Reduced basis methods for uncertainty

 quantification in nuclear physics

Pablo Giuliani
giulianp@frib.msu.edu

Outline

Why
Uncertainty Quantification?
How

The Reduced Basis Method
How it works
Problems table
Applications and Results

Takeaways

Outline

Why
Uncertainty Quantification?
How

The Reduced Basis Method
How it works
Problems table
Applications and Results

Takeaways

Why Uncertainty Quantification?

Why Uncertainty Quantification?

r-process
Lifetimes (Fission)
(decay)

Many models

UNEDF\# SV-min $S k M^{*}$ HFB\# FRDM\# •••

Projected FRIB beam rates

$$
\begin{aligned}
& >10^{8} \mathrm{~s}^{-1} \\
& 10^{6}-10^{8} \mathrm{~s}^{-1} \\
& 10^{4}-10^{6} \mathrm{~s}^{-1} \\
& 10^{2}-10^{4} \mathrm{~s}^{-1} \\
& 10^{0}-10^{2} \mathrm{~s}^{-1} \\
& 10^{-2}-10^{0} \mathrm{~s}^{-1} \\
& 10^{-4}-10^{-2} \mathrm{~s}^{-1} \\
& 10^{-6}-10^{-4} \mathrm{~s}^{-1}
\end{aligned}
$$

Why Uncertainty Quantification?

Why Uncertainty Quantification?

Why Uncertainty Quantification?

Why Uncertainty Quantification?

FRIB-TA Topical Program:
 Theoretical Justifications and
 Motivations for Early High-Profile FRIB Experiments

0.30
0.35
0.40

Time (sec)
Many observations

Many experiments, many nuclei
βn - measurements
Half-life, ToF mass

Why Uncertainty Quantification?

NSAC Long Range Plan Town Hall Meeting on Nuclear Structure, Reactions and Astrophysics

Why Uncertainty Quantification?

NSAC Long Range Plan Town Hall Meeting on Nuclear Structure, Reactions and Astrophysics
 Nov 14 - 16, 2022

Bayesian methods for extrapolations to stellar energies Needs

At the intersection of low-energy nuclear physics and fundamental symmetries Alejandro Garcia
Experiencing a revolution in our field brought by:
Daniel Phillips

- Detailed discussion of systematic uncertainties, ideally with covariance Detailed discussion of systematic uncertainties, deally with covariance
matrices, in experimental publications; theory-experiment collaborations Collaboration with statisticians (e.g., through ISNET series of meetings, funding for inter-disciplinary collaboration) on forefront statistical approaches for these problems

2. Im
Improved theory allowing for optimizing opportunities and calculating SM expectations, including uncertainties.

Enchancing the accuracy of optical potentials

Outlook and recommendations Inclusion of uncertainty quantification: Bayesian framework well suited for UQ, extrapolation \& interpolation

Systematic measurements along isotopic chains to improve reaction theory

Develop more accurate global (dispersive) optical model with uncertainties
Quantifying model uncertainties of popular model e.g. for transfer reactions \rightarrow ADWA or DWBA?

Tremendous progress in CEFT, many-body theory, UQ \& HPC Bayesian statistics allows for rigorous UQ \& propagation in EFT-based calculations (use emulators!) Christian

Integrated structure \& reaction theory for medium-mass and heavy nuclei Deploy ML/AI tools and assess uncertainties

Jutta Escher
${ }_{5}^{5} N u$ clear data for astrophysics (in neutron-rich environments)

Intersections of low-energy nuclear

 physics and fundamental symmetriesMax Brodeur, Vincenzo Cirigliano, Alejandro Garcia, Kyle Leach, Dan Melconian, Peter Mueller, Saori Pastore, Jaideep What progress has been made since the last LRP? Singh, Ragnar Stroberg
Since the last LRP (relevant to the structure community):

1. Nuclear theory related to FS has made MAJOR strides in several areas F.M. Nunes including $0 v \beta \beta$ decay NMEs, neutrino-nucleus scattering, corrections to Bayesian analysis as a beta decay in the extraction of Vud (both nuclear and radiative) - especially UQs. (Talks by: Heiko Hergert and Joe Carlson)

Studies examining variations in theoretical $\boldsymbol{\gamma}$-strength functions and nuclear level densities show the large impact of (n, γ) rate uncertainties on astrophysical neutron capture processes (i-process and

Computing (HPC, Quantum, AI/ML)

What are the most compelling scientific opportunities over the next decade \& their potential scientific impact?

- Development of emulators, $\mathrm{Al} / \mathrm{ML}$ and Bayesian methods:
- Opens up entirely new ways to make predictions and quantify uncertainties
- Experimental design: which measurements will help constrain/inform theoretical models (maximize the success of an experiment)

Gaute Hagen, Calvin Johnson, Michelle Kuchera Dean Lee, Pieter Maris, Kyle Wendt

Nuclear Structure and Reaction Theory

Working group: Papenbrock, Phillips, Piarulli, Potel, Schunck, Tews, Volya

+ Fossez, Hebborn, Koenig
- Reactions are awesome: Reactions are the best window into the structure and dynamics of nuclei, and address data needed for other fields. Full UQ and reaction-theory modeling crucial

Betty Tsang

Neutron Stars and Dense Matter

Since LRP2015, major Quantification of uncertainties breakthroughs

5-10 year priorities for nuclear data covariances and uncertainty quantification as defined by the Nuclear Data Uncertainty Quantification Meeting

Predictive theory of nuclei and their interactions

We have entered a precision era: field moves Thomas Papenbrock

Uncertainty quantification \& Bayesian machine learning have advanced nuclear theory

Why Uncertainty Quantification?

NSAC Long Range Plan Town Hall Meeting on Nuclear Structure, Reactions and Astrophysics
 Nov 14 - 16, 2022

Bayesian

uncertainty quantification:

node with uncertainties Quantifying model uncertainties

Bayesian analysis

What are the most compelling scientific opportunities over the next decade \& their potential scientific impact?

- Development of emulators, $\mathrm{Al} / \mathrm{ML}$

Bayesian methods:

> uncertainties
> quantify

Experimental

 measurements will help constrain/inform theoretical models (maximize the success of an experiment) Data Uncertainty Quantification Meeting

Nuclear Structure and Reaction Theory


```
Predictive theory of nuclei
and their interactions
```


towards quantified uncertainties
Uncertainty quantification \& Bayesian machine

Why Uncertainty Quantification?

NSAC Long Range Plan Town Hall Meeting on Nuclear Structure, Reactions and Astrophysics
 Nov 14 - 16, 2022

This is very important to us

\qquad
uncertainty quantification:

Bayesian methods:

predictions an quantify

uncertainty quantification
quantified uncertainties
Uncertainty quantification \& Bayesian

Why Uncertainty Quantification?

How

$$
P(\alpha \mid \boldsymbol{Y})=\frac{P(\boldsymbol{Y} \mid \alpha) P(\alpha)}{P(\boldsymbol{Y})}
$$

Bayesian approach?

Why Uncertainty Quantification? How

The most important thing in my opinion:

Why Uncertainty Quantification? How

The most important thing in my opinion:

mathematics
statistics
computational

Work in collaboration with experts

Why Uncertainty Quantification?

 How

The most important thing in my opinion:

Communication

mathematics
\rightarrow Work in collaboration with experts

Communication

Google Scholar

"eigenvector continuation"

About 188 results (0.08 sec)
control parameter in the Hamiltonian matrix exceeds some threshold value. In this Letter we present a new technique called eigenvector continuation that can extend the reach of these methods. The key insight is that while an eigenvector resides in a linear space with enormous dimensions, the eigenvector trajectory generated by smooth changes of the Hamiltonian matrix is well approximated by a very low-dimensional manifold. We

Communication

Eigenvector Continuation with Subspace Learning (2018)
Dillon Frame, ${ }^{1,2}$ Rongzheng He, ${ }^{1,2}$ Ilse Ipsen, ${ }^{3}$ Daniel Lee, ${ }^{4}$ Dean Lee,,${ }^{1,2}$ and Ermal Rrapaj ${ }^{5}$

Ab initio predictions link the neutron skin of ${ }^{208} \mathrm{~Pb}$ to nuclear forces
Baishan Hu $\odot^{י 1 n}$, Weizuang Jiang $\oplus^{2 n}$, Takayuki Miyagi $\oplus^{134 n}$, Zhonghao Sun ${ }^{5.6 n}$, Andreas Ekström ${ }^{2}$ Christian Forssén $\oplus^{2 \boxtimes,}$, Gaute Hagen $\oplus^{15.56}$, Jason D. Holt $\oplus^{י}$, Thomas Papenbrock $\oplus^{\text {5.6. }}$, S. Ragnar Stroberg ${ }^{\text {s, },}$ and lan Vernon ${ }^{10}$

Efficient emulators for scattering using eigenvector continuation
Eigenvector continuation as an efficient and accurate emulator for uncertainty quantification (2020)
S. König ${ }^{\text {a,b,c,* }}$, A. Ekström ${ }^{\text {d }}$, K. Hebeler ${ }^{\text {a,b }}$,
D. Lee ${ }^{\mathrm{e}}$, A. Schwenk ${ }^{\mathrm{a}, \mathrm{b}, \mathrm{f}}$

Improved many-body expansions from eigenvector continuation

(2020)
P. Demol $\odot,{ }^{1}$ T. Duguet, ${ }^{1,2}$ A. Ekström, ${ }^{3}$ M. Frosini, ${ }^{2}$ K. Hebeler, ${ }^{4,5}$ S. König $\odot,{ }^{4,5,6}$ D. Lee $\oplus,{ }^{7}$ A. Schwenk, ${ }^{4,5,8}$ V. Somà, ${ }^{2}$ and A. Tichai $\odot^{9,8,4,5,{ }^{*}}$
R.J. Furnstahl, A.J. Garcia, P.J. Millican, Xilin Zhang* (2020)

Communication

Eigenvector Continuation with Subspace Learning (2018)
Dillon Frame, ${ }^{1,2}$ Rongzheng He, ${ }^{1,2}$ Ilse Ipsen, ${ }^{3}$ Daniel Lee, ${ }^{4}$ Dean Lee, ${ }^{1,2}$ and Ermal Rrapaj ${ }^{5}$

Communication

Eigenvector Continuation with Subspace Learning (2018)
Dillon Frame, ${ }^{1,2}$ Rongzheng He, ${ }^{1,2}$ Ilse Ipsen, ${ }^{3}$ Daniel Lee, ${ }^{4}$ Dean Lee, ${ }^{1,2}$ and Ermal Rrapaj ${ }^{5}$

Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems

Youssef M. Marzouk ${ }^{\text {a,* }}$, Habib N. Najm ${ }^{\text {b }}$

A REDUCED ORDER MODEL FOR MULTI-GROUP TIME-DEPENDENT PARAMETRIZED REACTOR SPATIAL KINETICS
 (2014)

Sartori, et al

Reduced-order modeling of time-dependent PDEs with multiple parameters in the boundary data

Max D. Gunzburger ${ }^{\text {a, }, 1}$, Janet S. Peterson ${ }^{\text {a,1 }}$, John N. Shadid ${ }^{\text {b,2 }}$
(2006)

An 'empirical interpolation' method: application to efficient reduced-basis discretization of partial differential equations

Maxime Barrault ${ }^{\text {a }}$, Yvon Maday ${ }^{\mathrm{b}}$, Ngoc Cuong Nguyen ${ }^{\mathrm{c}}$, Anthony T. Patera ${ }^{\text {d }}$ (2004)

Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems

Youssef M. Marzouk ${ }^{\text {a,* }}$, Habib N. Najm ${ }^{\text {b }}$

A REDUCED ORDER MODEL FOR MULTI-GROUP TIME-DEPENDENT PARAMETRIZED REACTOR SPATIAL KINETICS
 (2014)

Sartori, et al

Reduced-order modeling of time-dependent PDEs
with multiple parameters in the boundary data
Max D. Gunzburger ${ }^{\text {a, }, \text {, }, ~ J a n e t ~ S . ~ P e t e r s o n ~}{ }^{\text {a,1, }, \text { John N. Shadid } \mathrm{b}, 2}$ (2006)

Certified Reduced
Basi Methods
for Prametrized
Partial Diffierential
Equations
(20en)
(2016)

An 'empirical interpolation' method: application to efficient reduced-basis discretization of partial differential equations

Maxime Barrault ${ }^{\text {a }}$, Yvon Maday ${ }^{\text {b }}$, Ngoc Cuong Nguyen ${ }^{\text {c }}$, Anthony T. Patera ${ }^{\text {d }}$
(2004)

Improved many-body expansions from eigenvector continuation

(2020) P. Demo $\odot,{ }^{1}$ T. Duguet, ${ }^{1,2}$ A. Ekström, ${ }^{3}$ M. Frosini, ${ }^{2}$ K. Hebeler, ${ }^{4,5}$ S. König ©, ${ }^{4,5,6}$ D. Lee $\oplus,{ }^{7}$ A. Schwenk, ${ }^{4,5,8}$ V. Somà, ${ }^{2}$ and A. Tichai $\oplus^{9,8,4,5, *}$

1 Note that because the κ parameters do not appear linearly in the Hamiltonian, one can no longer make a single set of matrix elements calculations for all of the test parameter sets. In other contexts this might be a relevant computational disadvantage. $\sum_{i=1}^{d} c_{i} H_{i}$, where H_{0} includes the kinetic energy. Any Hamiltonian with more than one interaction parameter can be written in this form, where each c_{i} in general may be depend nonlinearly on other parameters. Furthermore, each term H_{i} for $i=1, \ldots, 16$ can be projected onto the EC subspace once and then used for an arbitrary number of emulations. Each of these corresponds to a
$V_{1_{0}}(r) \equiv V_{0 R} e^{-\kappa_{R} r^{2}}+V_{0 s} e^{-\kappa_{s} r^{2}}$ $V_{{ }_{3} S_{1}}(r) \equiv V_{0 R} e^{-\kappa_{R} r^{2}}+V_{0 t} e^{-\kappa_{t} r^{2}}$ parameters in the boundary data Janet S. Peterson ${ }^{\text {a,1 }}$, John N. Shadid

An 'empirical interpolation' method: application to efficient reduced-basis discretization of partial differential equations

Maxime Barrault ${ }^{\text {a }}$, Yvon Maday ${ }^{\text {b }}$, Ngoc Cong Nguyen ${ }^{\text {c }}$, Anthony T. Patera ${ }^{\text {d }}$

(2019)

Why Uncertainty Quantification? How \longrightarrow communication with experts

Why Uncertainty Quantification?

How \longrightarrow communication with experts

Why Uncertainty Quantification?

How \longrightarrow communication with experts

[] Collocation-Method.py
[) Cool-technique.py

Empirical-Interpolation-Method.py
[) Greedy-Sampling

- POD-Basis.py
T) Reference-Domain.py

Projecting in Dirac Deltas
Something extra cool

Smart sampling

Create POD-Basis.py

Create a ref domain for multi-solutions

Why Uncertainty Quantification?
 HOW \longrightarrow Communication with experts

Why Uncertainty Quantification?

HOW \longrightarrow communication with experts

Why Uncertainty Quantification?

 How \longrightarrow communication with experts

Outline

Why

Uncertainty Quantification?

How

The Reduced Basis Method
How it works
Problems table
Applications and Results

Takeaways

> Questions?

Emulators

Emulators

Emulators

Dick's talk at ISNET

Emulators

Dick's talk at ISNET

Computation Accuracy vs Time

The Reduced Basis Method

The Reduced Basis Method

parameters

$\mathcal{H}_{\alpha}^{\downarrow} \phi(x)=\lambda \phi(x)$

Finite element

The Reduced Basis Method

parameters

$\mathcal{H}_{\alpha}^{\downarrow} \phi(x)=\lambda \phi(x)$

The Reduced Basis Method

The Reduced Basis Method

Changing the trapping strength α

The Reduced Basis Method

$$
F_{\alpha}[\phi(x)]=0
$$

General differential equation
$\left(\mathcal{H}_{\alpha} \phi(x)-\lambda \phi(x)=0\right)$

The Reduced Basis Method

$$
F_{\alpha}[\phi(x)]=0
$$

General differential equation

$$
\left(\mathcal{H}_{\alpha} \phi(x)-\lambda \phi(x)=0\right)
$$

1) Choose a basis

$$
\hat{\phi}(x)=\phi_{0}+\sum_{k}^{n} a_{k} \phi_{k}(x)
$$

The Reduced Basis Method

$$
F_{\alpha}[\phi(x)]=0
$$

General differential equation

$$
\left(\mathcal{H}_{\alpha} \phi(x)-\lambda \phi(x)=0\right)
$$

1) Choose a basis

$$
\hat{\phi}(x)=\phi_{0}+\sum_{k}^{n} a_{k} \phi_{k}(x)
$$

2) Project
$j=\{1, n\} \quad\left\langle\psi_{j} \mid F_{\alpha}[\hat{\phi}(x)]\right\rangle=0$
One equation per coefficient

The Reduced Basis Method

$$
F_{\alpha}[\phi(x)]=0
$$

General differential equation

$$
\left(\mathcal{H}_{\alpha} \phi(x)-\lambda \phi(x)=0\right)
$$

1) Choose a basis

$$
\hat{\phi}(x)=\phi_{0}+\sum_{k}^{n} a_{k} \phi_{k}(x)
$$

Usually, a
2) Project challenge

$j=\{1, n\} \quad\left\langle\psi_{j} \mid F_{\alpha}[\hat{\phi}(x)]\right\rangle=0$
One equation per coefficient

The Reduced Basis Method

$$
F_{\alpha}[\phi(x)]=0
$$

General differential equation

$$
\left(\mathcal{H}_{\alpha} \phi(x)-\lambda \phi(x)=0\right)
$$

1) Choose a basis

$$
\hat{\phi}(x)=\phi_{0}+\sum_{k}^{n} a_{k} \phi_{k}(x)
$$

Usually, a
2) Project
$j=\{1, n\} \quad\left\langle\psi_{j} \mid F_{\alpha}[\hat{\phi}(x)]\right\rangle=0$
One equation per coefficient
challenge

Galerkin

Jupyter $\{$ book $\}$

Reduced Basis Methods in Nuclear Physics

BUQEYE Guide to Projection-Based Emulators in Nuclear Physics

C. Drischler ${ }^{1,2, *}$, J. A. Melendez ${ }^{3}$, R. J. Furnstahl ${ }^{3}$, A. J. Garcia ${ }^{3}$, and Xilin Zhang ${ }^{2}$ ${ }^{1}$ Department of Physics and Astronomy \& Institute of Nuclear and Particle Physics, Ohio University, Athens, OH 45701, USA
${ }^{2}$ Facility for Rare Isotope Beams, Michigan State University, MI
${ }^{3}$ Department of Physics, The Ohio State University, Columbus,

J A Melendez ${ }^{1}{ }^{\oplus}$, C Drischler ${ }^{2}{ }^{\oplus}$, R J Furnstahl ${ }^{1, *}$ © A J Garcia ${ }^{1}{ }^{\bullet}$ and Xilin Zhang ${ }^{2}{ }^{\text {© }}$

Department of Physics, The Ohio State University, Columbus, OH 43210, United States of America
${ }^{2}$ Facility for Rare Isotope Beams, Michigan State University, MI 48824,
United States of America
https://doi.org/10.1088/1361-6471/ac83dd

Training and Projecting

Supyter $\{$ book $\}$ Reduced Basis Methods in Nuclear Physics

Examples

https://kylegodbey.github.io/nuclear-rbm

Supyter $\{$ book $\}$

Reduced Basis Methods in Nuclear Physics

Examples

you?

Code

\#We select four basis and obtain the following gorgeous functions: nbasis $=4$
fig, ax = plt.subplots(dpi=100)
fig.patch.set_facecolor('white')
for i in range(nbasis)
ax.plot(s_mesh, U[:, i])
ax.set xlabel(r'\$s\$')
ax.set_ylabel(r'\$u_\{\rm train\}^\{(\{\rm SVD\}) \}\$');

https://kylegodbey.github.io/nuclear-rbm

Problems Table

1) No variational principle

2) Sensitivity to training points

3) Expensive high-fidelity \qquad
4) Boundary conditions

Independent term
5) Incompatible domains \longrightarrow Reference domain
6) Non-affine operators

7) Emulation error \qquad Certified Error Control
(1) Training and Projecting: A Reduced Basis ${ }^{\text {arh }}{ }_{2022}$ Method Emulator for Many-Body Physics

Edgard Bonilla, ${ }^{1, *}$ Pablo Giuliani, ${ }^{2,3, \dagger}$ Kyle Godbey, ${ }^{2, \ddagger}$ and Dean Lee ${ }^{2,4, \S}$

Training and Projecting

Applications and Results

(1) Training and Projecting: A Reduced Basis ${ }^{\text {arh }}{ }_{2022}$ Method Emulator for Many-Body Physics

Edgard Bonilla, ${ }^{1, *}$ Pablo Giuliani, ${ }^{2,3, \dagger}$ Kyle Godbey, ${ }^{2, \ddagger}$ and Dean Lee ${ }^{2,4, \S}$

1) Broadly Applicable

Training and Projecting

Applications and Results

 Method Emulator for Many-Body PhysicsEdgard Bonilla,,$^{1, *}$ Pablo Giuliani, ${ }^{2,3, \dagger}$ Kyle Godbey, ${ }^{2, \ddagger}$ and Dean Lee ${ }^{2,4, \S}$

Applications and Results

(1) Training and Projecting: A Reduced Basis ${ }^{\text {(1) }}{ }_{2022}$

Edgard Bonilla, ${ }^{1, *}$ Pablo Giuliani, ${ }^{2,3, \dagger}$ Kyle Godbey, ${ }^{2, \ddagger}$ and Dean Lee ${ }^{2,4, \S}$

1) Broadly Applicable

Training and Projecting

Applications and Results

1) Broadly Applicable

2) Very accurate

Applications and Results

(1) Training and Projecting: A Reduced Basis ${ }^{\text {Mar }}{ }_{2022}$ Method Emulator for Many-Body Physics

Edgard Bonilla,,$^{1, *}$ Pablo Giuliani, ${ }^{2,3, \dagger}$ Kyle Godbey, ${ }^{2, \ddagger}$ and Dean Lee ${ }^{2,4, \S}$

1) No variational principle

2) Sensitivity to training points

Proper Orthogonal Decomposition
3) Expensive high-fidelity \qquad

Training and Projecting

Applications and Results

(1) Training and Projecting: A Reduced Basis ${ }^{\text {Mar }}{ }_{2022}$ Method Emulator for Many-Body Physics

Edgard Bonilla, ${ }^{1, *}$ Pablo Giuliani, ${ }^{2,3, \dagger}$ Kyle Godbey, ${ }^{2, \ddagger}$ and Dean Lee ${ }^{2,4, \S}$

1) No variational principle

2) Sensitivity to
training points

Proper Orthogonal
Decomposition
Greedy algorithm

$$
\begin{gathered}
F_{\alpha}(\phi)=\left(-\frac{d^{2}}{d r^{2}}+\frac{\ell(\ell+1)}{r^{2}}+U(r, \alpha)-p^{2}\right) \phi(r)=0 \\
2 \text {-body scattering } \\
F_{q, k}(\phi)=-\phi^{\prime \prime}+\kappa x^{2} \phi+q|\phi|^{2} \phi-\lambda_{q, \kappa} \phi=0 \\
\text { Gross-Pitaevskii } \\
\frac{\hat{h}^{(i)}[\Phi] \phi^{(i)}-\lambda^{(i)} \phi^{(i)}=0}{\text { Skyrme DFT }}
\end{gathered}
$$

Applications and Results

(1) Training and Projecting: A Reduced Basis ${ }^{\text {Mar }}{ }_{2022}$ Method Emulator for Many-Body Physics

Edgard Bonilla, ${ }^{1, *}$ Pablo Giuliani, ${ }^{2,3, \dagger}$ Kyle Godbey, ${ }^{2, \ddagger}$ and Dean Lee ${ }^{2,4, \S}$

1) No variational principle

2) Sensitivity to
training points
3) Expensive high-fidelity

Proper Orthogonal
Decomposition

Greedy algorithm

$$
F_{\alpha}(\phi)=\left(-\frac{d^{2}}{d r^{2}}+\frac{\ell(\ell+1)}{r^{2}}+U(r, \alpha)-p^{2}\right) \phi(r)=0
$$

Can even invert matrices

$$
\left\langle\psi_{j} \mid F_{\alpha}\left(\hat{\phi}_{\alpha}\right)\right\rangle=0, \quad \text { for all } j
$$

Training and Projecting

Applications and Results

(1) Training and Projecting: A Reduced Basis ${ }^{\text {Mar }}{ }_{2022}$ Method Emulator for Many-Body Physics

Edgard Bonilla, ${ }^{1, *}$ Pablo Giuliani,,$^{2,3, \dagger}$ Kyle Godbey, ${ }^{2, \ddagger}$ and Dean Lee ${ }^{2,4, \S}$

1) No variational principle
2) Sensitivity to training points

Proper Orthogonal Decomposition

Applications and Results

(1) Training and Projecting: A Reduced Basis ${ }^{\text {arh }}{ }_{2022}$ Method Emulator for Many-Body Physics

Edgard Bonilla, ${ }^{1, *}$ Pablo Giuliani, ${ }^{2,3, \dagger}$ Kyle Godbey, ${ }^{2, \ddagger}$ and Dean Lee ${ }^{2,4, \S}$

1) No variational principle
2) Sensitivity to training points

Galerkin projection

Proper Orthogonal Decomposition

NOT snapshots

Applications and Results

Method Emulator for Many-Body Physics

Edgard Bonilla, ${ }^{1, *}$ Pablo Giuliani, ${ }^{2,3, \dagger}$ Kyle Godbey, ${ }^{2, \ddagger}$ and Dean Lee ${ }^{2,4, \S}$

1) No variational principle
2) Sensitivity to
training points
3) Expensive high-fidelity \qquad

$$
N=1
$$

- $\left\|F_{\alpha}(\phi)\right\|^{2}$ small (Nothing to learn)
- $\left\|F_{\alpha}(\phi)\right\|^{2} \quad$ Big (Lots to learn)

https://doi.org/10.1103/PhysRevC.106.054322

Applications and Results

(1) Training and Projecting: A Reduced Basis ${ }^{\text {Mar }}{ }_{2022}$ Method Emulator for Many-Body Physics

Edgard Bonilla, ${ }^{1, *}$ Pablo Giuliani, ${ }^{2,3, \dagger}$ Kyle Godbey, ${ }^{2, \ddagger}$ and Dean Lee ${ }^{2,4, \S}$

1) No variational principle
2) Sensitivity to
training points

Galerkin projection

3) Expensive high-fidelity \qquad Greedy algorithm

https://doi.org/10.1103/PhysRevC.106.054322

Applications and Results

(1) Training and Projecting: A Reduced Basis ${ }^{\text {Mar }}{ }_{2022}$ Method Emulator for Many-Body Physics

Edgard Bonilla, ${ }^{1, *}$ Pablo Giuliani, ${ }^{2,3, \dagger}$ Kyle Godbey, ${ }^{2, \ddagger}$ and Dean Lee ${ }^{2,4, \S}$

1) No variational principle
2) Sensitivity to training points

\longrightarrow Galerkin projection

Proper Orthogonal
Decomposition
3) Expensive high-fidelity \qquad Greedy algorithm

Applications and Results

2) Sensitivity to training points
3) Expensive high-fidelity

Proper Orthogonal Decomposition

3 RB Methods: Basic Principles, Basic Properties39
3.1 Parametrized PDEs: Formulation and Assumptions 39
3.2 High-Fidelity Discretization Techniques 41
3.3 Reduced Basis Methods 43
3.3.1 Galerkin RB Method 45
3.3.2 Least-Squares RB Method 48

Bayes goes fast: Uncertainty Quantification for a Covariant Energy Density Functional emulated by the Reduced Basis Method

Applications and Results

Bayes goes fast: Uncertainty Quantification for a Covariant Energy Density Functional emulated by the Reduced Basis Method

Fields

Applications and Results

$$
\begin{aligned}
& \text { Dirac Equations } \\
& \qquad \begin{array}{l}
\left(\frac{d}{d r}+\frac{\kappa}{r}\right) g_{a}(r)-\left[E_{a}+M-\Phi_{0}(r)-W_{0}(r) \mp \frac{1}{2} B_{0}(r)-e\left\{\begin{array}{l}
1 \\
0
\end{array}\right\} A_{0}(r)\right] f_{a}(r)=0 \\
\left(\frac{d}{d r}-\frac{\kappa}{r}\right) f_{a}(r)+\left[E_{a}-M+\Phi_{0}(r)-W_{0}(r) \mp \frac{1}{2} B_{0}(r)-e\left\{\begin{array}{l}
1 \\
0
\end{array}\right\} A_{0}(r)\right] g_{a}(r)=0
\end{array}
\end{aligned}
$$

Nucleons

Field Equations

$$
\begin{aligned}
& \left(\frac{d^{2}}{d r^{2}}+\frac{2}{r} \frac{d}{d r}-m_{\mathrm{s}}^{2}\right) \Phi_{0}(r)-g_{\mathrm{s}}^{2}\left(\frac{\kappa}{2} \Phi_{0}^{2}(r)+\frac{\lambda}{6} \Phi_{0}^{3}(r)\right)=-g_{\mathrm{s}}^{2}\left(\rho_{\mathrm{s}, \mathrm{p}}(r)+\rho_{\mathrm{s}, \mathrm{n}}(r)\right), \\
& \left(\frac{d^{2}}{d r^{2}}+\frac{2}{r} \frac{d}{d r}-m_{\mathrm{v}}^{2}\right) W_{0}(r)-g_{\mathrm{v}}^{2}\left(\frac{\zeta}{6} W_{0}^{3}(r)+2 \Lambda_{\mathrm{v}} B_{0}^{2}(r) W_{0}(r)\right)=-g_{\mathrm{v}}^{2}\left(\rho_{\mathrm{v}, \mathrm{p}}(r)+\rho_{\mathrm{v}, \mathrm{n}}(r)\right), \\
& \left(\frac{d^{2}}{d r^{2}}+\frac{2}{r} \frac{d}{d r}-m_{\rho}^{2}\right) B_{0}(r)-2 \Lambda_{\mathrm{v}} g_{\rho}^{2} W_{0}^{2}(r) B_{0}(r)=-\frac{g_{\rho}^{2}}{2}\left(\rho_{\mathrm{v}, \mathrm{p}}(r)-\rho_{\mathrm{v}, \mathrm{n}}(r)\right), \\
& \left(\frac{d^{2}}{d r^{2}}+\frac{2}{r} \frac{d}{d r}\right) A_{0}(r)=-e \rho_{\mathrm{v}, \mathrm{p}}(r),
\end{aligned}
$$

Bayes goes fast

Applications and Results

$$
\begin{aligned}
& \text { Dirac Equations } \\
& \qquad\left(\frac{d}{d r}+\frac{\kappa}{r}\right) g_{a}(r)-\left[E_{a}+M-\Phi_{0}(r)-W_{0}(r) \mp \frac{1}{2} B_{0}(r)-e\left\{\begin{array}{l}
1 \\
0
\end{array}\right\} A_{0}(r)\right] f_{a}(r)=0 \\
& \left(\frac{d}{d r}-\frac{\kappa}{r}\right) f_{a}(r)+\left[E_{a}-M+\Phi_{0}(r)-W_{0}(r) \mp \frac{1}{2} B_{0}(r)-e\left\{\begin{array}{l}
1 \\
0
\end{array}\right\} A_{0}(r)\right] g_{a}(r)=0
\end{aligned}
$$

Nucleons

Field Equations

$$
\begin{aligned}
& \left(\frac{d^{2}}{d r^{2}}+\frac{2}{r} \frac{d}{d r}-m_{\mathrm{s}}^{2}\right) \Phi_{0}(r)-g_{\mathrm{s}}^{2}\left(\frac{\kappa}{2} \Phi_{0}^{2}(r)+\frac{\lambda}{6} \Phi_{0}^{3}(r)\right)=-g_{\mathrm{s}}^{2}\left(\rho_{\mathrm{s}, \mathrm{p}}(r)+\rho_{\mathrm{s}, \mathrm{n}}(r)\right), \\
& \left(\frac{d^{2}}{d r^{2}}+\frac{2}{r} \frac{d}{d r}-m_{\mathrm{v}}^{2}\right) W_{0}(r)-g_{\mathrm{v}}^{2}\left(\frac{\zeta}{6} W_{0}^{3}(r)+2 \Lambda_{\mathrm{v}} B_{0}^{2}(r) W_{0}(r)\right)=-g_{\mathrm{v}}^{2}\left(\rho_{\mathrm{v}, \mathrm{p}}(r)+\rho_{\mathrm{v}, \mathrm{n}}(r)\right), \\
& \left(\frac{d^{2}}{d r^{2}}+\frac{2}{r} \frac{d}{d r}-m_{\rho}^{2}\right) B_{0}(r)-2 \Lambda_{\mathrm{v}} g_{\rho}^{2} W_{0}^{2}(r) B_{0}(r)=-\frac{g_{\rho}^{2}}{2}\left(\rho_{\mathrm{v}, \mathrm{p}}(r)-\rho_{\mathrm{v}, \mathrm{n}}(r)\right), \\
& \left(\frac{d^{2}}{d r^{2}}+\frac{2}{r} \frac{d}{d r}\right) A_{0}(r)=-e \rho_{\mathrm{v}, \mathrm{p}}(r), \\
& \text { Parameters } \boldsymbol{\alpha}
\end{aligned}
$$

Bayes goes fast

Applications and Results

Low dimensional manifold

Dirac Equations

$$
\begin{aligned}
& \left(\frac{d}{d r}+\frac{\kappa}{r}\right) g_{a}(r)-\left[E_{a}+M-\Phi_{0}(r)-W_{0}(r) \mp \frac{1}{2} B_{0}(r)-e\right. \\
& \left(\frac{d}{d r}-\frac{\kappa}{r}\right) f_{a}(r)+\left[E_{a}-M+\Phi_{0}(r)-W_{0}(r) \mp \frac{1}{2} B_{0}(r)-e\right.
\end{aligned}
$$

Field Equations

$$
\begin{aligned}
& \left(\frac{d^{2}}{d r^{2}}+\frac{2}{r} \frac{d}{d r}-m_{\mathrm{s}}^{2}\right) \Phi_{0}(r)-g_{\mathrm{s}}^{2}\left(\frac{\kappa}{2} \Phi_{0}^{2}(r)+\frac{\lambda}{6} \Phi_{0}^{3}(r)\right)=-g_{\mathrm{s}}^{2}\left(\rho_{\mathrm{s}, \mathrm{p}}(r)\right. \\
& \left(\frac{d^{2}}{d r^{2}}+\frac{2}{r} \frac{d}{d r}-m_{\mathrm{v}}^{2}\right) W_{0}(r)-g_{\mathrm{v}}^{2}\left(\frac{\zeta}{6} W_{0}^{3}(r)+2 \Lambda_{\mathrm{v}} B_{0}^{2}(r) W_{0}(r)\right)=-g_{\mathrm{v}}^{2}\left(\rho_{\mathrm{v}, \mathrm{p}}(r)+\rho_{\mathrm{v}, \mathrm{n}}(r)\right), \\
& \left(\frac{d^{2}}{d r^{2}}+\frac{2}{r} \frac{d}{d r}-m_{\rho}^{2}\right) B_{0}(r)-2 \Lambda_{\mathrm{v}} g_{\rho}^{2} W_{0}^{2}(r) B_{0}(r)=-\frac{g_{\rho}^{2}}{2}\left(\rho_{\mathrm{v}, \mathrm{p}}(r)-\rho_{\mathrm{v}, \mathrm{n}}(r)\right), \\
& \left(\frac{d^{2}}{d r^{2}}+\frac{2}{r} \frac{d}{d r}\right) A_{0}(r)=-e \rho_{\mathrm{v}, \mathrm{p}}(r),
\end{aligned}
$$

Principal Component k

Parameters α

Bayes goes fast

Applications and Results

(2)
 Bayes goes fast: Uncertainty Quantification for a Covariant Energy Density Functional emulated by the Reduced Basis Method

Dirac Equations

$$
\begin{aligned}
& \left(\frac{d}{d r}+\frac{\kappa}{r}\right) g_{a}(r)-\left[E_{a}+M-\Phi_{0}(r)-W_{0}(r) \mp \frac{1}{2} B_{0}(r)-e\left\{\begin{array}{l}
1 \\
0
\end{array}\right\} A_{0}(r)\right] f_{a}(r)=0 \\
& \left(\frac{d}{d r}-\frac{\kappa}{r}\right) f_{a}(r)+\left[E_{a}-M+\Phi_{0}(r)-W_{0}(r) \mp \frac{1}{2} B_{0}(r)-e\left\{\begin{array}{l}
1 \\
0
\end{array}\right\} A_{0}(r)\right] g_{a}(r)=0
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{d^{2}}{d r^{2}}+\frac{2}{r} \frac{d}{d r}-m_{\mathrm{s}}^{2}\right) \Phi_{0}(r)-g_{\mathrm{s}}^{2}\left(\frac{\kappa}{2} \Phi_{0}^{2}(r)+\frac{\lambda}{6} \Phi_{0}^{3}(r)\right)=-g_{\mathrm{s}}^{2}\left(\rho_{\mathrm{s}, \mathrm{p}}(r)+\rho_{\mathrm{s}, \mathrm{n}}(r)\right), \\
& \left(\frac{d^{2}}{d r^{2}}+\frac{2}{r} \frac{d}{d r}-m_{\mathrm{v}}^{2}\right) W_{0}(r)-g_{\mathrm{v}}^{2}\left(\frac{\zeta}{6} W_{0}^{3}(r)+2 \Lambda_{\mathrm{v}} B_{0}^{2}(r) W_{0}(r)\right)=-g_{\mathrm{v}}^{2}\left(\rho_{\mathrm{v}, \mathrm{p}}(r)+\rho_{\mathrm{v}, \mathrm{n}}(r)\right), \\
& \left(\frac{d^{2}}{d r^{2}}+\frac{2}{r} \frac{d}{d r}-m_{\rho}^{2}\right) B_{0}(r)-2 \Lambda_{\mathrm{v}} g_{\rho}^{2} W_{0}^{2}(r) B_{0}(r)=-\frac{g_{\rho}^{2}}{2}\left(\rho_{\mathrm{v}, \mathrm{p}}(r)-\rho_{\mathrm{v}, \mathrm{n}}(r)\right), \\
& \left(\frac{d^{2}}{d r^{2}}+\frac{2}{r} \frac{d}{d r}\right) A_{0}(r)=-e \rho_{\mathrm{v}, \mathrm{p}}(r),
\end{aligned}
$$

Bayes goes fast

Applications and Results

2 Bayes goes fast: Uncertainty Quantification for a Covariant Energy Density Functional emulated by the Reduced Basis Method

$$
\begin{aligned}
& \text { Dirac Equations } \\
& \left\langle g_{a, k}^{(j)}\right|\left(\frac{d}{d r}+\frac{\kappa}{r}\right) g_{a}(r)-\left[E_{a}+M-\Phi_{0}(r)-W_{0}(r) \mp \frac{1}{2} B_{0}(r)-e\left\{\begin{array}{l}
1 \\
0
\end{array}\right\} A_{0}(r)\right] f_{a}(r)=0 \\
& \left\langle f_{a, k}^{(j)}\right|\left(\frac{d}{d r}-\frac{\kappa}{r}\right) f_{a}(r)+\left[E_{a}-M+\Phi_{0}(r)-W_{0}(r) \mp \frac{1}{2} B_{0}(r)-e\left\{\begin{array}{l}
1 \\
0
\end{array}\right\} A_{0}(r)\right] g_{a}(r)=0
\end{aligned}
$$

Fields

Field Equations

$$
\begin{aligned}
& \left\langle\Phi_{j}(r)\right|\left(\frac{d^{2}}{d r^{2}}+\frac{2}{r} \frac{d}{d r}-m_{\mathrm{s}}^{2}\right) \Phi_{0}(r)-g_{\mathrm{s}}^{2}\left(\frac{\kappa}{2} \Phi_{0}^{2}(r)+\frac{\lambda}{6} \Phi_{0}^{3}(r)\right)=-g_{\mathrm{s}}^{2}\left(\rho_{\mathrm{s}, \mathrm{p}}(r)+\rho_{\mathrm{s}, \mathrm{n}}(r)\right) \\
& \left\langle W_{j}(r)\right|\left(\frac{d^{2}}{d r^{2}}+\frac{2}{r} \frac{d}{d r}-m_{\mathrm{v}}^{2}\right) W_{0}(r)-g_{\mathrm{v}}^{2}\left(\frac{\zeta}{6} W_{0}^{3}(r)+2 \Lambda_{\mathrm{v}} B_{0}^{2}(r) W_{0}(r)\right)=-g_{\mathrm{v}}^{2}\left(\rho_{\mathrm{v}, \mathrm{p}}(r)+\rho_{\mathrm{v}, \mathrm{n}}(r)\right), \\
& \left\langle B_{j}(r)\right|\left(\frac{d^{2}}{d r^{2}}+\frac{2}{r} \frac{d}{d r}-m_{\rho}^{2}\right) B_{0}(r)-2 \Lambda_{\mathrm{v}} g_{\rho}^{2} W_{0}^{2}(r) B_{0}(r)=-\frac{g_{\rho}^{2}}{2}\left(\rho_{\mathrm{v}, \mathrm{p}}(r)-\rho_{\mathrm{v}, \mathrm{n}}(r)\right), \\
& \left\langle A_{j}(r)\left(\frac{d^{2}}{d r^{2}}+\frac{2}{r} \frac{d}{d r}\right) A_{0}(r)=-e \rho_{\mathrm{v}, \mathrm{p}}(r)\right.
\end{aligned}
$$

Bayes goes fast

Applications and Results

(2)
 Bayes goes fast: Uncertainty Quantification for a Covariant Energy Density Functional emulated by the Reduced Basis Method

Nucleons

Dirac Equations

$$
\left.\left\langle g_{a, k}^{(j)}\right|\left(\frac{d}{d r}+\frac{\kappa}{r}\right) g_{a}(r)-\left[E_{a}+M-\Phi_{0}(r)\right]-W_{0}(r) \mp \frac{1}{2} B_{0}(r)-e\left\{\begin{array}{l}
1 \\
0
\end{array}\right\} A_{0}(r)\right] f_{a}(r)=0
$$

$$
\left\langle f_{a, k}^{(j)}\right|\left(\frac{d}{d r}-\frac{\kappa}{r}\right) f_{a}(r)+\left[E_{a}-M++\Phi_{0}(r)-W_{0}(r) \mp \frac{1}{2} B_{0}(r)-e\left\{\begin{array}{l}
1 \\
0
\end{array}\right\} A_{0}(r)\right] g_{a}(r)=0
$$

Field Equations

$$
\left\langle\Phi_{j}(r)\right|\left(\frac{d^{2}}{d r^{2}}+\frac{2}{r} \frac{d}{d r}-m_{\mathrm{s}}^{2}\right) \Phi_{0}(r)-g_{\mathrm{s}}^{2}\left(\frac{1}{2} \Phi_{0}^{2}(r)+\frac{\lambda}{6} \Phi_{0}^{3}(r)\right)=-g_{\mathrm{s}}^{2}\left(\rho_{\mathrm{s}, \mathrm{p}}(r)+\rho_{\mathrm{s}, \mathrm{n}}(r)\right)
$$

$$
\left\langle W_{j}(r)\right|\left(\frac{d^{2}}{d r^{2}}+\frac{2}{r} \frac{d}{d r}-m_{\mathrm{v}}^{2}\right) W_{0}(r)-g_{\mathrm{v}}^{2}\left(\frac{\zeta}{\zeta} W_{0}^{3}(\right.
$$

$$
\left\langle B_{j}(r)\right|\left(\frac{d^{2}}{d r^{2}}+\frac{2}{r} \frac{d}{d r}-m_{\rho}^{2}\right) B_{0}(\eta)-2 \Lambda / g_{\rho}^{2} W_{0}^{2}(
$$

Applications and Results

(2)

Bayes goes fast: Uncertainty Quantification for a Covariant Energy Density Functional emulated by the Reduced Basis Method
$\Phi \mathrm{Eq}=\left((\mathrm{D} 2) \cdot \Phi-\mathrm{ms}^{\wedge} 2 * \Phi+2 / \mathrm{r} *(\mathrm{D} 1 . \Phi)-\right.$
gs^2* (K/2* $\left.\Phi^{\wedge} 2+\lambda / 6 * \Phi^{\wedge} 3-2 * \Lambda s * B^{\wedge} 2 * \Phi\right)+$
gs^2* ρ s)

Bayes goes fast

Applications and Results

Bayes goes fast: Uncertainty Quantification for a Covariant Energy Density Functional emulated by the Reduced Basis Method
$\Phi \mathrm{Eq}=\left((\mathrm{D} 2) \cdot \Phi-\mathrm{ms}^{\wedge} 2 * \Phi+2 / \mathrm{r} *(\mathrm{D} 1 . \Phi)-\right.$

Nucleons

gs^2* (K/2* $\left.\Phi^{\wedge} 2+\lambda / 6 * \Phi^{\wedge} 3-2 * \Lambda s * B^{\wedge} 2 * \Phi\right)+$ gs^2* ρ s)

```
\PhiEqGaler = \PhiEq / . {\Phi -> FieldsTrialFuncs\llbracket1\rrbracket, W -> FieldsTrialFuncs\llbracket2\rrbracket,
```

```
\PhiEqGaler = \PhiEq / . {\Phi -> FieldsTrialFuncs\llbracket1\rrbracket, W -> FieldsTrialFuncs\llbracket2\rrbracket,
```

$$
\mathrm{B} \rightarrow \text { FieldsTrialFuncs} \llbracket 3 \rrbracket, \rho s \rightarrow \text { DensitiesGaler } \llbracket 1 \rrbracket, \rho v \rightarrow \text { DensitiesGaler } \llbracket 2 \rrbracket,
$$

$$
\rho 3 \rightarrow \text { DensitiesGaler } \llbracket 3 \rrbracket, \text { D1 } \rightarrow \text { D1MatFields, D2 } \rightarrow \text { D2MatFields, r } \rightarrow \text { x\}; }
$$

$$
\Phi_{0}(r) \approx \hat{\Phi}_{0}(r)=\sum_{k=1}^{n_{\Phi}} a_{k}^{\Phi} \Phi_{k}(r)
$$

Bayes goes fast

:ps://doi.org/10.3389/fphy.2022.1054524

Applications and Results

2 Bayes goes fast: Uncertainty Quantification for a Covariant Energy Density Functional emulated by the Reduced Basis Method
$\Phi \mathrm{Eq}=\left((\mathrm{D} 2) \cdot \Phi-\mathrm{ms}{ }^{\wedge} 2 * \Phi+2 / r *(D 1 . \Phi)-\right.$
gs^2* (K/2* $\left.\Phi^{\wedge} 2+\lambda / 6 * \Phi^{\wedge} 3-2 * \Lambda s * B^{\wedge} 2 * \Phi\right)+$ gs^2* ${ }^{\wedge}$ s)

$$
\Phi E q G a l e r=\Phi E q / \cdot\{\Phi \rightarrow \text { FieldsTrialFuncs } \llbracket 1 \rrbracket, W \rightarrow \text { FieldsTrialFuncs } \llbracket 2 \rrbracket,
$$

$$
\text { B } \rightarrow \text { FieldsTrialFuncs } \llbracket 3 \rrbracket, \rho s \rightarrow \text { DensitiesGaler } \llbracket 1 \rrbracket, \rho v \rightarrow \text { DensitiesGaler } \llbracket 2 \rrbracket,
$$

$$
\rho 3 \rightarrow \text { DensitiesGaler } \llbracket 3 \rrbracket, \text { D1 } \rightarrow \text { D1MatFields, D2 } \rightarrow \text { D2MatFields, r } \rightarrow \text { x\}; }
$$

Applications and Results

September 2022
2 Bayes goes fast：Uncertainty Quantification for a Covariant Energy Density Functional emulated by the Reduced Basis Method

Pablo Giuliani，${ }^{1,2, *}$ Kyle Godbey，${ }^{1, \dagger}$ Edgard Bonilla，${ }^{3, \ddagger}$ Frederi Viens，${ }^{2,4, \S}$ and Jorge Piekarewicz ${ }^{5}$ ，

Name	Date modified	Type	Size
－Basis	9／21／2022 11：11 AM	File folder	
－Performance	9／21／2022 11：11 AM	File folder	
－Nucleus＿48Ca＿CoeffEquations．txt	9／21／2022 11：11 AM	Text Document	1，474 KB
嘓 Nucleus＿48Ca＿Jacobian．txt	9／21／2022 11：11 AM	Text Document	2，404 KB
䡒 Nucleus＿48Ca＿JacobianKyle．txt	9／21／2022 11：11 AM	Text Document	2，404 KB
	9／21／2022 11：11 AM	Text Document	13 KB
䦦 Nucleus＿48Ca＿ProtonRadius．txt	9／21／2022 11：11 AM	Text Document	7 KB
Nucleus＿48Ca＿TotalEnergyFields．txt	9／21／2022 11：11 AM	Text Document	513 KB
艮 Nucleus＿48Ca＿TotalEnergyNucleons．txt	9／21／2022 11：11 AM	Text Document	1 KB
䁂 Nucleus＿48CaBasisNumbers．txt	9／21／2022 11：11 AM	Text Document	1 KB

Applications and Results

(2) Bayes goes fast: Uncertainty Quantification for a Covariant Energy Density Functional emulated by the Reduced Basis Method

Pablo Giuliani, ${ }^{1,2, *}$ Kyle Godbey, ${ }^{1, \dagger}$ Edgard Bonilla, ${ }^{3, \ddagger}$ Frederi Viens, ${ }^{2,4, \S}$ and Jorge Piekarewicz ${ }^{5}$,

Applications and Results

Applications and Results

(2) Bayes goes fast: Uncertainty Quantification for a Covariant Energy Density Functional emulated by the Reduced Basis Method

Pablo Giuliani, ${ }^{1,2, *}$ Kyle Godbey, ${ }^{1, \dagger}$ Edgard Bonilla, ${ }^{3, \ddagger}$ Frederi Viens, ${ }^{2,4, \S}$ and Jorge Piekarewicz ${ }^{5}$, §

Applications and Results

2 Bayes goes fast: Uncertainty Quantification for a Covariant Energy Density Functional emulated by the Reduced Basis Method

Pablo Giuliani, ${ }^{1,2, *}$ Kyle Godbey, ${ }^{1, \dagger}$ Edgard Bonilla, ${ }^{3, \ddagger}$ Frederi Viens, ${ }^{2,4, \S}$ and Jorge Piekarewicz ${ }^{5}$, §

Applications and Results

(2) Bayes goes fast: Uncertainty Quantification for a Covariant Energy Density Functional emulated by the Reduced Basis Method

Posterior Bayesian calibration

Masses and
Charge radii $\left\{\begin{array}{l}{ }^{16} \mathrm{O} \\ { }^{40} \mathrm{Ca} \\ { }^{48} \mathrm{Ca} \\ { }^{68} \mathrm{Ni} \\ { }^{90} \mathrm{Zr} \\ { }^{100} \mathrm{Sn} \\ { }^{116} \mathrm{Sn} \\ { }^{132} \mathrm{Sn} \\ { }^{144} \mathrm{Sm} \\ { }^{208} \mathrm{~Pb}\end{array}\right.$

Bayes goes fast

https://doi.org/10.3389/fphy.2022.1054524

Applications and Results

Applications and Results

Bayes goes fast

Applications and Results

The roses

https://github.com/odell/rose

Applications and Results
 and Results

 $$
F_{\alpha}(\phi)=\left(-\frac{d^{2}}{d r^{2}}+\frac{\ell(\ell+1)}{r^{2}}+\frac{2 \eta k}{r}+U(r, \alpha)-k^{2}\right) \phi(r)=0
$$

The roses

https://github.com/odell/rose

Applications and Results

D. Odell,,$^{1, 冈}$ P. Giuliani, ${ }^{2,3}$ M. Catacora-Rios, ${ }^{2,4}$ M. Chan, ${ }^{5}$ E. Bonilla, ${ }^{6}$ K. Godbey, ${ }^{2}$ R. J. Furnstahl, ${ }^{7}$ and F. M. Nunes ${ }^{2,4,}$,

$$
F_{\alpha}(\phi)=\left(-\frac{d^{2}}{d r^{2}}+\frac{\ell(\ell+1)}{r^{2}}+\frac{2 \eta k}{r}+U(r, \alpha)-k^{2}\right) \phi(r)=0
$$

The roses

https://github.com/odell/rose

Applications and Results

$F_{\alpha}(\phi)=\left(-\frac{d^{2}}{d r^{2}}+\frac{\ell(\ell+1)}{r^{2}}+\frac{2 \eta k}{r}+U(r, \underline{\alpha})-\underline{k^{2}}\right) \underline{\underline{\phi(r)}}=0$
Challenges:

1) Boundary conditions
2) Anomalies
3) Energy dependence
4) Non-affine potentials

The roses

https://github.com/odell/rose

Applications and Results

D. Odell, ${ }^{1,}$ ヤ P. Giuliani, ${ }^{2,3}$ M. Catacora-Rios, ${ }^{2,4}$ M. Chan, ${ }^{5}$ E. Bonilla, ${ }^{6}$ K. Godbey, ${ }^{2}$ R. J. Furnstahl, ${ }^{7}$ and F. M. Nunes ${ }^{2}, 4$, 用

Required for the vanilla Kohn variational principle
$\phi(r)_{r \rightarrow \infty} \rightarrow \frac{1}{p}\left(\sin (p r-\ell \pi / 2)+\tan \left(\delta_{\ell}\right) \cos (p r-\ell \pi / 2)\right)$

Challenges:

1) Boundary conditions
2) Anomalies

Efficient emulators for scattering using eigenvector continuation
 R.J. Furnstahl, A.J. Garcia, P.J. Millican, Xilin Zhang*

Toward emulating nuclear reactions using eigenvector continuation C. Drischler ${ }^{\mathrm{a}, *}$, M. Quinonez ${ }^{\mathrm{a}, \mathrm{b}}$, P.G. Giuliani ${ }^{\mathrm{a}, \mathrm{c}}$, A.E. Lovell ${ }^{\mathrm{d}}$, F.M. Nunes ${ }^{\mathrm{a}, \mathrm{b}}$

Applications and Results

Presenting ROSE, a Reduced Order Scattering Emulator
 Bonilla, ${ }^{6}$ K. Godbey, ${ }^{2}$ R. J. Furnstahl, ${ }^{7}$ and F. M. Nunes ${ }^{2}, 4$, 用

Required for the vanilla Kohn variational principle

$$
\phi(r)_{r \rightarrow \infty} \rightarrow \frac{1}{p}\left(\sin (p r-\ell \pi / 2)+\tan \left(\delta_{\ell}\right) \cos (p r-\ell \pi / 2)\right)
$$

```
    Basis of
``` snapshots
\[
\hat{\phi}(r)=\sum_{k}^{N} a_{k} \phi_{k}(r)
\]
\[
\sum_{k}^{N} a_{k}=1
\]

\section*{Challenges:}
1) Boundary conditions
2) Anomalies

\section*{Efficient emulators for scattering using eigenvector continuation \\ R.J. Furnstahl, A.J. Garcia, P.J. Millican, Xilin Zhang* \\ }

Toward emulating nuclear reactions using eigenvector continuation C. Drischler \({ }^{\text {a,* }}\), M. Quinonez \({ }^{\mathrm{a}, \mathrm{b}}\), P.G. Giuliani \({ }^{\mathrm{a}, \mathrm{c}}\), A.E. Lovell \({ }^{\mathrm{d}}\), F.M. Nunes \({ }^{\mathrm{a}, \mathrm{b}}\)

\title{
Applications and Results
}

Presenting ROSE, a Reduced Order Scattering Emulator
 Bonilla, \({ }^{6}\) K. Godbey, \({ }^{2}\) R. J. Furnstahl, \({ }^{7}\) and F. M. Nunes \({ }^{2}, 4\), 团

\section*{POD Basis}
\(\hat{\phi}(r)=\phi_{0}(r)+\sum_{k}^{n} a_{k} \phi_{k}(r)\)

Challenges:
1) Boundary conditions
2) Anomalies
3) Energy dependence
4) Non-affine potentials

The roses

https://github.com/odell/rose

\title{
Applications and Results
}

Presenting ROSE, a Reduced Order Scattering Emulator
D. Odell, \({ }^{1, \text {, }}\) P P. Giuliani, \({ }^{2,3}\) M. Catacora-Rios, \({ }^{2,4}\) M. Chan, \({ }^{5}\) E. Bonilla, \({ }^{6}\) K. Godbey, \({ }^{2}\) R. J. Furnstahl, \({ }^{7}\) and F. M. Nunes \({ }^{2}, 4\), 团

\section*{POD Basis}
\(\hat{\phi}(r)=\phi_{0}(r)+\sum_{k}^{n} a_{k} \phi_{k}(r)\)

Challenges:
1) Boundary conditions
2) Anomalies
3) Energy dependence 4) Non-affine potentials

Coulomb function

Principal components of the differences of snapshots with \(\phi_{0}(r)\)

https://github.com/odell/rose

\title{
Applications and Results
}

Presenting ROSE, a Reduced Order Scattering Emulator
D. Odell, \({ }^{1, \text {, }}\) P P. Giuliani, \({ }^{2,3}\) M. Catacora-Rios, \({ }^{2,4}\) M. Chan, \({ }^{5}\) E. Bonilla, \({ }^{6}\) K. Godbey, \({ }^{2}\) R. J. Furnstahl, \({ }^{7}\) and F. M. Nunes \({ }^{2}, 4\), 团

\section*{POD Basis}
\(\hat{\phi}(r)=\phi_{0}(r)+\sum_{k}^{n} a_{k} \phi_{k}(r)\)
1) Boundary conditions
\[
\hat{\phi}(r)_{r \rightarrow 0} \sim r^{\ell+1}
\]

\title{
Applications and Results
}

Presenting ROSE, a Reduced Order Scattering Emulator
D. Odell, \({ }^{1,}\), \({ }^{\text {P. Giuliani, }}{ }^{2,3}\) M. Catacora-Rios, \({ }^{2,4}\) M. Chan, \({ }^{5}\) E. Bonilla, \({ }^{6}\) K. Godbey, \({ }^{2}\) R. J. Furnstahl, \({ }^{7}\) and F. M. Junes \({ }^{2,4,}\),

\section*{POD Basis}
\(\hat{\phi}(r)=\phi_{0}(r)+\sum_{k}^{n} a_{k} \phi_{k}(r)\)
components of the differences of snapshots with \(\phi_{0}(r)\)

1) No "normalization"/

Conjectures

\section*{Fast \& accurate emulation of two-body scattering}

\section*{Christian Drischler (drischler@ohio.edu)}

Christian's talk yesterday

\section*{Anomaly detection and removal}

Basic idea: emulate a variety of matrices associated with different boundary conditions and check for consistency
Filter out all inconsistent pairs \(\left\{L_{i}, L_{j}\right\}_{j i}\) and average over ("mix") the
 remaining pairs with weight \(\Delta^{(L)}\left(L_{i}, L_{j}\right)\) 1) Boundary conditionso

Might be needed if emulator acts funny

\title{
Applications and Results
}

Presenting ROSE, a Reduced Order Scattering Emulator
D. Odell, \({ }^{1,}\) ヤ P. Giuliani, \({ }^{2,3}\) M. Catacora-Rios, \({ }^{2,4}\) M. Chan, \({ }^{5}\) E. Bonilla, \({ }^{6}\) K. Godbey, \({ }^{2}\) R. J. Furnstahl, \({ }^{7}\) and F. M. Nunes \({ }^{2,4,}\),
\[
\left(-\frac{d^{2}}{d r^{2}}+\frac{\ell(\ell+1)}{r^{2}}+U(r, \alpha)-p^{2}\right) \phi(r)
\]

Challenges:
\(\mathrm{E}(\mathrm{MeV})\)
2) Anomalies
3) Energy dependence

The roses

https://github.com/odell/rose

\title{
Applications and Results
}

Presenting ROSE, a Reduced Order Scattering Emulator
 Bonilla, \({ }^{6}\) K. Godbey, \({ }^{2}\) R. J. Furnstahl, \({ }^{7}\) and F. M. Nunes \({ }^{2}, 4\), 团

Challenges:
1) Boundary conditions
2) Anomalies
3) Energy dependence

The roses

https://github.com/odell/rose

\title{
Applications and Results
}

Presenting ROSE, a Reduced Order Scattering Emulator
D. Odell, \({ }^{1, \text { 团 P. Giuliani, }}{ }^{2,3}\) M. Catacora-Rios, \({ }^{2,4}\) M. Chan, \({ }^{5}\) E. Bonilla, \({ }^{6}\) K. Godbey, \({ }^{2}\) R. J. Furnstahl, \({ }^{7}\) and F. M. Nunes \({ }^{2}, 4\), 团
\(\sigma(\mathrm{E})\)
\begin{tabular}{c}
One emulator per cross \\
section \\
energy point
\end{tabular}
enges: \(\left(-\frac{d^{2}}{d r^{2}}+\frac{\ell(\ell+1)}{r^{2}}+U(r, \alpha)-p^{2}\right) \phi(r)\)

Challenges:
\(E(\mathrm{MeV})\)

The roses

https://github.com/odell/rose

\title{
Applications and Results
}

Presenting ROSE, a Reduced Order Scattering Emulator

Bonilla, \({ }^{6}\) K. Godbey, \({ }^{2}\) R. J. Furnstahl, \({ }^{7}\) and F. M. Nunes \({ }^{2,4,}\), \({ }^{5}\)

Challenges:

The roses

https://colab.research.google.com/drive/1Vtg 11apJy0o4D2MloDz1DOWbxbxlwW8H

\title{
Applications and Results
}

Presenting ROSE, a Reduced Order Scattering Emulator
D. Odell, \({ }^{1, \text {, }}\) P P. Giuliani, \({ }^{2,3}\) M. Catacora-Rios, \({ }^{2,4}\) M. Chan, \({ }^{5}\) E. Bonilla, \({ }^{6}\) K. Godbey, \({ }^{2}\) R. J. Furnstahl, \({ }^{7}\) and F. M. Nunes \({ }^{2}, 4\), 团

Challenges:
Energy

1) Boundary conditions
2) Anomalies
3) Energy dependence

The roses

https://github.com/odell/rose

\title{
Applications and Results
}

Presenting ROSE, a Reduced Order Scattering Emulator
D. Odell, \({ }^{1,0}\) P. Giuliani, \({ }^{2,3}\) M. Catacora-Rios, \({ }^{2,4}\) M. Chan, \({ }^{5}\) E.

Bonilla, \({ }^{6}\) K. Godbey, \({ }^{2}\) R. J. Furnstahl, \({ }^{7}\) and F. M. Nunes \({ }^{2}, 4\), 用

Energy
window \(\Delta \mathrm{E}\)

Coulomb is annoying
\[
\left(-\frac{d^{2}}{d s^{2}}+\frac{\ell(\ell+1)}{s^{2}}+\frac{\eta^{*}}{s}+U(s, \alpha, p)-1\right) \phi(s)
\]
3) Energy dependence

\title{
Applications and Results
}
 Bonilla, \({ }^{6}\) K. Godbey, \({ }^{2}\) R. J. Furnstahl, \({ }^{7}\) and F. M. Nunes \({ }^{2}, 4\), 团

Challenges:
1) Boundary conditions
2) Anomalies
3) Energy dependence
4) Non-affine potentials

The roses

\section*{Applications and Results}
D. Odell, \({ }^{1,}\) ヤ P. Giuliani, \({ }^{2,3}\) M. Catacora-Rios, \({ }^{2,4}\) M. Chan, \({ }^{5}\) E. Bonilla, \({ }^{6}\) K. Godbey, \({ }^{2}\) R. J. Furnstahl, \({ }^{7}\) and F. M. Nunes \({ }^{2,4, ~}{ }^{\text {B }}\)

\title{
Applications and Results
}
\[
\begin{aligned}
& \text { RBM } \\
& \begin{array}{l}
\hat{\phi}(r)=\phi_{0}(r)+\sum_{k}^{n} a_{k} \phi_{k}(r) \quad \hat{\phi}=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots
\end{array}\right]_{n} \\
\left\langle\psi_{j} \mid F_{\alpha}[\hat{\phi}(r)]\right\rangle=0 \\
\\
j=\{1, n\}
\end{array} \quad\left(\quad \int_{n \times n}\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots
\end{array}\right]_{n}=\left[\begin{array}{l}
\cdot \\
\cdot \\
\cdot
\end{array}{ }_{n}\right.\right.
\end{aligned}
\]

\section*{Applications and Results}

Presenting ROSE, a Reduced Order Scattering Emulator
 Bonilla, \({ }^{6}\) K. Godbey, \({ }^{2}\) R. J. Furnstahl, \({ }^{7}\) and F. M. Nuns \({ }^{2}, 4\), 团
\(F_{\alpha}(\phi)=\left(-\frac{d^{2}}{d r^{2}}+\frac{\ell(\ell+1)}{r^{2}}+U(r, \alpha)-p^{2}\right) \phi(r)=0\)

High Fidelity
REM
\[
\hat{\phi}(r)=\phi_{0}(r)+\sum_{k}^{n} a_{k} \phi_{k}(r) \quad \hat{\phi}=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots
\end{array}\right]_{n}
\]
\[
\left\langle\psi_{j} \mid F_{\alpha}[\hat{\phi}(r)]\right\rangle=0
\]
\[
j=\{1, n\}
\]

Same for local or non-local \(U(r, \alpha)\)
\[
\left\langle\psi_{j}\right| F_{\alpha}\left|\phi_{k}\right\rangle=
\]
\[
\int \psi_{j}^{*}(s) F_{\alpha} \phi_{k}(s) d s
\]
\[
\int_{n \times n}\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots
\end{array}\right)_{n}=\left[\begin{array}{l}
\cdot \\
\cdot
\end{array}\right]_{n}
\]

\title{
Applications and Results
}

Same for local or
BIG matrix High Fidelity

\section*{REM}
\(\hat{\phi}(r)=\phi_{0}(r)+\sum_{k}^{n} a_{k} \phi_{k}(r) \quad \hat{\phi}=\left[\begin{array}{c}a_{1} \\ a_{2} \\ \vdots\end{array}\right)_{n}\)
\(\left\langle\psi_{j} \mid F_{\alpha}[\hat{\phi}(r)]\right\rangle=0\)

\[
j=\{1, n\}
\]

\section*{Applications and Results}
D. Odell, \({ }^{1, \text {, }}\) U P. Giuliani, \({ }^{2,3}\) M. Catacora-Rios, \({ }^{2,4}\) M. Chan, \({ }^{5}\) E. Bonilla, \({ }^{6}\) K. Godbey, \({ }^{2}\) R. J. Furnstahl, \({ }^{7}\) and F. M. Nunes \({ }^{2}, 4\), 周

\section*{Optical Potential}

\[
\begin{aligned}
& U(r, \alpha)=-V_{v}\left[1+\exp \left(\frac{r-R_{v}}{a_{v}}\right)\right]-i W_{v}\left[1+\exp \left(\frac{r-R_{w}}{a_{w}}\right)\right]-i 4 a_{d} W_{d} \frac{d}{d r}\left[1+\exp \left(\frac{r-R_{d}}{a_{d}}\right)\right] \\
& F_{\alpha}(\phi)=\left(-\frac{d^{2}}{d r^{2}}+\frac{\ell(\ell+1)}{r^{2}}+U(r, \alpha)-p^{2}\right) \phi(r)=0
\end{aligned}
\]

The roses

https://github.com/odell/rose

\section*{Applications and Results}

D．Odell，\({ }^{1,}\) 田 P．Giuliani，\({ }^{2,3}\) M．Catacora－Rios，\({ }^{2,4}\) M．Chan，\({ }^{5}\) E．

\section*{Optical Potential}
\[
\begin{aligned}
& U(r, \alpha)=-V_{v}\left[1+\exp \left(\frac{r-R_{v}}{a_{v}}\right)\right]-i W_{v}\left[1+\exp \left(\frac{r-R_{w}}{a_{w}}\right)\right]-i 4 a_{d} W_{d} \frac{d}{d r}\left[1+\exp \left(\frac{r-R_{d}}{a_{d}}\right)\right] \\
& F_{\alpha}(\phi)=\left(-\frac{d^{2}}{d r^{2}}+\frac{\ell(\ell+1)}{r^{2}}+U(r, \alpha)-p^{2}\right) \phi(r)=0
\end{aligned}
\]
\[
\left\langle\psi_{j} \mid F_{\alpha}[\hat{\phi}(r)]\right\rangle=\int \psi_{j}(r) F_{\alpha}[\hat{\phi}(r)] d r=0
\]

\section*{The roses}

https：／／github．com／odell／rose

\section*{Applications and Results}

Presenting ROSE, a Reduced Order Scattering Emulator
D. Odell, \({ }^{1, \text { 团 P. Giuliani, }}{ }^{2,3}\) M. Catacora-Rios, \({ }^{2,4}\) M. Chan, \({ }^{5}\) E. Bonilla, \({ }^{6}\) K. Godbey, \({ }^{2}\) R. J. Furnstahl, \({ }^{7}\) and F. M. Nunes \({ }^{2}, 4\), 团

\section*{Optical Potential}
\[
\begin{aligned}
& U(r, \alpha)=-V_{v}\left[1+\exp \left(\frac{r-\sqrt[R_{v}]{v}}{a_{v}}\right)\right]-i W_{v}\left[1+\exp \left(\frac{r-\mid R_{w}}{a_{w}}\right)\right]-i 4 a_{d} W_{d} \frac{d}{d r}\left[1+\exp \left(\frac{r-\mid R_{d}}{a_{d}}\right)\right] \\
& \underbrace{F_{\alpha}(\phi)=\left(-\frac{d^{2}}{d r^{2}}+\frac{\ell(\ell+1)}{r^{2}}+U(r, \alpha)-p^{2}\right) \phi(r)=0} \text { Non-affine problem }
\end{aligned}
\]
\[
\left\langle\psi_{j} \mid F_{\alpha}[\hat{\phi}(r)]\right\rangle=\int \psi_{j}(r) F_{\alpha}[\hat{\phi}(r)] d r=0
\]

The roses

https://github.com/odell/rose

\section*{Applications and Results}

Presenting ROSE, a Reduced Order Scattering Emulator
D. Odell, \({ }^{1,}\) 田 P. Giuliani, \({ }^{2,3}\) M. Catacora-Rios, \({ }^{2,4}\) M. Chan, \({ }^{5}\) E. Bonilla, \({ }^{6}\) K. Godbey, \({ }^{2}\) R. J. Furnstahl, \({ }^{7}\) and F. M. Nunes \({ }^{2}, 4\), 用

\section*{Optical Potential}
\[
\begin{aligned}
& U(r, \alpha)=-V_{v}\left[1+\exp \left(\frac{r-\underline{R_{v}}}{a_{v}}\right)\right]-i W_{v}\left[1+\exp \left(\frac{r-\mid R_{w}}{a_{w}}\right)\right]-i 4 a_{d} W_{d} \frac{d}{d r}\left[1+\exp \left(\frac{r-\sqrt{R_{d}}}{a_{d}}\right)\right] \\
& \underbrace{F_{\alpha}(\phi)=\left(-\frac{d^{2}}{d r^{2}}+\frac{\ell(\ell+1)}{r^{2}}+U(r, \alpha)-p^{2}\right) \phi(r)=0} \text { Non Non-affine problem }
\end{aligned}
\]
\[
\begin{aligned}
& \left\langle\psi_{j} \mid F_{\alpha}[\hat{\phi}(r)]\right\rangle=\int \psi_{j}(r) F_{\alpha}[\hat{\phi}(r)] d r=0 \\
& U(r, \alpha) \approx \sum_{i}^{m} b_{i}(\alpha) f(r)
\end{aligned}
\]

The roses

https://github.com/odell/rose

\section*{Applications and Results}

Presenting ROSE, a Reduced Order Scattering Emulator
 Bonilla, \({ }^{6}\) K. Godbey, \({ }^{2}\) R. J. Furnstahl, \({ }^{7}\) and F. M. Nunes \({ }^{2,4,}{ }^{\text {P }}\)
1) Choose a basis
\(U(r, \alpha) \approx \sum_{i}^{m} b_{i}(\alpha) f(r)\)

Principal components of \(U(r, \alpha)\)

\title{
Applications and Results
}
\[
U\left(r_{j}, \alpha\right)-\sum_{i}^{m} b_{i}(\alpha) f\left(r_{j}\right)=0
\]

Obtained by \(\quad j=\{1, m\}\) interpolation
1) Choose a basis
\(U(r, \alpha) \approx \sum_{i}^{m} b_{i}(\alpha) f(r)\)

\section*{Applications and Results}
D. Odell, \({ }^{1, \text {, }}\) P. Giuliani, \({ }^{2,3}\) M. Catacora-Rios, \({ }^{2,4}\) M. Chan, \({ }^{5}\) E.

2) Project
\[
U\left(r_{j}, \alpha\right)-\sum_{i}^{m} b_{i}(\alpha) f\left(r_{j}\right)=0
\]

Dirac
\[
\begin{gathered}
\psi_{j}(r)=\delta\left(r-r_{j}\right) \\
\left\langle\psi_{j} \mid F_{\alpha}[\hat{\phi}(r)]\right\rangle=F_{\alpha}\left[\hat{\phi}\left(r_{j}\right)\right]
\end{gathered}
\]
(collocation method)

Obtained by \(\quad j=\{1, m\}\) interpolation
1) Choose a basis
\(U(r, \alpha) \approx \sum_{i}^{m} b_{i}(\alpha) f(r)\)

\title{
Applications and Results
}

Presenting ROSE, a Reduced Order Scattering Emulator
D. Odell, \({ }^{1, \text { 团 P. Giuliani, }}{ }^{2,3}\) M. Catacora-Rios, \({ }^{2,4}\) M. Chan, \({ }^{5}\) E. Bonilla, \({ }^{6}\) K. Godbey, \({ }^{2}\) R. J. Furnstahl, \({ }^{7}\) and F. M. Nunes \({ }^{2}\), 4, 团

2-body scattering

\(\left.F_{\alpha}(\phi)=\left(-\frac{d^{2}}{d r^{2}}+\frac{\ell(\ell+1)}{r^{2}}+\frac{2 \eta k}{r}+U(r, \underline{\alpha})-\underline{k^{2}}\right) \underline{\underline{\phi(r}}\right)=0\)
Challenges:
1) Boundary conditions
2) Anomalies
3) Energy dependence
4) Non-affine potentials

The roses

https://github.com/odell/rose

\title{
Applications and Results
}

ROSE

CAT plot

\title{
Applications and Results
}

Presenting ROSE, a Reduced Order Scattering Emulator
D. Odell, \({ }^{1, \text { 团 P. Giuliani, }}{ }^{2,3}\) M. Catacora-Rios, \({ }^{2,4}\) M. Chan, \({ }^{5}\) E. Bonilla, \({ }^{6}\) K. Godbey, \({ }^{2}\) R. J. Furnstahl, \({ }^{7}\) and F. M. Nunes \({ }^{2,4,}{ }^{5}\)

CAT plot

\title{
Applications and Results
}
D. Odell, \({ }^{1, \text { 团 P. Giuliani, }}{ }^{2,3}\) M. Catacora-Rios, \({ }^{2,4}\) M. Chan, \({ }^{5}\) E.

Bonilla, \({ }^{6}\) K. Godbey, \({ }^{2}\) R. J. Furnstahl, \({ }^{7}\) and F. M. Nunes \({ }^{2}, 4\), , \({ }^{5}\)

\[
U(r, \alpha)=
\]
\[
-\underline{V_{v}}\left[1+\exp \left(\frac{r-\underline{R_{v}}}{\underline{a_{v}}}\right)\right]-i \underline{W_{v}}\left[1+\exp \left(\frac{r-\underline{R_{v}}}{\underline{a_{v}}}\right)\right]
\]
\[
-i \underline{4 a_{d}} \underline{W_{d}} \frac{d}{d r}\left[1+\exp \left(\frac{r-\underline{\underline{R_{d}}}}{\underline{\underline{a_{d}}}}\right)\right]
\]

\title{
Applications and Results
}
D. Odell, \({ }^{1,}\) ヤ P. Giuliani, \({ }^{2,3}\) M. Catacora-Rios, \({ }^{2,4}\) M. Chan, \({ }^{5}\) E. Bonilla, \({ }^{6}\) K. Godbey, \({ }^{2}\) R. J. Furnstahl, \({ }^{7}\) and F. M. Nunes \({ }^{2}, 4\), 团

\title{
Applications and Results
}
 Bonilla, \({ }^{6}\) K. Godbey, \({ }^{2}\) R. J. Furnstahl, \({ }^{7}\) and F. M. Nunes \({ }^{2,4,}\),

\section*{Applications and Results}
D. Odell, \({ }^{1, 冈}\) P. Giuliani, \({ }^{2,3}\) M. Catacora-Rios, \({ }^{2,4}\) M. Chan, \({ }^{5}\) E. Bonilla, \({ }^{6}\) K. Godbey, \({ }^{2}\) R. J. Furnstahl, \({ }^{7}\) and F. M. Nunes \({ }^{2}, 4\), 团
\begin{tabular}{|c|c|}
\hline & \\
\hline & \begin{tabular}{llll}
0 & 50 & 100 & 150 \\
& \(\theta(\mathrm{deg})\) & \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\title{
Applications and Results
}

Presenting ROSE, a Reduced Order Scattering Emulator
D. Odell, \({ }^{1, 母}\) P. Giuliani, \({ }^{2,3}\) M. Catacora-Rios, \({ }^{2,4}\) M. Chan, \({ }^{5}\) E. Bonilla, \({ }^{6}\) K. Godbey, \({ }^{2}\) R. J. Furnstahl, \({ }^{7}\) and F. M. Nunes \({ }^{2}\), 4, 团

Most important outcome:

\section*{Software useful for the community}

\section*{rose}
- Reduced-Order Scattering Emulator
- Python
- BAND Framework v0.3
- Supports local, complex, non-affine interactions.
- Designed to be user-friendly.
- See pseudo-code \(\Rightarrow\)
- Supports user-supplied solutions
```

import rose
def potential(r, alpha):
alpha0, alpha1, ... = alpha
return alpha0 *
woods_saxon(
r, alpha1, alpha2
interaction = InteractionEIM(
potential,
num_params,
reduced_mass,
energy, z_1, z_2,
is_complex=True
)
sae = ScatteringAmplitudeEmulator(
interaction,
training_points,
l_max
)
cross_section = sae.emulate(alpha)

```

\title{
Applications and Results
}

Presenting ROSE, a Reduced Order Scattering Emulator
 Bonilla, \({ }^{6}\) K. Godbey, \({ }^{2}\) R. J. Furnstahl, \({ }^{7}\) and F. M. Nunes \({ }^{2}\), 4, 团

Most important outcome:

\section*{Software useful for the community}

\section*{rose}
- Reduced-Order Scattering Emulator
- Python
- BAND Framework v0.3
- Supports local, complex, non-affine interactions.
- Designed to be user-friendly.
- See pseudo-code \(\Rightarrow\)
- Supports user-supplied solutions

\section*{Future}
- \(E\) emulation with Coulomb
- works below threshold (AB)
- nonlocal potentials
- 3-body scattering [[s]
- \(T\) instead of \(t\)
- Coupled channels

\title{
Applications and Results
}
4) Boundary conditions

5) Incompatible domains \(\qquad\)
Reference domain
6) Non-affine operators \(\qquad\) Empirical Interpolation Method

Challenges:
1) Boundary conditions
2) Anomalies
3) Energy dependence
4) Non-affine potentials

https://github.com/odell/rose

\title{
Applications and Results
}

Presenting ROSE, a Reduced Order Scattering Emulator
 Bonilla, \({ }^{6}\) K. Godbey, \({ }^{2}\) R. J. Furnstahl, \({ }^{7}\) and F. M. Nunes \({ }^{2}, 4\), 团
4) Boundary conditions

1) Boundary conditions

\title{
Applications and Results
}
D. Odell, \({ }^{1, \text { 团 P. Giuliani, }}{ }^{2,3}\) M. Catacora-Rios, \({ }^{2,4}\) M. Chan, \({ }^{5}\) E. Bonilla, \({ }^{6}\) K. Godbey, \({ }^{2}\) R. J. Furnstahl, \({ }^{7}\) and F. M. Nunes \({ }^{2}, 4\), 团
5) Incompatible domains \(\qquad\)
\[
\left(-\frac{d^{2}}{d r^{2}}+\frac{\ell(\ell+1)}{r^{2}}+U(r, \alpha)-p^{2}\right) \phi(r)
\]
\[
\int\left[\begin{array}{l}
\text { Re-scale: } \\
p r=s
\end{array}\right.
\]
\[
\left(-\frac{d^{2}}{d s^{2}}+\frac{\ell(\ell+1)}{s^{2}}+U(s, \alpha, p)-1\right) \phi(s)
\]
3) Energy dependence

\title{
Applications and Results
}

Presenting ROSE, a Reduced Order Scattering Emulator
 Bonilla, \({ }^{6}\) K. Godbey, \({ }^{2}\) R. J. Furnstahl, \({ }^{7}\) and F. M. Nunes \({ }^{2}, 4\), 䒬
5) Incompatible domains

FIGURE 7: RB triangulation of the reference domain.

FIGURE 6: RB triangulation when the control rod is withdrawn.
\[
\left(-\frac{d^{2}}{d r^{2}}+\frac{\ell(\ell+1)}{r^{2}}+U(r, \alpha)-p^{2}\right) \phi(r)
\]
\[
\int \begin{aligned}
& \text { Re-scale: } \\
& p r=s
\end{aligned}
\]
\[
\left(-\frac{d^{2}}{d s^{2}}+\frac{\ell(\ell+1)}{s^{2}}+U(s, \alpha, p)-1\right) \phi(s)
\]

A REDUCED ORDER MODEL FOR MULTI-GROUP TIME-DEPENDENT PARAMETRIZED REACTOR SPATIAL KINETICS

\section*{Applications of reduced-basis methods to the nuclear single-particle spectrum}

\author{
Amy L. Anderson © \({ }^{*}\), Graham L. O’Donnell, \({ }^{\dagger}\) and J. Piekarewicz \({ }^{()^{\ddagger}}\) \\ Department of Physics, Florida State University, Tallahassee, Florida 32306, USA
}
(Received 1 July 2022; accepted 20 September 2022; published 30 September 2022)
Reduced-basis methods provide a powerful framework for building efficient and accurate emulators. Although widely applied in many fields to simplify complex models, reduced-basis methods have only been recently introduced into nuclear physics. In this Letter we build an emulator to study the single-particle structure of atomic nuclei. By scaling a suitable mean-field Hamiltonian, a "universal" reduced basis is constructed capable of accurately and efficiently reproduce the entire single-particle spectrum of a variety of nuclei. Indeed, the reduced-basis model reproduces both ground- and excited-state energies as well as the associated wave functions with remarkable accuracy. Our results bode well for more demanding applications that use Bayesian optimization to calibrate nuclear energy density functionals.

FIGURE 6: RB triangulation when the control rod is withdrawn.

\title{
Applications and Results
}

Presenting ROSE, a Reduced Order Scattering Emulator
D. Odell, \({ }^{1, \text { 团 P. Giuliani, }}{ }^{2,3}\) M. Catacora-Rios, \({ }^{2,4}\) M. Chan, \({ }^{5}\) E. Bonilla, \({ }^{6}\) K. Godbey, \({ }^{2}\) R. J. Furnstahl, \({ }^{7}\) and F. M. Nunes \({ }^{2}, 4\), 周
6) Non-affine operators

Empirical Interpolation Method

An 'empirical interpolation' method: application to efficient reduced-basis discretization of partial differential equations

Maxime Barrault \({ }^{\text {a }}\), Yvon Maday \(^{\text {b }}\), Ngoc Cuong Nguyen \({ }^{\mathrm{c}}\), Anthony T. Patera \({ }^{\text {d }}\)

\title{
Applications and Results
}

Non-affinity and Beyond: Mitigating non-linear and non-affine structures for the efficient emulation of Density Functional Theory

\title{
Applications and Results
}

Non-affinity and Beyond: Mitigating non-linear and non-affine structures for the efficient emulation of Density Functional Theory

\author{
Kyle Godbey \({ }^{1, *+,}\), Edgard Bonilla \({ }^{2,+,}\), Pablo Giuliani \({ }^{1.3}\), and Yanlai Chen \({ }^{4}\)
}

Non-affinity and Beyond: Mitigating non-linear and non-affine structures for the efficient emulation of Density Functional Theory
```

Kyle Godbey }\mp@subsup{}{}{1,*+,},\mathrm{ Edgard Bonilla (2,+, Pablo Giuliani }\mp@subsup{}{}{1.3}\mathrm{ , and Yanlai Chen }\mp@subsup{}{}{4

```

Coming soon challenge
\[
\left.\left\langle\psi_{j}\right| F_{F}|\hat{\phi}(r)\rangle\right\rangle
\]
3) Very fast
\[
\begin{gathered}
\mathcal{H}_{t}(r)=C_{t}^{\rho} \rho_{t}^{2}+C_{t}^{\rho \Delta \rho} \rho_{t} \Delta \rho_{t}+C \\
+C_{t}^{J} \stackrel{J}{J}_{t}^{2}+C_{t}^{\rho \nabla J} \rho_{t} \nabla \cdot \mathbf{J}_{t} \\
\text { Mili-seconds }
\end{gathered}
\]
VERY non-linear
\[
\leqq \rho(r)^{\alpha}
\]

\section*{Dencity Functinnal Theory}

\section*{Level crossing} is a problem
3) Very fast
\[
\left(\phi^{(1)}(r)^{2}+\phi^{(2)}(r)^{2}+\ldots\right)^{\alpha}
\]

VERY non-linear
\[
+C_{t}^{J \overleftrightarrow{J}_{t}^{2}}+C_{t}^{\rho \nabla J} \rho_{t} \nabla \cdot \mathbf{J}_{t},
\]
\(\triangleq \rho(r)^{\alpha}\)

Level crossing is a problem
\[
\begin{aligned}
\mathcal{H}_{t}(r) & =C_{t}^{\rho} \rho_{t}^{2}+C_{t}^{\rho \Delta \rho} \rho_{t} \Delta \rho_{t}+C \\
& +C_{t}^{J} \stackrel{\leftrightarrow}{J}_{t}^{2}+C_{t}^{\rho \nabla J} \rho_{t} \nabla \cdot \mathbf{J}_{t}
\end{aligned}
\]
\[
\left(\phi^{(1)}(r)^{2}+\phi^{(2)}(r)^{2}+\ldots\right)^{\alpha}
\]

VERY non-linear
§ \(\rho(r)^{\alpha}\)

\title{
Applications and Results
}
(5) Application of reduced basis methods to compact stars

Amy Anderson, \({ }^{1, *}\) Pablo Giuliani, \({ }^{2, \dagger}\) and J.Piekarewicz \({ }^{1, \ddagger}\)
\({ }^{1}\) Department of Physics, Florida State University,Tallahassee, FL 32306, USA
\({ }^{2}\) FRIB/NSCL Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
Amy
Anderson

\title{
Applications and Results
}

Application of reduced basis methods to compact stars
Amy Anderson, \({ }^{1, *}\) Pablo Giuliani, \({ }^{2, \dagger}\) and J.Piekarewicz \({ }^{1, ~}\),
\({ }^{1}\) Department of Physics, Florida State University,Tallahassee, FL 32306, USA

\section*{Upcoming highlight}
(1) Smart posterior handling

\section*{Upcoming highlights}
(1) Smart posterior handling

\section*{Upcoming highlights}
(1) Smart posterior handling

Chaos Normalizing expansion flows

\section*{Upcoming}
(1) Smart posterior handling highlights

Landon
Buskirk

(Frederi Viens Edgard Bonilla)

Chaos Normalizing
 expansion flows

Welcome to BMEX! Please input your requested nuclei on the left.

Differential Cross Section \(\quad \checkmark\)

Select Interaction:
Koning-Delaroche \(\square\)

\section*{Upcoming}
(1) Smart posterior handling highlights

Landon Buskirk

(Frederi Viens Edgard Bonilla)
 Chaos Normalizing
 expansion flows
(Yukari Yamauchi Landon Buskirk)

\section*{Baysrian flace Friplors}

Compute For:

Select Quantity:
\begin{tabular}{|l|}
\hline Differential Cross Section \\
\hline
\end{tabular}

Welcome to BMEX! Please input vour requested nuclei on the left.
"A future where models are not defined by parameter values, but rather by distributions constantly updated with new data"

\section*{Optical potentials for the rare-isotope beam era}

In regions of the nuclear chart away from stability, which represent a frontier in nuclear science over the coming decade and which will be probed at new rareisotope beam facilities worldwide, there is a targeted need to quantify and reduce theoretical reaction model uncertainties, especially with respect to nuclear optical potentials.

\section*{Bayspian may Firplorsr}

Select Quantity:
Differential Cross Section \(\quad\) -

Select Interaction:
Koning-Delaroche
"A future where models are not defined by parameter values, but rather by distributions constantly

\section*{Takeaways}

\section*{Takeaways}
1) These methods are SO cool

\section*{Takeaways}
1) These methods are SO cool

Reduced Basis Method

Straightforward
and broadly applicable \(\begin{array}{ll}\hat{\phi}(x)=\phi_{0}+\sum_{k}^{n} a_{k} \phi_{k}(x) & \text { Training } \\ \left\langle\psi_{j} \mid F_{\alpha}[\hat{\phi}(x)]\right\rangle=0 & \text { Projecting }\end{array}\)

\section*{Takeaways}
1) These methods are SO cool
2) UQ needs multidisciplinary efforts

\section*{Takeaways}
1) These methods are SO cool
2) UQ needs multidisciplinary efforts

\section*{Takeaways}
1) These methods are SO cool
2) UQ needs multidisciplinary efforts

Work in collaboration with experts

Advanced Scientific Computing and Statistics Network

\section*{Takeaways}
1) These methods are SO cool
2) UQ needs multidisciplinary efforts

\section*{Takeaways}

Work in collaboration with experts ...

... and find that the real \(U Q\) is the friends you made along the way```

