrm{Al}$ | ${ }^{25} \mathrm{Mg}$ | ${ }^{24} \mathrm{Mg}$ |
| $50(50 \times 1)$ | 1.4 | - 2.1 | 1.8 | 1.3 | 0.66 | 1.22 | 0.62 | 0.65 |
| $50 *(25 \times 2)$ | 1.8 | 2.3 | 2.1 | 1.7 | 0.82 | 1.16 | 0.61 | 0.97 |
| $150(50 \times 3)$ | 0.9 | 1.2 | 1.1 | 0.7 | 0.44 | 0.85 | 0.42 | 0.62 |
| $250(50 \times 5)$ | 0.7 | 0.9 | 0.8 | 0.5 | 0.39 | 0.70 | 0.37 | 0.51 |
| $250 *\left(50 \times 5 ; \sigma_{\text {int. }}=3\right)$ | 2.8 | 3.3 | 3.1 | 2.3 | 1.35 | 2.35 | 1.09 | 1.96 |
| $250 *(50 \times 5 ;$ LHS, $L=2$ ) | 0.8 | 1.0 | 0.9 | 0.6 | 0.47 | 0.73 | 0.40 | 0.57 |

each row shows different settings (\# of samples, way of sampling)

- sample not only g.s. but also excited states if you want to know excited states too
- odd or odd-odd nuclei are more difficult than even (even-even) ones


Fig. 7. Relative errors with $N_{s}=250$ samples against $J$-scheme dimensions for ${ }^{24,25} \mathrm{Mg},{ }^{26} \mathrm{Al},{ }^{28} \mathrm{Si}$ (lower panel), ${ }^{46} \mathrm{~V}$, and ${ }^{47,48} \mathrm{Ti}$ (upper panel). The filled symbols correspond to the samples generated by varying all the parameters with $\sigma_{\text {int. }}=1$ around the reference values (USDB and GXPF1A). The open symbols in the upper panel show the results with samples in which only the 32 parameters related to $f 7 / 2$ and $p 3 / 2$ were varied with the same $\sigma_{\text {int. }}$.

$$
\text { pf-shell => } 199 \text { parameters (4 SPEs \& } 195 \text { TBMEs) }
$$

Dotted lines are results considering
only the samples spread over $f 7 / 2 \& p 3 / 2$
it is better to sample over a subspace
more relevant to what you want to know
Q. What is a better sampling strategy?

Is there any way to maximize information gain from a next observation?
no answer will be shown in this talk though...

As a preprocessor
SY and N.Shimizu, PTEP 2022 053D02.

q : size of initial "block" vector
n : \# of excited states of interest
dotted: initialized by random vectors
solid: initialized by EC eigenvectors

Starting from better initial guess, \# of manipulation could be reduced!!

Exception $=>(q, n)=(4,10)$
since the emulator is trained with 5 lowest states, such emulator do not have much info. on higher states

Number of H operation during the (block) Lanczos method

Sampling itself is not easy ...

$$
\begin{aligned}
\tilde{H} \vec{v} & =\lambda N \vec{v} \\
\tilde{H}_{i, j} & =\left\langle\psi\left(\vec{c}_{i}\right)\right| H\left(\vec{c}_{\odot}\right)\left|\psi\left(\vec{c}_{j}\right)\right\rangle, \quad \leftarrow \text { most time-consuming part } \\
N_{i, j} & =\left\langle\psi\left(\vec{c}_{i}\right) \mid \psi\left(\vec{c}_{j}\right)\right\rangle
\end{aligned}
$$

$>$ You don't need to explicitly calculate $H\left(C_{\odot}\right) \mid \psi(c j)>$ for each parameter $C_{\odot}$ to evaluate H-tilde above:


## Outline

- EC + valence shell model
- A Julia package for nuclear structure calculations


## ShellModel.jl $\quad$,

NuclearToolkit.jl

- IMSRG-Net: a surrogate model for IMSRG
- Summary
> A single method (code) can be lengthy $\sim 100,000$ lines
two language problem (Fortran/C++ \& shell/Python)
> Especially in Japan, research methods are "clusterized" (localized)
to a specific group. This can be an obstacle to
collective intelligence or co-creation

secret sauce (source) in Prof. XX Group
seen in e.g. ML community through ML frameworks

Educations for next generation
can circumvent the situation...?

- ChiEFTint ~ 8000 lines
- NN potential, Entem-Machleidt(N3LO), EMN(EKMN, N4LO)
- SRG in momentum space (NN-only)
- effective NN from 3NF
- valence NN interaction $\neq$ effective interaction
- input for No-core shell model (in KSHELL fmt)
- genuine 3NF (only in Jacobi HO form)
※plz use NuHamil (by Takayuki Miyagi@TUDarmstadt)
- HartreeFock ~ 3000 lines
- spherical HF (from snt/snt.bin/memory)
- HFMBPT Energy=> 3rd order, Scaler operator => 2nd order
- Normal ordering w.r.t. target reference, ensemble normal ordering
- IM-SRG ~2700 lines
free space
- IMSRG(2) calculation => g.s. properties
- consistent IMSRG flow of operators with Magnus expansion valence space (VS-IMSRG)
- derive effective interaction for a target model space
- effective operators (only scaler ones for now)
- ShellModel.jl ~5000 lines
- eigenvector continuation (fast emulator of exact wavefunctions)

> ~ 20,000 lines
> (including document)

Do you think it's lengthy?

## Documenter.jl

Docs are automatically generated from docstring (in markdown)


## Workflow w/ GitHub Actions

developer/user make
changes to code/docstring


- see the docs
- play with the code using NuclearToolkit your_own_function()
pull request to GitHub repository


GitHub Actions


- Automatic generation and deployment of the Docs
- Execute test codes with specified OS / version of Julia
avoiding destructive changes/releases


## How to start NuclearToolkit.jl (within 5 min.)

- Installation of Julia

Download Julia binary and add to PATH

- Installation of NuclearToolkit.jl

Download src (recommended)
\$git clone https://github.com/SotaYoshida/NuclearToolkit.jl

Note:
NuclearToolkit.jl was registered as a Julia package.


## Outline

- EC + valence shell model
- A Julia package for nuclear structure calculations


## ShellModel.jl $\quad$ -

NuclearToolkit.jl

- IMSRG-Net: a surrogate model for IMSRG
- Summary


## In-medium Similarity Renormalization Group (IMSRG)

IMSRGflow:

$$
\begin{aligned}
& \text { RGflow: } \\
& \frac{d H(s)}{d s}=[\eta(s), H(s)], \quad H(s)
\end{aligned}
$$

$$
\left[\begin{array}{l}
\text { 0-body: scaler, } \mathrm{E}_{0}(\mathrm{~s})=\langle H(s)\rangle \\
\text { 1-body: }(\mathrm{n}, \mathrm{n}) \text { matrix ( } \mathrm{n}=\# \text { of sps, block structure) } \\
\text { 2-body: }\left(\mathrm{d}_{\mathrm{i}}, \mathrm{~d}_{\mathrm{i}}\right) \text { matrix (i is label of }\{, \mathrm{P}, \mathrm{P}, \mathrm{Tz}) \text { NO2B } \rightarrow \operatorname{MSRG}(2)
\end{array}\right.
$$

$$
H(s=0, H F) \quad \Rightarrow \quad H(s)
$$

under HF reference state,
divide single particle states as

P: hole
Q: particle
S.R.Stroberg et al., Annu. Rev. Nucl. Part. Sci. 2019. 69:307-62 (2019)

$$
\begin{array}{ll}
\text { "off-diagonal" component, P-Q } & \lim _{s \rightarrow \infty} H^{o d}(s)=0 \\
\text { "diagonal" component, P-P, Q-Q } & \lim _{s \rightarrow \infty} H^{d}(s)=H_{\text {eff. }} \rightarrow \text { better } \mathrm{E}_{0}(\mathrm{~s})
\end{array}
$$

$$
\begin{aligned}
& H(s)=U^{\dagger}(s) H U(s) \quad \Leftrightarrow \quad \frac{d H(s)}{d s}=[\eta(s), H(s)], \\
& O(s)=U^{\dagger}(s) O U(s) \quad \Leftrightarrow \quad \frac{d O(s)}{d s}=[\eta(s), O(s)],
\end{aligned}
$$

formulation with Magnus expansion

$$
\begin{aligned}
& U(s)=e^{\Omega(s)} \\
& H(s+d s)=e^{\eta(s) d s} e^{\Omega(s)} H(0) e^{-\Omega(s)} e^{-\eta(s) d s} \\
& e^{\Omega}(s+d s) \equiv e^{\eta(s) d s} e^{\Omega(s)} \\
& \Omega(s+d s)=\Omega(s)+\eta(s) d s+\frac{1}{2}[\eta(s), \Omega(s)] d s+\frac{1}{12}[\Omega(s),[\Omega(s), \eta(s)]] d s+\ldots
\end{aligned}
$$

explicit calculation of unitary transformation via Magnus operator $\Omega$

- nested commutator (BCH formula)
- 1-step is enough (Euler method), nice for memory or I/O
- reuse $U(s)=\exp (\Omega(s)) \rightarrow$ Any operators can be evolved simultaneously


## valence-space IMSRG (VS-IMSRG)

S.R.Stroberg, et al., PRL 118, 032502 (2017)

IMSRG: P: hole, Q: particle


VS-IMSRG: P => valence, $Q$ => q-space

$$
\begin{gathered}
\eta_{a b i j}=\frac{1}{2} \arctan \left(\frac{2 \Gamma_{a b i j}}{f_{a a}+f_{b b}-f_{i i}-f_{j j}+G_{a b i j}+\Delta}\right), \\
G_{a b i j}=\Gamma_{a b a b}+\Gamma_{i j i j}-\left(\Gamma_{a i a i}+\Gamma_{b j b j}+[a \leftrightarrow b]\right) .
\end{gathered}
$$

denominator Delta: prescription for multi-shell interaction

$$
\text { see T. Miyagi et.al., PRC 102, } 034320 \text { (2020) }
$$ see T. Miyagi et.al., PRC 102, 034320 (2020)


$H v(s \rightarrow \infty)=$ Effective interactions for a valence space
( $Ж$ core is still considered in VS-IMSRG calculations, this figure is edited (by me) to focus on v-space)

## Surrogate models for IMSRG/VS-IMSRG...

One-body Hamiltonians <alVIb>
Two-body Hamiltonians <abIVIcd>_\{JPTz\}
Three-body ... (ignored in IMSRG(2) truncation)

$111\left[A^{(1)}, B^{(1)}\right]^{(1)}=\sum_{i j} \sum_{a}: a_{i}^{\dagger} a_{j}:\left(A_{i a} B_{a j}-B_{i a} A_{a j}\right)$
$110\left[A^{(1)}, B^{(1)}\right]^{(0)}=\sum_{i j} A_{i j} B_{j i}\left(n_{i}-n_{j}\right)$
122 $\left[A^{(1)}, B^{(2)}\right]^{(2)}=\frac{1}{4} \sum_{i j k l} \sum_{a}: a_{i}^{\dagger} a_{j}^{\dagger} a_{l} a_{k}:\left\{\left(1-P_{i j}\right) A_{i a} B_{a j k l}-\left(1-P_{k l}\right) A_{a k} B_{i j a l}\right\}$

121
$\left[A^{(1)}, B^{(2)}\right]^{(1)}=\sum_{i j} \sum_{a b}: a_{i}^{\dagger} a_{j}:\left\{\left(n_{a}-n_{b}\right) A_{a b} B_{b i a j}\right\}$
$222\left[A^{(2)}, B^{(2)}\right]^{(2)}=\frac{1}{4} \sum_{i j k l} \sum_{a b}: a_{i}^{\dagger} a_{j}^{\dagger} a_{l} a_{k}:\left\{\frac{1}{2}\left(A_{j a b b} B_{a b k l}-B_{i j a b} A_{a b k l}\right)\left(1-n_{a}-n_{b}\right)\right.$

$$
\left.+\left(n_{a}-n_{b}\right)\left(1-P_{i j}-P_{k l}+P_{i j} P_{k l}\right) A_{\text {aibk }} B_{b j a l}\right\}
$$

$221 \quad\left[A^{(2)}, B^{(2)}\right]^{(1)}=\frac{1}{2} \sum_{i j} \sum_{a b c}: a_{i}^{\dagger} a_{j}^{\dagger}:\left(A_{c i a b} B_{a b c j}-B_{c i a b} A_{a b j}\right)\left(\bar{n}_{a} \bar{n}_{b} n_{c}+n_{a} n_{b} \bar{n}_{c}\right)$
$220 \quad\left[A^{(2)}, B^{(2)}\right]^{(0)}=\frac{1}{4} \sum_{i j k l} n_{i} n_{j} \bar{n}_{k} \bar{n}_{l}\left(A_{i j k l} B_{k l i j}-B_{i j k l} A_{k l i j}\right)$

How can we accelerate...

c.f. talk by

- Jacob Davison, TRIUMF workshop 2023
- H. Hergert, INT Program 21r-lc "Tensor Networks in Many Body and Quantum Field Theory", 2023


## IMSRG-Net: data-driven approach to solve IMSRG

One may expect... "If we feed neural networks many data, they will learn underlying law".
It is usually not the case. We need some "inductive biases" or more constraints.

IMSRG-Net: A machine-learning based solver for In-Medium Similarity Renormalization Group
Sota Yoshida ${ }^{1, *}$
${ }^{1}$ Institute for Promotion of Higher Academic Education, Utsunomiya University, Mine, Utsunomiya, 321-8505, Japan

hopefully, it will be available on arXiv\&GitHub within a couple of days weeks !!

Aim is to predict $E(s)$ or $O(s)$ at $s=\infty$ giving converged $\operatorname{IMSRG}(2)$ results


Upper panels: g.s. energy, dotted $=I M S R G(2)$, solid $=I M S R G-$ Net using 10 points around $s=20$ Lower panels: energy diff., solid = IMSRG-Net, dashed = naïve(?) ANN

Symbols: s = 20 or the point giving converged IMSRG(2)


## prediction errors of IMSRG-Net are much smaller than the residuals

to be gained through the rest IMSRG flow (s = from 20 to $\infty$ )

## Results: valence space effective interactions

IMSRG-Net for a valence space

- same architecture and training strategy
- trained $w /$ earlier VS-IMSRG(2) flow

shell-model results agree in typically $\leqq 1 \mathrm{keV}$ level !!
※Some show ~10 keV error, attributed not to IMSRG-Net, but numerical instability of VS-IMSRG


## Summary

## EC + (valence) shell model

for optimization or UQ for effective interactions
better sampling scheme is needed go beyond sd shell


SY and Noritaka Shimizu, PTEP 2022 053D02 (2022).

NuclearToolkit,jl | https://github.com/SotaYoshida/NuclearToolkit.jl |
| :--- |
| SY, Journal of Open Source Software, 7(79), 4694,(2022) |

Toolkit covering chiral potentials, IMSRG, valence Cl , etc.

Any feedbacks and contributions are welcomed!
IMSRG-Net Available soon


## Transition densities

The one-body transition densities (OBTDs) is given as

$$
\begin{equation*}
\operatorname{OBTD}\left(f i ; j_{a} j_{b} ; \lambda\right) \equiv \frac{1}{\sqrt{2 \lambda+1}}\left\langle\psi_{J_{f} M_{f}}\left\|\left[c_{j_{a}}^{\dagger} \otimes \tilde{c}_{j_{b}}\right]^{(\lambda)}\right\| \psi_{J_{i} M_{i}}\right\rangle \tag{A1}
\end{equation*}
$$

where we introduced $\tilde{c}_{j_{b}} \equiv(-1)^{j_{b}-m_{b}} c_{j_{b}}$, and $\langle\|\cdot\|\rangle$ means taking the so-called reduced matrix element, and the notation $[\cdot \otimes \cdot]^{(\lambda)}$ is for the rank- $\lambda$ irreducible tensor operators. For more details on the tensor algebra, see e.g., [1, 2]. Since we are interested in the $\lambda=0$ (scaler in terms of irreducible tensor operator) and the diagonal ( $f=i, J_{f}=J_{i}, M_{f}=M_{i}$ ) component, which contributes to $\tilde{H}$ in Eq. (13) in the main text. $\overline{\text { OBTD }}$ for the $k$-th single particle state is defined as

$$
\begin{equation*}
\overline{\mathrm{OBTD}}_{k} \equiv \sqrt{\frac{2 j_{k}+1}{2 J_{i}+1}} \mathrm{OBTD}\left(i i ; j_{k} j_{k} ; 0\right)=\left\langle\psi_{J_{i} M_{i}}\left\|N_{k}\right\| \psi_{J_{i} M_{i}}\right\rangle \tag{A2}
\end{equation*}
$$

where $N_{k}$ is the occupation number of the $k$-th orbital, and the factor $\sqrt{\left(2 j_{k}+1\right) /\left(2 J_{i}+1\right)}$ is introduced to make $\overline{\mathrm{OBTD}}_{k}$ identical with the occupation number of $k$-th orbital.

The two-body transition densities (TBTDs) are defined as

$$
\begin{align*}
& \operatorname{TBTD}\left(f i ; a b c d ; J_{a b} J_{c d} ; \lambda\right) \\
& \equiv \frac{1}{\sqrt{2 \lambda+1}}\left\langle\psi_{J_{f} M_{f}}\left\|\left[A^{\dagger}\left(a b ; J_{a b} M_{a b}\right) \otimes \tilde{A}\left(c d ; J_{c d} M_{c d}\right)\right]^{(\lambda)}\right\| \psi_{J_{i} M_{i}}\right\rangle  \tag{A3}\\
& \tilde{A}\left(c d ; J_{c d} M_{c d}\right) \equiv(-1)^{J_{c d}+M_{c d}} A\left(j_{c} j_{d} ; J_{c d}-M_{c d}\right) \tag{A4}
\end{align*}
$$

where $A^{\dagger}$ and $A$ are the same as in Eqs. (5-6).For the factorization in Eq. (13). the $\overline{\mathrm{TBTD}}$ for a two-body interaction $V_{J}(a b c d)$ is defined as follows

$$
\begin{equation*}
\overline{\mathrm{TBTD}} \equiv \sqrt{\frac{2 J_{a b}+1}{2 J_{i}+1}} \operatorname{TBTD}\left(f i ; a b c d ; J_{a b} J_{a b} ; 0\right) \tag{A5}
\end{equation*}
$$

where only the term with $\lambda=0, J_{c d}=J_{a b}, M_{c d}=M_{a b}, J_{f}=J_{i}, M_{f}=M_{i}$ is needed due to the symmetry.

## $\mu \& Q$ moments

magnetic moments \& quadrupole moments for the lowest states


## Why Julia?

Since 2012:
Becoming popular in physics, DS, Machine Learning, etc.

- MIT LICENSE
- Multiple dispatch
- Oynamically typed
- JIT(Just-In-Time) compilation by LLVM
- Fast as C++/Fortran
- Macros like Lisp
- Package manager
- Easy to call Python, C, Fortran, etc.
$\rightarrow$ High readability and productivity like Python
$\rightarrow$ High performance like C++/Fortran
If you are "greedy", you should consider to use Julia ;)


## NuclearToolkit.jl: How to start

## Home

## NuclearToolkit.jl

## Home

Installation and example

- Package features

Building blocks
Optional parameters
Issues/Pull requests
HowToUse
FileFormat
Optional parameters
Contributing to NuclearToolkit
References
ChiEFTint
HartreeFock
IMSRG
Shell Model

## NuclearToolkit

Julia Toolkit for nuclear structure calculations

## Installation and example

First, prepare Julia environment $\mathrm{v}>=$ 1.7.0.
Second, add the package in Pkg mode
julia>]add NuclearToolkit
You can try the package by 1. or 2.:

1. clone the repository and run test/sample_script. jl in the repository like $\$ \mathrm{julia}-\mathrm{t} 8$ sample_script.jl This performs:

- calculating NN potential from Chiral EFT
- HFMBPT(3) and IMSRG/VS-IMSRG(2) calculation with it
- shell-model calculations with the effective interaction derived by VS-IMSRG

An expected results using the latest dev branch can be found here.
2. Try sample codes in HowToUse page.

Please make sure to use the latest version of the package. Update can be done with
julia>]up NuclearToolkit

In the Julia REPL, you can see the UUIDs and versions of the installed packages
julia>using Pkg
julia>Pkg.status()

## Package features

