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QCD = underlying theory of strong interaction

EFT = effective description in terms of hadrons

degrees of freedom depend on resolution scale

Nuclear theory tower
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Hammer, SK, van Kolck, RMP 92 025004 (2020)

Papenbrock, NPA 852 36 (2011); ...

Nuclear effective field theories
choose degrees of freedom approriate to energy scale

only restricted by symmetry, ordered by power counting

 ab initio predictions with fully quantified uncertainties

 
 
 
 
 
 
 
 
 
 

degrees of freedom here: nucleons (and clusters thereof)

even more effective d.o.f.: rotations, vibrations

⇝

Chiral EFT

Halo/Cluster EFT

Pionless 
EFT
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Outline
  Introduction ✔

Emulators

Resummation

Outlook
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Part I
Efficient Emulators via Eigenvector Continuation

p. 5



Weinberg (90); Rho (91); Ordoñez + van Kolck (92); van Kolck (93); Epelbaum et al. (98); Entem + Machleidt (03); ...

Epelbaum et al., EPJA 51 53 (2015)

Hebeler et al., PRC 91 044001 (2015)

Chiral interactions
Many remarkable results based on chiral potentials

Chiral EFT: expand in , derive potential (2N, 3N, ...)

 

However...

potential expansion not necessarily consistent with EFT paradigm

typically needs high orders  rather large number of parameters

(Q ∼ )/Mπ MQCD

⇝

e.g. 14 (two-body) + 2 (three-body) at third order► 
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talk by Dean

Frame et al., PRL 121 032501 (2018)

Bonilla et al., PRC 106 054322; Melendez et al., JPG 49 102001        
talk by Pablo on Thursday, talk by Kyle on Friday        

Procedure

calculate ,  in "easy" regime

solve generalized eigenvalue problem 

particular case of a reduced basis method

Martin Grandjean, via Wikimedia Commons (CC-AS 3.0)  

Recap
Recall the general EC idea as presented earlier today...

Scenario

consider physical state (eigenvector) in a large space

parametric dependence of Hamiltonian  traces only small subspace

Prerequisite

smooth dependence of  on 

enables analytic continuation of  from  to 

 
 
 
 
 
 
 
 

H(c)

H(c) c

|ψ(c)⟩ ceasy ctarget

|ψ( )⟩ci i = 1, … NEC

H|ψ⟩ = λN |ψ⟩

► = ⟨ |H( )| ⟩Hij ψi ctarget ψj

► = ⟨ | ⟩Nij ψi ψj
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statistical fitting gives posteriors for LECs

LEC posteriors propagate to observables

need to sample a large number of calculations

Need for emulators
1. Fitting of LECs to few- and many-body observables

common practice now to use  to constrain nuclear forces, e.g.:

fitting needs many calculations with different parameters  

2. Propagation of uncertainties

A > 3

Shirokov et al., PLB 644 33 (2007); Ekström et al., PRC 91 051301 (2015); Elhatisari et al., PRL 117 132501 (2016)

JISP16, NNLOsat, -  scattering► α α

Wesolowski et al., JPG 46 045102 (2019)

typically achieved via Bayesian statistics► 

expensive already in few-body sector► 

typically not doable for many-body problems!► 
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Exact calculations can be
prohibitively expensive!
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Ekström et al., JPG 46 095101 (2019)

Emulators
an emulator (also called surrogate model) can help overcome this problem!

Options for emulator construction

Multi-dimensional Polynomial Interpolation

Gaussian Process (GP)

Eigenvector Continuation

simplest possible choice► 

generally too simple, no way to assess uncertainty► 

statistical modeling, iteratively improvable► 

interpolation with inherent uncertainty estimate► 

typically fast, efficient, and accurate!► 
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Frame et al., PRL 121 032501 (2018)

Hamiltonian parameter spaces
original EC: single parameter, 

consider a Hamiltonian depending on several parameters:

H = H(c)

H = + V = +H0 H0 ∑
k=1

d

ckVk (1)

in particular,  can be a chiral potential with LECs ► V ck

Hamiltonian is element of -dimensional parameter space► d

convenient notation: ► = {c ⃗  ck}dk=1

typical for  calculation: 14 two-body LECs + 2 three-body LECs► O( )Q3
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Weinberg (90); Rho (91); Ordoñez + van Kolck (92); van Kolck (93); Epelbaum et al. (98); Entem + Machleidt (03); ...

Epelbaum et al., EPJA 51 53 (2015)

Hebeler et al., PRC 91 044001 (2015)
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Frame et al., PRL 121 032501 (2018)

SK, A. Ekström, K. Hebeler, D. Lee, A. Schwenk, PLB 810 135814 (2020)

Hamiltonian parameter spaces
original EC: single parameter, 

consider a Hamiltonian depending on several parameters:

Generalized EC
EC construction is straightforward to generalize to this case:

simply replace  in construction

the sum in Eq. (1) can be carried out in small (dimension = ) space!

H = H(c)

H = + V = +H0 H0 ∑
k=1

d

ckVk (1)

in particular,  can be a chiral potential with LECs ► V ck

Hamiltonian is element of -dimensional parameter space► d

convenient notation: ► = {c ⃗  ck}dk=1

typical for  calculation: 14 two-body LECs + 2 three-body LECs► O( )Q3

→ci c ⃗ i
 for ► | ⟩ = |ψ( )⟩ψi c ⃗ i i = 1, ⋅ ⋅ NEC

, ► = ⟨ |H( )| ⟩Hij ψi c ⃗ target ψj = ⟨ | ⟩Nij ψi ψj

NEC

this permits an offline/online decomposition of the problem► 
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Interpolation and extrapolation
Hypercubic sampling

want to cover parameter space efficiently with training set 

Latin Hypercube Sampling can generate near random sample

for examples that follow:

S = { }c ⃗ 
i

sample each component ► ∈ [−2, 2]ck

Ekström et al., PRC 91 051301 (2015)vary  LECs, fix the rest at NNLOsat point► d
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Pbroks13, Wikimedia Commons                                    

Interpolation and extrapolation
Hypercubic sampling

want to cover parameter space efficiently with training set 

Latin Hypercube Sampling can generate near random sample

for examples that follow:

Convex combinations

distinguish interpolation and extrapolation target points

interpolation region is convex hull of the 

extrapolation for 

EC emulators can handle both!

 

S = { }c ⃗ 
i

sample each component ► ∈ [−2, 2]ck

Ekström et al., PRC 91 051301 (2015)vary  LECs, fix the rest at NNLOsat point► d

{ }c ⃗ 
i

 with  and ► conv(S) = ∑
i
αic ⃗ i ≥ 0αi = 1∑

i
αi

∉ conv(S)c ⃗ target
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SK, A. Ekström, K. Hebeler, D. Lee, A. Schwenk, PLB 810 135814 (2020)

Ekström implementation of Navratil et al., PRC 61 044001 (2000)

Performance comparison: energy
Cross validation

compare emulation prediction agains exact result for set 

underlying calculation: Jacobi NCSM

observable: 4He ground-state energy

transparent symbols indicate extrapolation targets

{c ⃗ target,j}N
j=1
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SK, A. Ekström, K. Hebeler, D. Lee, A. Schwenk, PLB 810 135814 (2020)
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SK, A. Ekström, K. Hebeler, D. Lee, A. Schwenk, PLB 810 135814 (2020)

Performance comparison: radius
Operator evaluation

generalized eigenvalue problem

EC gives not only energy, but also a continued wavefunction

straightforward (and inexpensive) to evaluate arbitrary operators

p. 19



SK, A. Ekström, K. Hebeler, D. Lee, A. Schwenk, PLB 810 135814 (2020)

EC uncertainty estimate
EC is a variational method

Bootstrap approach

construct a training data set larger than necessary

sample different training data sets, take mean and standard deviation

projection of Hamiltonian onto a subspace► 

dimension of this subspace determines the accuracy► 

Sarkar+Lee, PRL 126 032501 (2021)
excellent convergence properties► 
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Application: correlation analysis
take  LEC samples 10% around  point, correlate different observables

already this kind of analysis would be very expensive without EC!

10
4

NNLOsat

known energy-radius correlation well reflected► 

2H radius only gives lower bound for 4He radius► 
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EC emulators have since been
extended in various ways

Let's look at a few!
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Subspace-projected coupled cluster method
coupled cluster (CC) is a well established and powerful many-body technique

Application: Global Sensitivity Analysis

study sensitivity of 16O ground state to individual LECs

plot based on >1 million emulator evaluations!

recent extension to nuclear matter calculations Jiang et al., arXiv:2212.13216

based on non-unitary similarity transformation of the Hamiltonian► 

( ) = H( )H̄ α⃗  e−T( )α⃗ 
α⃗  eT( )α⃗ 

the cluster operator  is truncated in the space of particle-whole excitations► T ( )α⃗ 

Ekström+Hagen, PRL 123 252501 (2019)talk by Gaute tomorrow   

eigenvector continuation was developed for this non-Hermitian scenario► 
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Furnstahl et al., PLB 809 135719 (2020)

Scattering observables
different methods have been developed to apply EC to scattering calculations

this is particularly relevant for LEC fitting, that is primarily based on scattering data

EC via Kohn variational principle

consider Hamiltonian , training points 

trial wave function  for energy 

the condition that

should be stationary yields solutions for the 

H = H(θ) θi

| ⟩ = ( )⟩ψtrial ∑i ciψE θi E > 0

β [| ⟩] ≡ − 2μ⟨| |H(θ) − E| ⟩ψtrial τtrial ψtrial ψtrial

ci
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Furnstahl et al., PLB 809 135719 (2020)

Melendez et al., PLB 821 136608 (2021)

talk by Xilin on Thursday

Zhang+Furnstahl, PRC 105 064004 (2022)

Garcia et al., PRC 107 054001 (2023)

Drischler et al., PLB 821 13677 (2021)talk by Christian tomorrow 

Scattering observables
different methods have been developed to apply EC to scattering calculations

this is particularly relevant for LEC fitting, that is primarily based on scattering data

EC via Kohn variational principle

consider Hamiltonian , training points 

trial wave function  for energy 

the condition that

should be stationary yields solutions for the 

Extensions and generalizations

Newton's variational principle makes it possible to use trial scattering matrices

instead of trial wave functions

the approach has been extended to three-body scattering

a momentum-space formulation makes it possible to

mitigate problems due to so-called Kohn anomalies

alternative strategy: simultaneous evaluation of multiple boundary conditions

H = H(θ) θi

| ⟩ = ( )⟩ψtrial ∑i ciψE θi E > 0

β [| ⟩] ≡ − 2μ⟨| |H(θ) − E| ⟩ψtrial τtrial ψtrial ψtrial

ci
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Yapa, SK, Fossez, 2303.06139 [nucl-th]

talk by Nuwan on Friday

along the rotated contour, resonance

wave functions become normalizable

formalism changes the inner product!

eigenvector continuation has been

extended to this scenario

Resonances
many states in nuclear physics are resonances

in stationary scattering theory, resonances are described as generalized eigenstates

Resonance continuation

one way to circumvent this problem is the complex scaling method:

i.e., metastable states with a finite lifetime to decay► 

S-matrix poles at comples energies  (lifetime )► E = − iΓ/2ER ∼ 1/Γ

wave functions are not normalizable (exponentially growing in -space)► r

r → r   ,    p → p                                                                           eiϕ e−iϕ
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Bai+Ren, PRC 103 014612 (2021); Bai, PRC 106 024611 (2022)

More applications and extensions
R-matrix formalism for fusion observables

use of calculable R-matrix formalism with boundary condition to simulate absorption

EC applied based on solutions of the Bloch-Schrödinger equation

based on previously mentioned EC scattering developments► 
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Bai+Ren, PRC 103 014612 (2021); Bai, PRC 106 024611 (2022)

Anderson et al., PRC 106 L031302 (2022)

More applications and extensions
R-matrix formalism for fusion observables

use of calculable R-matrix formalism with boundary condition to simulate absorption

EC applied based on solutions of the Bloch-Schrödinger equation

Single-neutron spectra of heavy nuclei

spherical mean-field Hamiltonian tuned to reproduce an energy density functional

prescription to train an emulator that discribes simultaneously all spherical nuclei

based on previously mentioned EC scattering developments► 
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Bai+Ren, PRC 103 014612 (2021); Bai, PRC 106 024611 (2022)

Anderson et al., PRC 106 L031302 (2022)

Yoshida+Shimizu, PTEP 2022 053D02talk by Yoshida-san tomorrow   

Becker et al., FP 11 1064601

More applications and extensions
R-matrix formalism for fusion observables

use of calculable R-matrix formalism with boundary condition to simulate absorption

EC applied based on solutions of the Bloch-Schrödinger equation

Single-neutron spectra of heavy nuclei

spherical mean-field Hamiltonian tuned to reproduce an energy density functional

prescription to train an emulator that discribes simultaneously all spherical nuclei

More structure emulators

use EC as emulator and Lanczos preprocessor for shell-model calculations

collectivity and clustering via symmetry-adapted NCSM

based on previously mentioned EC scattering developments► 
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Bai+Ren, PRC 103 014612 (2021); Bai, PRC 106 024611 (2022)

Anderson et al., PRC 106 L031302 (2022)

Yoshida+Shimizu, PTEP 2022 053D02talk by Yoshida-san tomorrow   

Becker et al., FP 11 1064601

Companys Franzke et al., arXiv:2302.08373

talk by Margarida on Friday

More applications and extensions
R-matrix formalism for fusion observables

use of calculable R-matrix formalism with boundary condition to simulate absorption

EC applied based on solutions of the Bloch-Schrödinger equation

Single-neutron spectra of heavy nuclei

spherical mean-field Hamiltonian tuned to reproduce an energy density functional

prescription to train an emulator that discribes simultaneously all spherical nuclei

More structure emulators

use EC as emulator and Lanczos preprocessor for shell-model calculations

collectivity and clustering via symmetry-adapted NCSM

Pairing Hamiltonian

exactly solvable model for nuclear supefluidity

also uses EC as a resummation tool  next part of this talk

based on previously mentioned EC scattering developments► 

→
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Part II
Accurate Resummation via Eigenvector Continuation
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Model-space perturbation theory
consider a Hamiltonian diagonalized in a (small) subspace

 
factor out large number  from diagonal entries of 

perturbative expansion for lowest eigenvalue and vector

H = ( )
Hϕϕ

Hψϕ

Hϕψ

Hψψ

= dimN0 Hϕϕ ≪ dim H = N1

= diag({ )Hϕϕ λi}i=1,⋅⋅N0

X Hψψ

|ψ⟩ = ( | ⟩ + | ⟩) , E =∑
n=0

∞

X−n ∑
i=1

N0

α
(n)
i ϕi ∑

j= +1N0

N1

α
(n)
j ψj ∑

n=0

∞

X−nE (n)

matching powers gives coupled recursive expressions for  and ► α
(n)
j E (n)
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Model-space perturbation theory
Diagonalizing a small space can still be too expensive...

p. 29



Model-space perturbation theory
Diagonalizing a small space can still be too expensive...

actually, a partial diagonalization per se is still doable (  Lanczos)

but transforming the Hamiltonian is problematic...

cost for adjusting off-diagonal elements is significant

→

scales with size of the full (large) space► 
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Model-space perturbation theory
Simplest case 

start from one-dimensional space ( )

this is equivalent to a simple (many-body) perturbation theory expansion

= 0Nmax

i.e., directly use the given Hamiltonian► 

: orthonormal basis,  ► | ⟩ = | ⟩H0 Φ(0) E (0) Φ(0) H(c) = + cH0 H1

, want  ► | (c)⟩ = | ⟩ΨP ∑
p=0

P

cp Φ(p) c = 1, P → ∞   ⇝  E = + + ⋯E (0) E (1)
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Entem et al., PRC 96 024004 (2017)

A. Tichai, private communication

Failure of perturbation theory
3H NCSM calculation,  model space

EMN N3LO 500 interaction, plus SRG evolution

perturbation theory does not converge!

note: the situation can be somewhat improved with better reference states

= 12Nmax

however, interaction clearly "more perturbative" for small SRG ► λ

convergence perhaps for very small ► λ
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Resummation via eigenvector continuation
span space by the wavefunction corrections 

evaluate Hamiltonian between these states

i.e., use energy and wavefunction information

this uses the same input as PT, but now the series converges!

| ⟩Φ(p)

rapid convergence to the correct result!► 

smooth behavior, significant oscillations are gone► 
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Demol, SK, et al., PRC 101 041302(R) (2020)

Continued perturbation theory
let's recap what exactly we have done:

General setup

, EC-extrapolate to 

perturbation theory converges for sufficiently small 

 
 
 
 

Eigenvector continuation

assume we have eigenvetors for some set  of such 

linear combinations of perturbative corrections up to order 

we can instead use the perturbative corrections directly as EC basis!

H = + cH0 H1 c = 1

c

{ci}
NEC

i=1 c

P
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Demol et al., Annals Phys. 424 168358 (2021)

talk by Pepijn on Thursday

Application to larger systems
Consider 18O in Bogoliubov MBPT as example

break particle number conservation in reference state

restore average particle number to target value at each order

perturbation theory under constraint

for proof of principle study, consider a very limited model space

recursive theme makes it possible to go high orders 

one-body cutoff at ► = 2n + l = 4emax

symmetry-broken Hartree-Fock-Bogoliubov reference state► 

two-, four-, and selected six-quasiparticle excitations on top► 

P

realistic in practice with larger model spaces: ► P ≤ 3
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Demol, SK, et al., PRC 101 041302(R) (2020)

Companys Franzke et al., arXiv:2302.08373talk by Margarida on Friday   

Application to larger systems
Results

EM500 interaction

SRG evolved to 

full CI calculation as reference

compare various methods

 

direct perturbation theory clearly diverges

EC is accurate and reliable

Padé becomes erratic at high orders  

 
recent further application: EC resummation for pairing Hamiltonian

λ = 2.0fm
−1

simple perturbation theory► 

eigenvector continuation► 

Padé resummation► 
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Outlook
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Lüscher, CMP 104 177 (1986); ...

Wiese, NPB (Proc. Suppl.) 9 609 (1989), Klos, SK et al., PRC 98 034004 (2018)

talk by Nuwan on Friday

 
 
 
 
 
 

          three-neutron calculation  
 
 
 
 
 
                       

Finite-volume eigenvector continuation
finite-volume spectra encode infinite-volume properties

resonances can be identified from avoided crossings in finite-volume spectra

to find/exclude low-energy resonances, one needs many calculations in large boxes

this comes with a substantial numerical cost

finite-volume eigenvector continuation can be used to mitigate this

extrapolation/interpolation across substantial volume ranges► 

parametric dependence directly in basis► 

          →             ≫L1 L2 L1
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cf. also talk by Andreas earlier today

Francis et al., arXiv:2209.10571

quantum-classical hybrid method

Hamiltonian projected to a smaller subspace

ideal scenario to apply EC!

 
 
 

Quantum computing and chemistry
EC has found new exciting applications outside nuclear physics

Subspace diagonalization

 
extension to space of unitary matrices that

generate states

► 
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cf. also talk by Andreas earlier today

Francis et al., arXiv:2209.10571

quantum-classical hybrid method

Hamiltonian projected to a smaller subspace

ideal scenario to apply EC!

 
 
 

Mejuto-Zaera+Kemper, arXiv:2305.00060

Quantum computing and chemistry
EC has found new exciting applications outside nuclear physics

Subspace diagonalization

 

Potential energy surfaces

application to full configuration interaction of molecular orbitals

involves inner products between separate sets of atomic orbitals

accurate results for pot. energy surfaces with moderate number of training points

extension to space of unitary matrices that

generate states

► 

similar to basis matching in FVEC!► 

cf. also Companys Franzke et al., arXiv:2108.02824demonstrates access to excited states► 
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Summary and outlook
Eigenvector continuation as efficient emulator

highly competitive, accurate and efficient

can both interpolate and extrapolate from training sets

possible to provide extrapolation uncertainty estimates

broadly applied to nuclear structure and reactions

Eigenvector continuation as resummation tool

possible to effectively tame divergent expansion coefficients

interesting as computational method

applications to finite nuclei and nuclear matter models

More exciting applications and surely more to come!
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Summary and outlook
Eigenvector continuation as efficient emulator

highly competitive, accurate and efficient

can both interpolate and extrapolate from training sets
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broadly applied to nuclear structure and reactions

Eigenvector continuation as resummation tool

possible to effectively tame divergent expansion coefficients
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More exciting applications and surely more to come!

***

Thanks very much for your attention!
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Backup slides
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Example

, 

max. speed-up factor 

NCSM EC emulator: computational cost
setup of EC subspace basis

calculation of norm matrix:  flops

reduction of Hamiltonian parts:  flops

cost per emulated sample point

: model-space dim., : training data, : samples, : matrix-vector prod. (Lanczos)

combination of Hamiltonian for given , Lanczos diagonalization► c ⃗ i

total cost =  flops► × (2n + )M
2

Nmv

2 Mn
2

(d + 1) × (2n + 2 M)M
2

n
2

combination of Hamiltonian parts in small space:  flops► 2dn2

orthogonalization + diagonalization:  flops► 26 /3 + O( )n3 n2

M = M( )Nmax n N Nmv

= 16Nmax

d = 16 = 64NEC

∼ 600
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Complete correlation analysis
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Reverse SRG Evolution
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R. Furnstahl, HUGS 2014 lecture slides

Bogner et al., PPNP 65 94 (2010) Hebeler+Furnstahl, RPP 76 126301 (2013)

Similarity Renormalization Group (SRG)
nuclear potentials (from EFT or otherwise) can be difficult to handle numerically

unitary transformation of Hamiltonian:  -decouple low

and high momenta at scale 

interaction becomes more amenable to numerical methods...

...at the cost of induced many-body forces!

H → = H ⇝H
λ

U
λ

U
†

λ
Vλ

λ
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SRG evolution = ODE solving
 , 

ordinary differential equation ensures smooth parametric dependence

 SRG evolution satisfies EC prerequisites!

= = [[G, ], ]
dHs

ds

dVs

ds
Hs Hs λ = 1/s

1/4

↪
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Entem et al., PRC 96 024004 (2017); A. Ekström implementation of Navratil et al., PRC 61 044001 (2000)

Reverse SRG
Consider A = 3,4 test cases

EMN N3LO(500) interaction, Jacobi NCSM calculation
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Entem et al., PRC 96 024004 (2017); A. Ekström implementation of Navratil et al., PRC 61 044001 (2000)

 

Not even induced 3N forces kept here!

Reverse SRG
Consider A = 3,4 test cases

EMN N3LO(500) interaction, Jacobi NCSM calculation

 
possible to extrapolate back from small  to bare interaction

information about missing many-body forces in wavefunctions

λ

not in any single wavefunction, but in how they change► 
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Mind the gap
Still no free lunch, however...

EC is a variational method

cannot go beyond what bare interaction gives in same model space!
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