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Problems Table For uncertainty 
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training points
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Reference domain
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Proper Orthogonal 
Decomposition
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4) Boundary conditions Independent term

7) Emulation error Certified Error Control
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Empirical Interpolation Method: one work-around https://github.com/odell/rose
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Obtained by 
interpolation Principal components of

1) Choose a basis

2) Project

Dirac

Applications 
and Results

Empirical Interpolation Method: one work-around

(collocation method)
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2-body scattering

1) Boundary conditions

Challenges:

3) Energy dependence

4) Non-affine potentials

2) Anomalies

*

https://github.com/odell/rose
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2 hours

Total
samples

7,200,000

High Fidelity:
2 months*

95%

Mock Data
10% error

2021 paper, Christian and friends

https://www.sciencedirect.com/science/article/pii/S0370269321007176


Applications 
and Results

3
almost done….

ROSE:
2 hours

Total
samples

7,200,000

High Fidelity:
2 months*



Applications 
and Results

3
almost done….

Most important outcome:

Software useful for the community



Applications 
and Results

3
almost done….

Most important outcome:

Software useful for the community

- Coupled channels
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1) Boundary conditions

Challenges:

3) Energy dependence

4) Non-affine potentials

2) Anomalies

*

6) Non-affine operators

5) Incompatible domains

Empirical Interpolation Method

Reference domain

4) Boundary conditions Independent term

https://github.com/odell/rose
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4) Boundary conditions Independent term

1) Boundary conditions
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1) Boundary conditions

Challenges:

3) Energy dependence

2) Anomalies

*

5) Incompatible domains Reference domain

4) Boundary conditions Independent term

6) Non-affine operators Empirical Interpolation Method

4) Non-affine potentials
(2004)

(2016)(2016)
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Mili-seconds

Coming soon

Faster

4

VERY non-linear

Level crossing
is a problem

Fission is next
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Smart posterior handling

Chaos
expansion

Normalizing
flows

Kyle
Godbey

“A future where models are not 
defined by parameter values, but 
rather by distributions constantly 
updated with new data”

(Yukari Yamauchi
Landon Buskirk)

(Frederi Viens
Edgard Bonilla)

Landon 
Buskirk

1



Kyle
Godbey

“A future where models are not 
defined by parameter values, but 
rather by distributions constantly 
updated with new data”

In regions of the nuclear chart away from stability, which represent a frontier in
nuclear science over the coming decade and which will be probed at new rare-
isotope beam facilities worldwide, there is a targeted need to quantify and
reduce theoretical reaction model uncertainties, especially with respect to
nuclear optical potentials.

(2022)
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1) These methods are SO cool

Reduced Basis Method

Accessible from
all levels
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Takeaways
1) These methods are SO cool

2) UQ needs multidisciplinary efforts This is very 
important to us

Work in collaboration with experts

mathematics
statistics

computational
experimental

See Kyle’s talk tomorrow
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Takeaways

Work in collaboration with experts

… and find that the real UQ is the 
friends you made along the way

…
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