Uses of eigenvector continuation in nuclear structure and reaction theory

Sebastian König

ESNT Workshop: Eigenvector continuation and related techniques in nuclear structure and reaction theory

CEA Saclay, France, May 30, 2023

Nuclear theory tower

- **QCD** = underlying theory of strong interaction
- **EFT** = effective description in terms of hadrons
- degrees of freedom depend on resolution scale

Nuclear effective field theories

- choose degrees of freedom approriate to energy scale
- only restricted by symmetry, ordered by power counting

Hammer, SK, van Kolck, RMP 92 025004 (2020)

• ~> ab initio predictions with fully quantified uncertainties

- degrees of freedom here: nucleons (and clusters thereof)
- even more effective d.o.f.: rotations, vibrations

Papenbrock, NPA 852 36 (2011); ...

Outline

Introduction <

Emulators

Resummation

Outlook

Part I

Efficient Emulators via Eigenvector Continuation

Chiral interactions

Many remarkable results based on chiral potentials

• Chiral EFT: expand in $(Q\sim M_\pi)/M_{
m QCD}$, derive potential (2N, 3N, ...)

Weinberg (90); Rho (91); Ordoñez + van Kolck (92); van Kolck (93); Epelbaum et al. (98); Entem + Machleidt (03); ...

Hebeler et al., PRC 91 044001 (2015)

However...

- potential expansion not necessarily consistent with EFT paradigm
- typically needs high orders \rightsquigarrow rather large number of parameters
 - e.g. 14 (two-body) + 2 (three-body) at third order

Recap

Recall the general EC idea as presented earlier today...

Scenario

- consider physical state (eigenvector) in a large space
- parametric dependence of Hamiltonian H(c) traces only small subspace

Prerequisite

- smooth dependence of H(c) on c
- enables analytic continuation of $|\psi(c)
 angle$ from c_{easy} to c_{target}

Procedure

- calculate $|\psi(c_i)\rangle$, $i = 1, \dots N_{\rm EC}$ in "easy" regime
- solve generalized eigenvalue problem $H|\psi
 angle=\lambda N|\psi
 angle$
 - $H_{ij} = \langle \psi_i | H(c_{ ext{target}}) | \psi_j
 angle$
 - $\blacktriangleright N_{ij} = \langle \psi_i | \psi_j \rangle$
- particular case of a reduced basis method

Bonilla et al., PRC 106 054322; Melendez et al., JPG 49 102001 talk by Pablo on Thursday, talk by Kyle on Friday

Martin Grandjean, via Wikimedia Commons (CC-AS 3.0)

talk by Dean

Need for emulators

1. Fitting of LECs to few- and many-body observables

- common practice now to use A>3 to constrain nuclear forces, e.g.:
 - JISP16, NNLO_{sat}, α - α scattering

Shirokov et al., PLB 644 33 (2007); Ekström et al., PRC 91 051301 (2015); Elhatisari et al., PRL 117 132501 (2016)

• fitting needs many calculations with different parameters

2. Propagation of uncertainties

- statistical fitting gives posteriors for LECs
- LEC posteriors propagate to observables
 - typically achieved via Bayesian statistics
 Wesolowski et al., JPG 46 045102 (2019)
- need to sample a large number of calculations
 - expensive already in few-body sector
 - typically not doable for many-body problems!

Exact calculations can be prohibitively expensive!

Emulators

• an emulator (also called surrogate model) can help overcome this problem!

Options for emulator construction

- Multi-dimensional Polynomial Interpolation
 - simplest possible choice
 - generally too simple, no way to assess uncertainty
- Gaussian Process (GP)

Ekström et al., JPG **46** 095101 (2019)

- statistical modeling, iteratively improvable
- interpolation with inherent uncertainty estimate
- Eigenvector Continuation
 - ► typically fast, efficient, and accurate!

Hamiltonian parameter spaces

• original EC: single parameter, H = H(c)

• consider a Hamiltonian depending on several parameters:

$$H = H_0 + V = H_0 + \sum_{k=1}^d c_k V_k$$
 (1)

- ▶ in particular, V can be a chiral potential with LECs c_k
- Hamiltonian is element of d-dimensional parameter space
- convenient notation: $ec{c} = \{c_k\}_{k=1}^d$
- ▶ typical for $\mathcal{O}(Q^3)$ calculation: 14 two-body LECs + 2 three-body LECs

Frame et al., PRL **121** 032501 (2018)

Chiral interactions

Many remarkable results based on chiral potentials

• Chiral EFT: expand in $(Q\sim M_\pi)/M_{
m QCD}$, derive potential (2N, 3N, ...)

Weinberg (90); Rho (91); Ordoñez + van Kolck (92); van Kolck (93); Epelbaum et al. (98); Entem + Machleidt (03); ...

Hebeler et al., PRC 91 044001 (2015)

However...

- potential expansion not necessarily consistent with EFT paradigm
- typically needs high orders \rightsquigarrow rather large number of parameters
 - e.g. 14 (two-body) + 2 (three-body) at third order

Hamiltonian parameter spaces

• original EC: single parameter, H = H(c)

• consider a Hamiltonian depending on several parameters:

$$H = H_0 + V = H_0 + \sum_{k=1}^d c_k V_k$$
 (1)

- ▶ in particular, V can be a chiral potential with LECs c_k
- Hamiltonian is element of d-dimensional parameter space
- convenient notation: $ec{c} = \{c_k\}_{k=1}^d$
- ▶ typical for $\mathcal{O}(Q^3)$ calculation: 14 two-body LECs + 2 three-body LECs

Frame et al., PRL **121** 032501 (2018)

Hamiltonian parameter spaces

• original EC: single parameter, H = H(c)

• consider a Hamiltonian depending on several parameters:

$$H = H_0 + V = H_0 + \sum_{k=1}^d c_k V_k$$
 (1)

- ▶ in particular, V can be a chiral potential with LECs c_k
- Hamiltonian is element of d-dimensional parameter space
- convenient notation: $ec{c} = \{c_k\}_{k=1}^d$
- ▶ typical for $\mathcal{O}(Q^3)$ calculation: 14 two-body LECs + 2 three-body LECs

Generalized EC

- EC construction is straightforward to generalize to this case:
- simply replace $c_i
 ightarrow ec{c}_i$ in construction
 - $|\psi_i
 angle=|\psi(ec{c}_i)
 angle$ for $i=1,\cdots N_{
 m EC}$
 - F $H_{ij} = \langle \psi_i | H(ec{c}_{ ext{target}}) | \psi_j
 angle$, $N_{ij} = \langle \psi_i | \psi_j
 angle$
- the sum in Eq. (1) can be carried out in small (dimension $= N_{
 m EC}$) space!
 - ► this permits an **offline/online decomposition** of the problem

Frame et al., PRL **121** 032501 (2018)

Interpolation and extrapolation

Hypercubic sampling

- want to cover parameter space efficiently with training set $S = \{ \vec{c}_i \}$
- Latin Hypercube Sampling can generate near random sample
- for examples that follow:
 - ullet sample each component $c_k \in [-2,2]$
 - vary d LECs, fix the rest at NNLO_{sat} point

Ekström et al., PRC **91** 051301 (2015)

Interpolation and extrapolation

Hypercubic sampling

- want to cover parameter space efficiently with training set $S = \{ \vec{c}_i \}$
- Latin Hypercube Sampling can generate near random sample
- for examples that follow:
 - ullet sample each component $c_k \in [-2,2]$
 - \blacktriangleright vary d LECs, fix the rest at NNLO_{sat} point

Convex combinations

- distinguish interpolation and extrapolation target points
- interpolation region is convex hull of the $\{\vec{c}_i\}$
 - $\operatorname{conv}(S) = \sum_i lpha_i ec{c}_i$ with $lpha_i \geq 0$ and $\sum_i lpha_i = 1$
- extrapolation for $ec{c}_{ ext{target}}
 ot \in \operatorname{conv}(S)$
- EC emulators can handle both!

Ekström et al., PRC 91 051301 (2015)

Cross validation

- compare emulation prediction agains exact result for set $\{\vec{c}_{\text{target},j}\}_{j=1}^N$
- underlying calculation: Jacobi NCSM Ekström
 - Ekström implementation of Navratil et al., PRC 61 044001 (2000)
- observable: ⁴He ground-state energy
- transparent symbols indicate extrapolation targets

Cross validation

- compare emulation prediction agains exact result for set $\{\vec{c}_{\text{target},j}\}_{j=1}^N$
- underlying calculation: Jacobi NCSM
 - Ekström implementation of Navratil et al., PRC **61** 044001 (2000)
- observable: ⁴He ground-state energy
- transparent symbols indicate extrapolation targets

Cross validation

- compare emulation prediction agains exact result for set $\{\vec{c}_{\text{target},j}\}_{i=1}^N$
- underlying calculation: Jacobi NCSM Ekström implementation of Navratil et al., PRC 61 044001 (2000)
- observable: ⁴He ground-state energy
- transparent symbols indicate extrapolation targets

Cross validation

- compare emulation prediction agains exact result for set $\{\vec{c}_{\text{target},j}\}_{j=1}^N$
- underlying calculation: Jacobi NCSM Ekström implementation of Navratil et al., PRC 61 044001 (2000)
- observable: ⁴He ground-state energy
- transparent symbols indicate extrapolation targets

Performance comparison: radius

Operator evaluation

- generalized eigenvalue problem
- EC gives not only energy, but also a continued wavefunction
- straightforward (and inexpensive) to evaluate arbitrary operators

EC uncertainty estimate

- EC is a variational method
 - projection of Hamiltonian onto a subspace
 - dimension of this subspace determines the accuracy
 - excellent convergence properties

Sarkar+Lee, PRL 126 032501 (2021)

Bootstrap approach

- construct a training data set larger than necessary
- sample different training data sets, take mean and standard deviation

Application: correlation analysis

- take 10^4 LEC samples 10% around NNLO_{sat} point, correlate different observables
 - known energy-radius correlation well reflected
 - \blacktriangleright ²H radius only gives lower bound for ⁴He radius

• already this kind of analysis would be very expensive without EC!

EC emulators have since been extended in various ways

Let's look at a few!

Subspace-projected coupled cluster method

- coupled cluster (CC) is a well established and powerful many-body technique
 - ► based on non-unitary similarity transformation of the Hamiltonian

$$ar{H}(ec{lpha}) = \mathrm{e}^{-T(ec{lpha})} H(ec{lpha}) \mathrm{e}^{T(ec{lpha})}$$

- the cluster operator $T(\vec{\alpha})$ is truncated in the space of particle-whole excitations
- ► eigenvector continuation was developed for this non-Hermitian scenario

talk by Gaute tomorrow Ekström+Hagen, PRL **123** 252501 (2019)

Application: Global Sensitivity Analysis

- study sensitivity of $^{16}\mathrm{O}$ ground state to individual LECs
- plot based on >1 million emulator evaluations!
- recent extension to nuclear matter calculations Jiang et al., arXiv:2212.13216

Scattering observables

- different methods have been developed to apply EC to scattering calculations
- this is particularly relevant for LEC fitting, that is primarily based on scattering data

EC via Kohn variational principle

Furnstahl et al., PLB 809 135719 (2020)

- consider Hamiltonian $H = H(\boldsymbol{\theta})$, training points $\boldsymbol{\theta}_i$
- trial wave function $|\psi_{ ext{trial}}
 angle = \sum_i c_i \psi_E(oldsymbol{ heta}_i)
 angle$ for energy E>0
- the condition that

$$eta\left[|\psi_{ ext{trial}}
ight
angle]\equiv au_{ ext{trial}}-2\mu\langle|\psi_{ ext{trial}}|H(oldsymbol{ heta})-E|\psi_{ ext{trial}}
angle$$

should be stationary yields solutions for the c_i

Scattering observables

- different methods have been developed to apply EC to scattering calculations
- this is particularly relevant for LEC fitting, that is primarily based on scattering data

EC via Kohn variational principle

Furnstahl et al., PLB 809 135719 (2020)

talk by Xilin on Thursday

- consider Hamiltonian $H = H(\boldsymbol{\theta})$, training points $\boldsymbol{\theta}_i$
- trial wave function $|\psi_{ ext{trial}}
 angle = \sum_i c_i \psi_E(oldsymbol{ heta}_i)
 angle$ for energy E>0
- the condition that

 $eta\left[|\psi_{ ext{trial}}
ight
angle]\equiv au_{ ext{trial}}-2\mu\langle|\psi_{ ext{trial}}|H(oldsymbol{ heta})-E|\psi_{ ext{trial}}
angle$

should be stationary yields solutions for the c_i

Extensions and generalizations

- Newton's variational principle makes it possible to use trial scattering matrices
 instead of trial wave functions
 Melendez et al., PLB 821 136608 (2021)
- the approach has been extended to three-body scattering

a momentum-space formulation makes it possible to mitigate problems due to so-called Kohn anomalies Zhang+Furnstahl, PRC 105 064004 (2022) Garcia et al., PRC 107 054001 (2023)

• alternative strategy: simultaneous evaluation of multiple boundary conditions

talk by Christian tomorrow Drischler et al., PLB 821 13677 (2021)

Resonances

- many states in nuclear physics are resonances
 - ► i.e., metastable states with a finite lifetime to decay
- in stationary scattering theory, resonances are described as generalized eigenstates
 - S-matrix poles at comples energies $E=E_R-{
 m i}\Gamma/2$ (lifetime $\sim 1/\Gamma$)
 - ▶ wave functions are not normalizable (exponentially growing in *r*-space)

Resonance continuation

• one way to circumvent this problem is the complex scaling method:

$$r
ightarrow {
m e}^{{
m i} \phi} r \;\;,\;\;\; p
ightarrow {
m e}^{-{
m i} \phi} p$$

- along the rotated contour, resonance wave functions become normalizable
- formalism changes the inner product!
- eigenvector continuation has been extended to this scenario

Yapa, SK, Fossez, 2303.06139 [nucl-th] talk by Nuwan on Friday

R-matrix formalism for fusion observables

- use of calculable R-matrix formalism with boundary condition to simulate absorption Bai+Ren, PRC **103** 014612 (2021); Bai, PRC **106** 024611 (2022)
- EC applied based on solutions of the Bloch-Schrödinger equation
 - based on previously mentioned EC scattering developments

R-matrix formalism for fusion observables

- use of calculable R-matrix formalism with boundary condition to simulate absorption Bai+Ren, PRC **103** 014612 (2021); Bai, PRC **106** 024611 (2022)
- EC applied based on solutions of the Bloch-Schrödinger equation
 - based on previously mentioned EC scattering developments

Single-neutron spectra of heavy nuclei Anderson et al., PRC 106 L031302 (2022)

- spherical mean-field Hamiltonian tuned to reproduce an energy density functional
- prescription to train an emulator that discribes simultaneously all spherical nuclei

R-matrix formalism for fusion observables

- use of calculable R-matrix formalism with boundary condition to simulate absorption Bai+Ren, PRC **103** 014612 (2021); Bai, PRC **106** 024611 (2022)
- EC applied based on solutions of the Bloch-Schrödinger equation
 - based on previously mentioned EC scattering developments

Single-neutron spectra of heavy nuclei Anderson et al., PRC 106 L031302 (2022)

- spherical mean-field Hamiltonian tuned to reproduce an energy density functional
- prescription to train an emulator that discribes simultaneously all spherical nuclei

More structure emulators

• use EC as emulator and Lanczos preprocessor for shell-model calculations

talk by Yoshida-san tomorrow Yoshida+Shimizu, PTEP 2022 053D02

• collectivity and clustering via symmetry-adapted NCSM Becker et al., FP 11 1064601

R-matrix formalism for fusion observables

- use of calculable R-matrix formalism with boundary condition to simulate absorption Bai+Ren, PRC 103 014612 (2021); Bai, PRC 106 024611 (2022)
- EC applied based on solutions of the Bloch-Schrödinger equation
 - based on previously mentioned EC scattering developments

Single-neutron spectra of heavy nuclei Anderson et al., PRC **106** L031302 (2022)

- spherical mean-field Hamiltonian tuned to reproduce an energy density functional
- prescription to train an emulator that discribes simultaneously all spherical nuclei

More structure emulators

• use EC as emulator and Lanczos preprocessor for shell-model calculations

talk by Yoshida-san tomorrow Yoshida+Shimizu, PTEP 2022 053D02

collectivity and clustering via symmetry-adapted NCSM Becker et al., FP **11** 1064601

Pairing Hamiltonian

- exactly solvable model for nuclear supefluidity
- also uses EC as a resummation tool \rightarrow next part of this talk

Companys Franzke et al., arXiv:2302.08373

talk by Margarida on Friday

Part II

Accurate Resummation via Eigenvector Continuation

• consider a Hamiltonian diagonalized in a (small) subspace

$$H=egin{pmatrix} H_{\phi\phi} & H_{\phi\psi}\ H_{\psi\phi} & H_{\psi\psi} \end{pmatrix}$$

 $N_0 = \dim H_{\phi\phi} \ll \dim H = N_1$

 $H_{\phi\phi}= ext{diag}(\{\lambda_i\}_{i=1, dots N_0})$

- factor out large number X from diagonal entries of $H_{\psi\psi}$
- perturbative expansion for lowest eigenvalue and vector

$$|\psi
angle = \sum_{n=0}^{\infty} X^{-n} \left(\sum_{i=1}^{N_0} lpha_i^{(n)} |\phi_i
angle + \sum_{j=N_0+1}^{N_1} lpha_j^{(n)} |\psi_j
angle
ight) \;,\; E = \sum_{n=0}^{\infty} X^{-n} E^{(n)}$$

• matching powers gives coupled recursive expressions for $\alpha_i^{(n)}$ and $E^{(n)}$

Diagonalizing a small space can still be too expensive...

Diagonalizing a small space can still be too expensive...

- actually, a partial diagonalization *per se* is still doable (\rightarrow Lanczos)
- but transforming the Hamiltonian is problematic...

- cost for adjusting off-diagonal elements is significant
 - ▶ scales with size of the full (large) space

Simplest case

- start from one-dimensional space $(N_{
 m max}=0)$
 - ► i.e., directly use the given Hamiltonian

• this is equivalent to a simple (many-body) perturbation theory expansion

•
$$H_0 |\Phi^{(0)}
angle = E^{(0)} |\Phi^{(0)}
angle$$
: orthonormal basis, $H(c) = H_0 + c H_1$
• $|\Psi_P(c)
angle = \sum_{p=0}^P c^p |\Phi^{(p)}
angle$, want $c = 1, P o \infty \implies E = E^{(0)} + E^{(1)} + \cdots$

Failure of perturbation theory

³H NCSM calculation, $N_{\rm max} = 12$ model space

• EMN N3LO 500 interaction, plus SRG evolution

Entem et al., PRC 96 024004 (2017)

perturbation theory does not converge!

- however, interaction clearly "more perturbative" for small SRG λ
- \blacktriangleright convergence perhaps for very small λ
- **note:** the situation can be somewhat improved with better reference states

A. Tichai, private communication

Resummation via eigenvector continuation

- span space by the wavefunction corrections $|\Phi^{(p)}
 angle$
- evaluate Hamiltonian between these states
- i.e., use energy and wavefunction information

- this uses the same input as PT, but now the series converges!
 - rapid convergence to the correct result!
 - ▶ smooth behavior, significant oscillations are gone

Continued perturbation theory

• let's recap what exactly we have done:

General setup

- $H = H_0 + c \, H_1$, EC-extrapolate to c = 1
- $\bullet\,$ perturbation theory converges for sufficiently small $c\,$

$$\begin{pmatrix} |\Psi_{P}(c_{1})\rangle \\ |\Psi_{P}(c_{2})\rangle \\ \vdots \\ |\Psi_{P}(c_{N_{\rm EC}})\rangle \end{pmatrix} = \begin{pmatrix} 1 & c_{1} & c_{1}^{2} & \cdots & c_{1}^{P} \\ 1 & c_{2} & c_{2}^{2} & \cdots & c_{2}^{P} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & c_{N_{\rm EC}} & c_{N_{\rm EC}}^{2} & \cdots & c_{N_{\rm EC}}^{P} \end{pmatrix} \begin{pmatrix} |\Phi^{(0)}\rangle \\ |\Phi^{(1)}\rangle \\ \vdots \\ |\Phi^{(P)}\rangle \end{pmatrix}$$

Eigenvector continuation

Demol, SK, et al., PRC **101** 041302(R) (2020)

- assume we have eigenvetors for some set $\{c_i\}_{i=1}^{N_{
 m EC}}$ of such c
- linear combinations of perturbative corrections up to order P
- we can instead use the perturbative corrections directly as EC basis!

Application to larger systems

Consider ¹⁸O in Bogoliubov MBPT as example

- break particle number conservation in reference state
- restore average particle number to target value at each order
- perturbation theory under constraint

Demol et al., Annals Phys. 424 168358 (2021)

talk by Pepijn on Thursday

- for proof of principle study, consider a very limited model space
 - one-body cutoff at $e_{\max}=2n+l=4$
 - symmetry-broken Hartree-Fock-Bogoliubov reference state
 - ► two-, four-, and selected six-quasiparticle excitations on top
- recursive theme makes it possible to go high orders P
 - \blacktriangleright realistic in practice with larger model spaces: $P\leq 3$

Application to larger systems

Results

- EM500 interaction
- SRG evolved to $\lambda=2.0{
 m fm}^{-1}$
- full CI calculation as reference
- compare various methods
 - simple perturbation theory
 - eigenvector continuation
 - Padé resummation

- EC is accurate and reliable
- Padé becomes erratic at high orders

• recent further application: EC resummation for pairing Hamiltonian

talk by Margarida on Friday Companys Franzke et al., arXiv:2302.08373

 $\lambda = 2.0 \, \mathrm{fm}^{-1}$

Demol, SK, et al., PRC 101 041302(R) (2020)

Outlook

Finite-volume eigenvector continuation

- finite-volume spectra encode infinite-volume properties Lüscher, CMP 104 177 (1986); ...
- resonances can be identified from avoided crossings in finite-volume spectra Wiese, NPB (Proc. Suppl.) **9** 609 (1989), Klos, SK et al., PRC **98** 034004 (2018)
- to find/exclude low-energy resonances, one needs many calculations in large boxes
- this comes with a substantial numerical cost
- finite-volume eigenvector continuation can be used to mitigate this
 - extrapolation/interpolation across substantial volume ranges
 - ► parametric dependence directly in basis

talk by Nuwan on Friday

Quantum computing and chemistry

• EC has found new exciting applications outside nuclear physics

cf. also talk by Andreas earlier today

Subspace diagonalization

Francis et al., arXiv:2209.10571

- quantum-classical hybrid method
- Hamiltonian projected to a smaller subspace
- ideal scenario to apply EC!
 - extension to space of unitary matrices that

generate states

Quantum computing and chemistry

• EC has found new exciting applications outside nuclear physics

cf. also talk by Andreas earlier today

Subspace diagonalization

- quantum-classical hybrid method
- Hamiltonian projected to a smaller subspace
- ideal scenario to apply EC!
 - extension to space of unitary matrices that generate states

Potential energy surfaces

 $|\phi_2\rangle$ $|\phi_3\rangle$

 $|\phi_1\rangle$

Mejuto-Zaera+Kemper, arXiv:2305.00060

- application to full configuration interaction of molecular orbitals
- involves inner products between separate sets of atomic orbitals
 - similar to basis matching in FVEC!
- accurate results for pot. energy surfaces with moderate number of training points
 - demonstrates access to excited states

cf. also Companys Franzke et al., arXiv:2108.02824

Francis et al., arXiv:2209.10571

 $|\phi_k\rangle = U_k|0\rangle$

Summary and outlook

Eigenvector continuation as efficient emulator

- highly competitive, accurate and efficient
- can both interpolate and extrapolate from training sets
- possible to provide extrapolation uncertainty estimates
- broadly applied to nuclear structure and reactions

Eigenvector continuation as resummation tool

- possible to effectively tame divergent expansion coefficients
- interesting as computational method
- applications to finite nuclei and nuclear matter models

More exciting applications and surely more to come!

Summary and outlook

Eigenvector continuation as efficient emulator

- highly competitive, accurate and efficient
- can both interpolate and extrapolate from training sets
- possible to provide extrapolation uncertainty estimates
- broadly applied to nuclear structure and reactions

Eigenvector continuation as resummation tool

- possible to effectively tame divergent expansion coefficients
- interesting as computational method
- applications to finite nuclei and nuclear matter models

More exciting applications and surely more to come!

Thanks very much for your attention!

Backup slides

NCSM EC emulator: computational cost

• setup of EC subspace basis

- combination of Hamiltonian for given \vec{c}_i , Lanczos diagonalization
- ullet total cost $=M^2 imes (2n+N_{
 m mv})$ flops
- calculation of norm matrix: $2n^2M$ flops
- reduction of Hamiltonian parts: $(d+1) imes (2nM^2 + 2n^2M)$ flops
- cost per emulated sample point
 - combination of Hamiltonian parts in small space: $2dn^2$ flops
 - ▶ orthogonalization + diagonalization: $26n^3/3 + \mathcal{O}(n^2)$ flops

 $M = M(N_{\rm max})$: model-space dim., n: training data, N: samples, $N_{\rm mv}$: matrix-vector prod. (Lanczos)

Example

- $N_{\rm max} = 16$
- d=16, $N_{
 m EC}=64$
- max. speed-up factor ~ 600

Complete correlation analysis

Reverse SRG Evolution

Similarity Renormalization Group (SRG)

- nuclear potentials (from EFT or otherwise) can be difficult to handle numerically
- unitary transformation of Hamiltonian: $H \to H_\lambda = U_\lambda H U_\lambda^\dagger \rightsquigarrow V_\lambda$ -decouple low and high momenta at scale λ

R. Furnstahl, HUGS 2014 lecture slides

- interaction becomes more amenable to numerical methods...
- ...at the cost of induced many-body forces!

Bogner et al., PPNP 65 94 (2010)

SRG evolution = ODE solving

$$rac{\mathrm{d} H_s}{\mathrm{d} s} = rac{\mathrm{d} V_s}{\mathrm{d} s} = [[G,H_s],H_s]$$
, $\lambda = 1/s^{1/4}$

ordinary differential equation ensures smooth parametric dependence

\hookrightarrow SRG evolution satisfies EC prerequisites!

Reverse SRG

Consider A = 3,4 test cases

• EMN N3LO(500) interaction, Jacobi NCSM calculation

Entem et al., PRC 96 024004 (2017); A. Ekström implementation of Navratil et al., PRC 61 044001 (2000)

Reverse SRG

Consider A = 3,4 test cases

• EMN N3LO(500) interaction, Jacobi NCSM calculation

Entem et al., PRC 96 024004 (2017); A. Ekström implementation of Navratil et al., PRC 61 044001 (2000)

- possible to extrapolate back from small λ to bare interaction
- information about missing many-body forces in wavefunctions
 - not in any single wavefunction, but in how they change

Mind the gap

Still no free lunch, however...

- EC is a variational method
- cannot go beyond what bare interaction gives in same model space!

