Reduced basis methods for uncertainty quantification in nuclear physics

Pablo Giuliani giulianp@frib.msu.edu

Outline

Why Uncertainty Quantification? How

The Reduced Basis Method

How it works

Problems table

Applications and Results

Takeaways

Outline

Why Uncertainty Quantification? How

The Reduced Basis Method How it works

Problems table

Applications and Results

Jorge

Takeaways

Kyle

Frederi

Daniel

Dean

me

Edgard

NSAC Long Range Plan Town Hall Meeting on Nuclear Structure, Reactions and Astrophysics Nov 14 – 16, 2022

NSAC Long Range Plan Town Hall Meeting on Nuclear Structure, Reactions and Astrophysics Nov 14 – 16, 2022

Computing (HPC, Quantum, AI/ML)

What are the most compelling scientific opportunities over the next decade & their potential scientific impact?

- Development of emulators, AI/ML and Bayesian methods:
 - Opens up entirely new ways to make predictions and quantify uncertainties
 - Experimental design: which measurements will help constrain/inform theoretical models (maximize the success of an experiment)

Gaute Hagen, Calvin Johnson, Michelle Kuchera Dean Lee, Pieter Maris, Kyle Wendt

Neutron Stars and Dense Matter

Since LRP2015, major breakthroughs

Quantification of uncertainties in data & models→Bayesian Analysis

Betty Tsang

5-10 year priorities for nuclear data covariances and uncertainty quantification as defined by the Nuclear Data Uncertainty Quantification Meeting D. Neudecker

Nuclear Structure and Reaction Theory

Working group: Papenbrock, Phillips, Piarulli, Potel, Schunck, Tews, Volya + Fossez, Hebborn, Koenig

· Reactions are awesome: Reactions are the best window into the structure and dynamics of nuclei, and address data needed for other fields. Full UQ and reaction-theory modeling crucial

Predictive theory of nuclei and their interactions

We have entered a precision era: field moves Thomas towards quantified uncertainties

Papenbrock

Uncertainty guantification & Bayesian machine learning have advanced nuclear theory

NSAC Long Range Plan Town Hall Meeting on Nuclear Structure, Reactions and Astrophysics Nov 14 – 16, 2022

Computing (HPC, Quantum, AI/ML)

What are the most compelling scientific opportunities over the next decade & their potential scientific impact?

- Development of emulators, AI/ML
- and Bayesian methods:
- Opens up entirely new ways to make predictions and quantify uncertainties
- Experimental design: which measurements will help constrain/inform theoretical models (maximize the success of an experiment)

Gaute Hagen, Calvin Johnson, Michelle Kuchera Dean Lee, Pieter Maris, Kyle Wendt

5-10 year priorities for nuclear data covariances and uncertainty quantification as defined by the Nuclear Data Uncertainty Quantification Meeting D. Neudecker

Nuclear Structure and Reaction Theory

Working group: Papenbrock, Phillips, Piarulli, Potel, Schunck, Tews, Volya

+ Fossez, Hebborn, Koenig

• Reactions are awesome: Reactions are the best window into the structure and dynamics of nuclei, and address data needed for other fields Full UQ and reaction-theory modeling crucial

Uncertainty quantification & Bayesian machine learning have advanced nuclear theory

NSAC Long Range Plan Town Hall Meeting on Nuclear Structure, Reactions and Astrophysics Nov 14 – 16, 2022

The most important thing in my opinion:

The most important thing in my opinion:

mathematics statistics computational

Work in collaboration with experts

The most important thing in my opinion:

→ Work in collaboration with experts

Eigenvector Continuation with Subspace Learning (2018)

Dillon Frame,^{1,2} Rongzheng He,^{1,2} Ilse Ipsen,³ Daniel Lee,⁴ Dean Lee,^{1,2} and Ermal Rrapaj⁵

Google Scholar

"eigenvector continuation"

About 188 results (0.08 sec)

control parameter in the Hamiltonian matrix exceeds some threshold value. In this Letter we present a new technique called eigenvector continuation that can extend the reach of these methods. The key insight is that while an eigenvector resides in a linear space with enormous dimensions, the eigenvector trajectory generated by smooth changes of the Hamiltonian matrix is well approximated by a very low-dimensional manifold. We

Eigenvector Continuation with Subspace Learning (2018)

Dillon Frame,^{1,2} Rongzheng He,^{1,2} Ilse Ipsen,³ Daniel Lee,⁴ Dean Lee,^{1,2} and Ermal Rrapaj⁵

Eigenvector Continuation with Subspace Learning (2018)

Dillon Frame,^{1,2} Rongzheng He,^{1,2} Ilse Ipsen,³ Daniel Lee,⁴ Dean Lee,^{1,2} and Ermal Rrapaj⁵

Eigenvector Continuation with Subspace Learning (2018)

Dillon Frame,^{1,2} Rongzheng He,^{1,2} Ilse Ipsen,³ Daniel Lee,⁴ Dean Lee,^{1,2} and Ermal Rrapaj⁵

(2016)

Eigenvector Continuation with Subspace Learning (2018)

Dillon Frame,^{1,2} Rongzheng He,^{1,2} Ilse Ipsen,³ Daniel Lee,⁴ Dean Lee,^{1,2} and Ermal Rrapaj⁵

Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems

"eige Youssef M. Marzouk^{a,*}, Habib N. Najm^b

(2009)

2019

Eigenvector Continuation with Subspace Learning (2018)

Dillon Frame,^{1,2} Rongzheng He,^{1,2} Ilse Ipsen,³ Daniel Lee,⁴ Dean Lee,^{1,2} and Ermal Rrapaj

Google Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems

"eige Youssef M. Marzouk^{a,*}, Habib N. Najm^b

(2009)

(2016)

Improved many-body expansions from eigenvector continuation

(2020) P. Demol[®],¹ T. Duguet,^{1,2} A. Ekström,³ M. Frosini,² K. Hebeler,^{4,5} S. König[®],^{4,5,6} D. Lee[®],⁷ A. Schwenk,^{4,5,8} V. Somà,² and A. Tichai[®],^{9,8,4,5,*}

Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems

"eige Youssef M. Marzouk^{a,*}, Habib N. Najm^b

¹ Note that because the κ parameters do not appear linearly in the Hamiltonian, one can no longer make a single set of matrix elements calculations for all of the test parameter sets. In other contexts this might be a relevant computational disadvantage.

$$V_{1S_0}(r) \equiv V_{0R}e^{-\kappa_R r^2} + V_{0s}e^{-\kappa_s r^2}$$
$$V_{3S_1}(r) \equiv V_{0R}e^{-\kappa_R r^2} + V_{0t}e^{-\kappa_t r^2}$$

r modeling of time-dependent PDEs parameters in the boundary data r ^{a,*,1}, Janet S. Peterson ^{a,1}, John N. Shadid ^{b,2} (2006)

An 'empirical interpolation' method: application to efficient reduced-basis discretization of partial differential equations

Maxime Barrault^a, Yvon Maday^b, Ngoc Cuong Nguyen^c, Anthony T. Patera^d

(2004)

The nuclear potential that we employ is additive in the d = 16 LECs, i.e., we can express the Hamiltonian as $H(\mathbf{c}) = H_0 + \sum_{i=1}^{d} c_i H_i$, where H_0 includes the kinetic energy. Any Hamiltonian with more than one interaction parameter can be written in this form, where each c_i in general may be depend nonlinearly

on other parameters. Furthermore, each term H_i for i = 1, ..., 16

can be projected onto the EC subspace once and then used for an arbitrary number of emulations. Each of these corresponds to a

(2016)

Efficient emulators for scattering using eigenvector continuation

<u>R.J. Furnstahl, A.J. Garcia, P.J. Millican, Xilin Zhang</u>* (2020)

Why Uncertainty Quantification? How — communication with experts

A	B. Galerkin / Reduced_basis_method Private			
<> c	Code 📀 Issues 🖏 Pull requests 🕑	Actions 🗄 Projects 🕕 Security 🗠 Insights 🔅 Settings		
	টি main ব্য টি 1 branch টি 0 tags	Go to file Add file	✓ Code ▼	
		88b2134 n	ow 🕲 7 commits	
	Collocation-Method.py	Projecting in Dirac Deltas	a long time ago	
	Cool-technique.py	Something extra cool	a long time ago	
	Empirical-Interpolation-Method.py	Create Empirical-Interpolation-Method.py	a long time ago	
	Greedy-Sampling	Smart sampling	a long time ago	
	POD-Basis.py	Create POD-Basis.py	a long time ago	
	README.md	Initial commit	a long time ago	
	Reference-Domain.py	Create a ref domain for multi-solutions	a long time ago	

Why U How -	Jncertainty → Communica	Quantificat	zion?
	Switch branches/tags	×	
(in UQ	Find or create a branch		
context)	Branches Tags		
	main (defa ✓ EC	ult	
8. Galerkin / Redu	uced_basis_method (Private)	💿 Unwa	
<> Code 🖓 Issues 👫	Pull requests 📀 Actions 🖽 Projects 😲 Securit	y 🗠 Insights 🖏 Settings	
<mark>្រិ main → ្រិ 1</mark> bra			
		88b2134 now 🕚7 commits	
Collocation-Metho	d.py Projecting in Dirac Deltas	a long time ago	
Cool-technique.py	Something extra cool	a long time ago	
🗋 Empirical-Interpola	tion-Method.py Create Empirical-Interpolation-Meth	od.py a long time ago	
Greedy-Sampling	Smart sampling	a long time ago	
POD-Basis.py	Create POD-Basis.py	a long time ago	
🗋 README.md	Initial commit	a long time ago	
🗋 Reference-Domain.	py Create a ref domain for multi-solution	a long time ago	

Why Un How (in UQ context)	Communicatio Communicatio	uantificati	on?
B. Galerkin / Reduced_ball <> Code G Issues \$% Pull request \$% main \$% 1 branch \$%			
		8862134 now 🕄 7 commits	
Collocation-Method.py	Projecting in Dirac Deltas	a long time ago	
Cool-technique.py	Something extra cool	a long time ago	
Empirical-Interpolation-Meth	od.py Create Empirical-Interpolation-Method.py	a long time ago	
POD-Basis pv	Create POD-Basis pv	a long time ago	
README.md	Initial commit	a long time ago	
	Create a ref domain for multi-solutions	a long time ago	27

W	hy L	Incertainty Quantification?
Ho	- WC	> Communication with experts
(in l conte	UQ ext)	Switch branches/tags Find or create a branch Branches Tags main default
A B. Ga	alerkin / Redu	ced basis method Private
<> Code	ि Issues main 🗸 ट्रि	(Jan 2022) Training and Projecting: Extending Eigenvector Continuation through a Galerkin Method formulation Edgard Bonilla, ^{1,*} Pablo Giuliani, ^{2,3,*} Kyle Godbey, ² and Dean Lee ^{2,4} ¹ Department of Physics. Stanford University. Stanford. CA 94305, USA
C	Collocation-N	 ² FRIB/NSCL Laboratory, Michigan State University, East Lansing, Michigan 48824, USA ³ Department of Statistics and Probability, Michigan State University, East Lansing, Michigan 48824, USA ⁴ Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA (Dated: January 25, 2022)
C)	Cool-techniqu Empirical-Inte	We propose the <u>Galerkin Continuation method</u> (<u>GC</u>), which combines the insight from Eigenvector Continuation (EC), with the formulation used for <u>Galerkin methods</u> . We show connections between GC and some of the established results in the EC literature, and how it can be used to extend
Ď	Greedy-Samp	the techniques of EC for the emulation of a broad set of problems, including non-linear equations. As a first study, we apply GC to two non-linear problems: the one dimensional Gross Pitaevskii equation, and the nuclear many body via density functional theory for ⁴⁸ Ca, the latter of which also
	POD-Basis.py README.md	tests the formalism in the case of coupled equations. GC is able to reproduce the exact results in both problems with a very small error, showing a performance in interpolation and extrapolation similar to the one observed in previous EC applications. We conclude this letter with insights for potential real-case applications of the proposed method, as well as future directions to explore for
Ľ	Reference-Domann	its improvement.

Why I	Jncertainty Quantification?	s
Ном	- Communication with experts	
(in UC)	Switch branches/tags X	
context)	Branches Tags	
1	main default	ς.ψ.
🔒 B. Galerkin / Redu	aced basis method (Private)	
<> Code C Issues	(Jan 2022)	
१° main → १°	Training and Projecting: Extending Eigenvector Continuation through a Galerkin Method formulation	
-	Edgard Bonilla, ^{1, *} Pablo Giuliani, ^{2, 3, *} Kyle Godbey, ² and Dean Lee ^{2, 4}	
Collocation-M	 ² FRIB/NSCL Laboratory, Michigan State University, East Lansing, Michigan 48824, USA ³ Department of Statistics and Probability, Michigan State University, East Lansing, Michigan 48824, USA ⁴ Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA (Dated: January 25, 2022) 	
🎦 Cool-techniqu	We propose the Galerkin Continuation method (GC), which combines the insight from Eigenvector Continuation (FC) with the formulation used for Calerkin methods. We show connections between	
🗋 Empirical-Inte	GC and some of the established results in the EC literature, and how it can be used to extend the techniques of EC for the emulation of a broad set of problems, including non-linear equations.	
🗋 Greedy-Samp	As a first study, we apply GC to two non-linear problems: the one dimensional Gross Pitaevskii equation, and the nuclear many body via density functional theory for ⁴⁸ Ca, the latter of which also	
POD-Basis.py	tests the formalism in the case of coupled equations. GC is able to reproduce the exact results in both problems with a very small error, showing a performance in interpolation and extrapolation	
README.md	similar to the one observed in previous EC applications. We conclude this letter with insights for potential real-case applications of the proposed method, as well as future directions to explore for its improvement	
🗋 Reference-Doman	b) a tong time ago	30

Outline

Why

How

Uncertainty Quantification?

The Reduced Basis Method

How it works

Problems table

Applications and Results

Questions?

Emulators

Emulators

Computation Accuracy vs Time

Computational time

3 translations + 3 rotations

3 translations + 3 rotations

parameters

 $\mathcal{H}_{\alpha}^{\downarrow}\phi(x) = \lambda\phi(x)$

 $\phi(x) \approx a_1 \phi_1(x) + a_2 \phi_2(x)$

Changing the trapping strength $\,lpha$

The Reduced Basis Method

 $F_{\alpha}[\phi(x)] = 0$

General differential equation $\left(\mathcal{H}_{\alpha}\phi(x)-\lambda\phi(x)=0\right)$

2) Project

$$j = \{1, n\} \quad \langle \psi_j | F_\alpha[\hat{\phi}(x)] \rangle = 0$$

One equation per coefficient

One equation per coefficient

(with Empirical Interpolation Method)

https://kylegodbey.github.io/nuclear-rbm

https://kylegodbey.github.io/nuclear-rbm

Problems Table

For uncertainty quantification

Edgard Bonilla,^{1, *} Pablo Giuliani,^{2, 3, †} Kyle Godbey,^{2, ‡} and Dean Lee^{2, 4, §}

Training and Projecting

^{vy}q_{rch} ما Training and Projecting: A Reduced Basis مرح Method Emulator for Many-Body Physics

Edgard Bonilla,^{1, *} Pablo Giuliani,^{2, 3, †} Kyle Godbey,^{2, ‡} and Dean Lee^{2, 4, §}

Training and Projecting

Training and Projecting: A Reduced Basis^{~9} Method Emulator for Many-Body Physics

Edgard Bonilla,^{1, *} Pablo Giuliani,^{2, 3, †} Kyle Godbey,^{2, ‡} and Dean Lee^{2, 4, §}

Training and Projecting

^سمر Training and Projecting: A Reduced Basis Method Emulator for Many-Body Physics

Edgard Bonilla,^{1,*} Pablo Giuliani,^{2,3,†} Kyle Godbey,^{2,‡} and Dean Lee^{2,4,§}

^{(۱}۹_{۲-ch} کر Training and Projecting: A Reduced Basis Method Emulator for Many-Body Physics

Edgard Bonilla,^{1, *} Pablo Giuliani,^{2, 3, †} Kyle Godbey,^{2, ‡} and Dean Lee^{2, 4, §}

2) Very accurate 1) Broadly Applicable -Exact Infinite Singular Value σ_k/σ_1 • RBM 10^{-3} 4 2 ⁴⁸Ca Skyrme DFT Gross-Pitaevskii κ 2-body * 2 10 12 14 Principal Component kSkyrme Density Functional Training and Projecting 3) Very fast VERY non-linear $\mathcal{H}_t(r) = C_t^{\rho} \rho_t^2 + C_t^{\rho \Delta \rho} \rho_t \Delta \rho_t + C_t^{\tau} \rho_t \tau_t$ $+C_t^J \overleftrightarrow{J}_t^2 + C_t^{\rho \nabla J} \rho_t \nabla \cdot \mathbf{J}_t,$ $\rho(r)^{\alpha}$ Mili-seconds

^M_{q_{rch} ? Training and Projecting: A Reduced Basis ? Method Emulator for Many-Body Physics}

Edgard Bonilla,^{1, *} Pablo Giuliani,^{2, 3, †} Kyle Godbey,^{2, ‡} and Dean Lee^{2, 4, §}

1) No variational principle	Galerkin projection
2) Sensitivity to training points	Proper Orthogonal Decomposition
3) Expensive high-fidelity	Greedy algorithm

Training and Projecting

raining and Projecting: A Reduced Basis مرجع Area Method Emulator for Many-Body Physics

Edgard Bonilla,^{1, *} Pablo Giuliani,^{2, 3, †} Kyle Godbey,^{2, ‡} and Dean Lee^{2, 4, §}

Training and Projecting: A Reduced Basis[~] Method Emulator for Many-Body Physics

Edgard Bonilla,^{1, *} Pablo Giuliani,^{2, 3, †} Kyle Godbey,^{2, ‡} and Dean Lee^{2, 4, §}

^{رم}مر Training and Projecting: A Reduced Basis Method Emulator for Many-Body Physics

^{رم}رمہر Training and Projecting: A Reduced Basis Method Emulator for Many-Body Physics

^{vy}_{qrch} من Training and Projecting: A Reduced Basis Method Emulator for Many-Body Physics

^{vy}_{q_rch} مرجع Training and Projecting: A Reduced Basis Method Emulator for Many-Body Physics

^{vy}_{q_rch} مرجع Training and Projecting: A Reduced Basis Method Emulator for Many-Body Physics

^سمر Training and Projecting: A Reduced Basis Method Emulator for Many-Body Physics

Applications and Results

Bayes goes fast: Uncertainty Quantification for a Covariant Energy Density Functional emulated by the Reduced Basis Method

Pablo Giuliani,^{1, 2, *} Kyle Godbey,^{1, †} Edgard Bonilla,^{3, ‡} Frederi Viens,^{2, 4, §} and Jorge Piekarewicz^{5, ¶}

Bayes goes fast

Applications and Results

Bayes goes fast: Uncertainty Quantification for a Covariant Energy Density Functional emulated by the Reduced Basis Method

Pablo Giuliani,^{1, 2, *} Kyle Godbey,^{1, †} Edgard Bonilla,^{3, ‡} Frederi Viens,^{2, 4, §} and Jorge Piekarewicz^{5, ¶}

Bayes goes fast

Applications and Results

Bayes goes fast: Uncertainty Quantification for a Covariant Energy Density Functional emulated by the Reduced Basis Method

Pablo Giuliani,^{1, 2, *} Kyle Godbey,^{1, †} Edgard Bonilla,^{3, ‡} Frederi Viens,^{2, 4, §} and Jorge Piekarewicz^{5, ¶}

Dirac Equations

$$\left(\frac{d}{dr} + \frac{\kappa}{r}\right)g_a(r) - \left[E_a + M - \Phi_0(r) - W_0(r) \mp \frac{1}{2}B_0(r) - e\left\{\begin{array}{c}1\\0\end{array}\right\}A_0(r)\right]f_a(r) = 0$$

$$\left(\frac{d}{dr} - \frac{\kappa}{r}\right)f_a(r) + \left[E_a - M + \Phi_0(r) - W_0(r) \mp \frac{1}{2}B_0(r) - e\left\{\begin{array}{c}1\\0\end{array}\right\}A_0(r)\right]g_a(r) = 0$$

Field Equations

$$\begin{split} &\left(\frac{d^2}{dr^2} + \frac{2}{r}\frac{d}{dr} - m_{\rm s}^2\right)\Phi_0(r) - g_{\rm s}^2\left(\frac{\kappa}{2}\Phi_0^2(r) + \frac{\lambda}{6}\Phi_0^3(r)\right) = -g_{\rm s}^2\Big(\rho_{\rm s,p}(r) + \rho_{\rm s,n}(r)\Big),\\ &\left(\frac{d^2}{dr^2} + \frac{2}{r}\frac{d}{dr} - m_{\rm v}^2\right)W_0(r) - g_{\rm v}^2\left(\frac{\zeta}{6}W_0^3(r) + 2\Lambda_{\rm v}B_0^2(r)W_0(r)\right) = -g_{\rm v}^2\Big(\rho_{\rm v,p}(r) + \rho_{\rm v,n}(r)\Big),\\ &\left(\frac{d^2}{dr^2} + \frac{2}{r}\frac{d}{dr} - m_{\rho}^2\right)B_0(r) - 2\Lambda_{\rm v}g_{\rho}^2W_0^2(r)B_0(r) = -\frac{g_{\rho}^2}{2}\Big(\rho_{\rm v,p}(r) - \rho_{\rm v,n}(r)\Big),\\ &\left(\frac{d^2}{dr^2} + \frac{2}{r}\frac{d}{dr}\right)A_0(r) = -e\rho_{\rm v,p}(r), \end{split}$$

Bayes goes fast

Fields

Applications and Results

Bayes goes fast: Uncertainty Quantification for a Covariant Energy Density Functional emulated by the Reduced Basis Method

Pablo Giuliani,^{1, 2, *} Kyle Godbey,^{1, †} Edgard Bonilla,^{3, ‡} Frederi Viens,^{2, 4, §} and Jorge Piekarewicz^{5, ¶}

Nucleons

Dirac Equations

$$\left(\frac{d}{dr} + \frac{\kappa}{r}\right)g_a(r) - \left[E_a + M - \Phi_0(r) - W_0(r) \mp \frac{1}{2}B_0(r) - e\left\{\begin{array}{c}1\\0\end{array}\right\}A_0(r)\right]f_a(r) = 0$$

$$\left(\frac{d}{dr} - \frac{\kappa}{r}\right)f_a(r) + \left[E_a - M + \Phi_0(r) - W_0(r) \mp \frac{1}{2}B_0(r) - e\left\{\begin{array}{c}1\\0\end{array}\right\}A_0(r)\right]g_a(r) = 0$$

Field Equations

$$\begin{split} &\left(\frac{d^2}{dr^2} + \frac{2}{r}\frac{d}{dr} - m_{\rm s}^2\right)\Phi_0(r) - g_{\rm s}^2\left(\frac{\kappa}{2}\Phi_0^2(r) + \frac{\lambda}{6}\Phi_0^3(r)\right) = -g_{\rm s}^2\left(\rho_{\rm s,p}(r) + \rho_{\rm s,n}(r)\right),\\ &\left(\frac{d^2}{dr^2} + \frac{2}{r}\frac{d}{dr} - m_{\rm v}^2\right)W_0(r) - g_{\rm v}^2\left(\frac{\zeta}{6}W_0^3(r) + 2\Lambda_{\rm v}B_0^2(r)W_0(r)\right) = -g_{\rm v}^2\left(\rho_{\rm v,p}(r) + \rho_{\rm v,n}(r)\right),\\ &\left(\frac{d^2}{dr^2} + \frac{2}{r}\frac{d}{dr} - m_{\rho}^2\right)B_0(r) - 2\Lambda_{\rm v}g_{\rho}^2W_0^2(r)B_0(r) = -\frac{g_{\rho}^2}{2}\left(\rho_{\rm v,p}(r) - \rho_{\rm v,n}(r)\right),\\ &\left(\frac{d^2}{dr^2} + \frac{2}{r}\frac{d}{dr}\right)A_0(r) = -e\rho_{\rm v,p}(r), \end{split}$$

Parameters lpha

Bayes goes fast

Iterative

Bayes goes fast: Uncertainty Quantification for a Covariant Energy Density Functional emulated by the Reduced Basis Method

Pablo Giuliani,^{1, 2, *} Kyle Godbey,^{1, †} Edgard Bonilla,^{3, ‡} Frederi Viens,^{2, 4, §} and Jorge Piekarewicz^{5, ¶}

Low dimensional manifold

September 2022

Fields

Applications and Results

Bayes goes fast: Uncertainty Quantification for a Covariant Energy Density Functional emulated by the Reduced Basis Method

Pablo Giuliani,^{1, 2, *} Kyle Godbey,^{1, †} Edgard Bonilla,^{3, ‡} Frederi Viens,^{2, 4, §} and Jorge Piekarewicz^{5, ¶}

Nucleons

Dirac Equations

$$\left(\frac{d}{dr} + \frac{\kappa}{r}\right)g_a(r) - \left[E_a + M - \Phi_0(r) - W_0(r) \mp \frac{1}{2}B_0(r) - e\left\{\begin{array}{c}1\\0\end{array}\right\}A_0(r)\right]f_a(r) = 0 \\ \left(\frac{d}{dr} - \frac{\kappa}{r}\right)f_a(r) + \left[E_a - M + \Phi_0(r) - W_0(r) \mp \frac{1}{2}B_0(r) - e\left\{\begin{array}{c}1\\0\end{array}\right\}A_0(r)\right]g_a(r) = 0$$

Field Equations

$$\begin{split} & \left(\frac{d^2}{dr^2} + \frac{2}{r}\frac{d}{dr} - m_{\rm s}^2\right)\Phi_0(r) - g_{\rm s}^2\left(\frac{\kappa}{2}\Phi_0^2(r) + \frac{\lambda}{6}\Phi_0^3(r)\right) = -g_{\rm s}^2\left(\rho_{\rm s,p}(r) + \rho_{\rm s,n}(r)\right),\\ & \left(\frac{d^2}{dr^2} + \frac{2}{r}\frac{d}{dr} - m_{\rm v}^2\right)W_0(r) - g_{\rm v}^2\left(\frac{\zeta}{6}W_0^3(r) + 2\Lambda_{\rm v}B_0^2(r)W_0(r)\right) = -g_{\rm v}^2\left(\rho_{\rm v,p}(r) + \rho_{\rm v,n}(r)\right),\\ & \left(\frac{d^2}{dr^2} + \frac{2}{r}\frac{d}{dr} - m_{\rho}^2\right)B_0(r) - 2\Lambda_{\rm v}g_{\rho}^2W_0^2(r)B_0(r) = -\frac{g_{\rho}^2}{2}\left(\rho_{\rm v,p}(r) - \rho_{\rm v,n}(r)\right),\\ & \left(\frac{d^2}{dr^2} + \frac{2}{r}\frac{d}{dr}\right)A_0(r) = -e\rho_{\rm v,p}(r), \end{split}$$

Bayes goes fast

Iterative

Bayes goes fast: Uncertainty Quantification for a Covariant Energy Density Functional emulated by the Reduced Basis Method

Pablo Giuliani,^{1, 2, *} Kyle Godbey,^{1, †} Edgard Bonilla,^{3, ‡} Frederi Viens,^{2, 4, §} and Jorge Piekarewicz^{5, ¶}

Dirac Equations

$$\left| \left(\frac{d}{dr} + \frac{\kappa}{r} \right) g_a(r) - \left[E_a + M - \Phi_0(r) - W_0(r) \mp \frac{1}{2} B_0(r) - e \left\{ \begin{array}{c} 1\\0 \end{array} \right\} A_0(r) \right] f_a(r) = 0$$

$$\left| f_{a,k}^{(j)} \right| \left(\frac{d}{dr} - \frac{\kappa}{r} \right) f_a(r) + \left[E_a - M + \Phi_0(r) - W_0(r) \mp \frac{1}{2} B_0(r) - e \left\{ \begin{array}{c} 1\\0 \end{array} \right\} A_0(r) \right] g_a(r) = 0$$

Field Equations

$$\begin{split} \left\langle \Phi_{j}(r)\right| \left(\frac{d^{2}}{dr^{2}} + \frac{2}{r}\frac{d}{dr} - m_{\rm s}^{2}\right) \Phi_{0}(r) - g_{\rm s}^{2} \left(\frac{\kappa}{2}\Phi_{0}^{2}(r) + \frac{\lambda}{6}\Phi_{0}^{3}(r)\right) &= -g_{\rm s}^{2} \left(\rho_{\rm s,p}(r) + \rho_{\rm s,n}(r)\right), \\ \left\langle W_{j}(r)\right| \left(\frac{d^{2}}{dr^{2}} + \frac{2}{r}\frac{d}{dr} - m_{\rm v}^{2}\right) W_{0}(r) - g_{\rm v}^{2} \left(\frac{\zeta}{6}W_{0}^{3}(r) + 2\Lambda_{\rm v}B_{0}^{2}(r)W_{0}(r)\right) &= -g_{\rm v}^{2} \left(\rho_{\rm v,p}(r) + \rho_{\rm v,n}(r)\right), \\ \left\langle B_{j}(r)\right| \left(\frac{d^{2}}{dr^{2}} + \frac{2}{r}\frac{d}{dr} - m_{\rho}^{2}\right) B_{0}(r) - 2\Lambda_{\rm v}g_{\rho}^{2}W_{0}^{2}(r)B_{0}(r) &= -\frac{g_{\rho}^{2}}{2} \left(\rho_{\rm v,p}(r) - \rho_{\rm v,n}(r)\right), \\ \left\langle A_{j}\left(r\right) \left(\frac{d^{2}}{dr^{2}} + \frac{2}{r}\frac{d}{dr}\right) A_{0}(r) &= -e\rho_{\rm v,p}(r), \end{split}$$

Bayes goes fast

September 2022

Applications and Results

Bayes goes fast: Uncertainty Quantification for a Covariant Energy Density Functional emulated by the Reduced Basis Method

Bayes goes fast: Uncertainty Quantification for a Covariant Energy Density Functional emulated by the Reduced Basis Method

September 2022

(Eq.=. ((D2)_ = = ms^2 + = + 2/ r + (D1	. ā)			
Name	Date modified	Туре	Size	Iterative
🦰 Basis	9/21/2022 11:11 AM	File folder		
Performance	9/21/2022 11:11 AM	File folder		
Nucleus_48Ca_CoeffEquations.txt	9/21/2022 11:11 AM	Text Document	1,474 KB	nsitiesGaler[2],
Nucleus_48Ca_Jacobian.txt	9/21/2022 11:11 AM	Text Document	2,404 KB	$s, r \rightarrow x$;
Nucleus_48Ca_JacobianKyle.txt	9/21/2022 11:11 AM	Text Document	2,404 KB	5)
Nucleus_48Ca_NeutronSkin.txt	9/21/2022 11:11 AM	Text Document	13 KB	≤ NumberBasis, hbasis++,
Nucleus_48Ca_ProtonRadius.txt	9/21/2022 11:11 AM	Text Document	7 KB	ionsGaler,
Nucleus_48Ca_TotalEnergyFields.txt	9/21/2022 11:11 AM	Text Document	513 KB	astsrieiussvo[i][noasts]] = 0];
Nucleus_48Ca_TotalEnergyNucleons.txt	9/21/2022 11:11 AM	Text Document	1 KB	l I
Nucleus_48CaBasisNumbers.txt	9/21/2022 11:11 AM	Text Document	1 KB	yes goes fast
$\Phi_0(r) \approx \hat{\Phi}_0(r) = \sum_{k=1}^{n_\Phi} a_k^\Phi \ \Phi_k(r)$	$ \begin{array}{c} \text{ull} 1 \\ 0 \\ 0 \\ 1 \\ 2 \\ 4 \end{array} $	$ \begin{array}{c c} 1 & 2 \\ & r[f] \\ \hline 6 & 8 & 10 \\ \hline 50 & Train \end{array} $		

September 2022

Applications and Results

Bayes goes fast: Uncertainty Quantification for a Covariant Energy Density Functional emulated by the Reduced Basis Method

Bayes goes fast: Uncertainty Quantification for a Covariant Energy Density Functional emulated by the Reduced Basis Method

Bayes goes fast: Uncertainty Quantification for a Covariant Energy Density Functional emulated by the Reduced Basis Method

September 2022

Pablo Giuliani, $^{1,\,2,\,*}$ Kyle Godbey, $^{1,\,\dagger}$ Edgard Bonilla, $^{3,\,\ddagger}$ Frederi Viens, $^{2,\,4,\,\$}$ and Jorge Piekarewicz $^{5,\,\P}$

Eq.= ((D2).@_ms^2+@+2/r+(D	L = =			
Name	Date modified	Туре	Size	
Basis	9/21/2022 11:11 AM	File folder		
Performance	9/21/2022 11:11 AM	File folder		
Nucleus_48Ca_CoeffEquations.txt	9/21/2022 11:11 AM	Text Document	1,474 KB	ns: tiesGale
Nucleus_48Ca_Jacobian.txt	9/21/2022 11:11 AM	Text Document	2,404 KB	ls, $r \rightarrow x$;
Nucleus_48Ca_JacobianKyle.txt	9/21/2022 11:11 AM	Text Document	2,404 KB	Compile with
Nucleus_48Ca_NeutronSkin.txt	9/21/2022 11:11 AM	Text Document	13 KB	≤ NumberBasis, hbasis++,
Nucleus_48Ca_ProtonRadius.txt	9/21/2022 11:11 AM	Text Document	7 KB	G ython
Nucleus_48Ca_TotalEnergyFields.txt	9/21/2022 11:11 AM	Text Document	513 KB	
Nucleus_48Ca_TotalEnergyNucleons.txt	9/21/2022 11:11 AM	Text Document	1 KB	
Nucleus_48CaBasisNumbers.txt	9/21/2022 11:11 AM	Text Document	1 KB	yes g
	<u>II</u>	1 2		
	📄 rmf_rbm_hybrid.so			85,499
		4 6 8 1	0	

ranning ps://doi.org/10.3389/fphy.2022.105452

September 2022

Applications and Results

Bayes goes fast: Uncertainty Quantification for a Covariant Energy Density Functional emulated by the Reduced Basis Method

Bayes goes fast: Uncertainty Quantification for a Covariant Energy Density Functional emulated by the Reduced Basis Method

Bayes goes fast: Uncertainty Quantification for a Covariant Energy Density Functional emulated by the Reduced Basis Method

September 2022

Applications and Results

2 в

Bayes goes fast: Uncertainty Quantification for a Covariant Energy Density Functional emulated by the Reduced Basis Method

Pablo Giuliani,^{1, 2, *} Kyle Godbey,^{1, †} Edgard Bonilla,^{3, ‡} Frederi Viens,^{2, 4, §} and Jorge Piekarewicz^{5, ¶}

Bayes goes fast

Applications and Results

3

Presenting ROSE, a Reduced Order Scattering Emulator

D. Odell,^{1, 1} P. Giuliani,^{2, 3} M. Catacora-Rios,^{2, 4} M. Chan,⁵ E. Bonilla,⁶ K. Godbey,² R. J. Furnstahl,⁷ and F. M. Nunes^{2, 4, 1}

Daniel Odell

Applications and Results

2-body scattering

Presenting ROSE, a Reduced Order Scattering Emulator

D. Odell,^{1, 1} P. Giuliani,^{2,3} M. Catacora-Rios,^{2,4} M. Chan,⁵ E. Bonilla,⁶ K. Godbey,² R. J. Furnstahl,⁷ and F. M. Nunes^{2,4, 1}

Daniel Odell

$$F_{\alpha}(\phi) = \left(-\frac{d^2}{dr^2} + \frac{\ell(\ell+1)}{r^2} + \frac{2\eta k}{r} + U(r,\alpha) - k^2\right)\phi(r) = 0$$

3

Applications and Results

2-body scattering

Presenting ROSE, a Reduced Order Scattering Emulator

D. Odell,^{1, 1} P. Giuliani,^{2,3} M. Catacora-Rios,^{2,4} M. Chan,⁵ E. Bonilla,⁶ K. Godbey,² R. J. Furnstahl,⁷ and F. M. Nunes^{2,4,1}

Daniel Odell

$$F_{\alpha}(\phi) = \left(-\frac{d^2}{dr^2} + \frac{\ell(\ell+1)}{r^2} + \frac{2\eta k}{r} + U(r,\alpha) - k^2\right)\phi(r) = 0$$

3

Applications and Results

2-body scattering

Presenting ROSE, a Reduced Order Scattering Emulator

D. Odell,^{1, 1} P. Giuliani,^{2,3} M. Catacora-Rios,^{2,4} M. Chan,⁵ E. Bonilla,⁶ K. Godbey,² R. J. Furnstahl,⁷ and F. M. Nunes^{2,4, 1}

Daniel Odell

$$F_{\alpha}(\phi) = \left(-\frac{d^2}{dr^2} + \frac{\ell(\ell+1)}{r^2} + \frac{2\eta k}{r} + U(r,\alpha) - k^2\right)\phi(r) = 0$$

3

Applications and Results

2-body scattering

Presenting ROSE, a Reduced Order Scattering Emulator

D. Odell,^{1, 1} P. Giuliani,^{2,3} M. Catacora-Rios,^{2,4} M. Chan,⁵ E. Bonilla,⁶ K. Godbey,² R. J. Furnstahl,⁷ and F. M. Nunes^{2,4,1}

Daniel Odell

$$F_{\alpha}(\phi) = \left(-\frac{d^2}{dr^2} + \frac{\ell(\ell+1)}{r^2} + \frac{2\eta k}{r} + U(r,\alpha) - \frac{k^2}{r}\right)\phi(r) = 0$$

3

Challenges:

- 1) Boundary conditions
- 2) Anomalies
- 3) Energy dependence
- 4) Non-affine potentials

Applications <a>3and Results

Presenting ROSE, a Reduced Order Scattering Emulator

D. Odell,^{1,6} P. Giuliani,^{2,3} M. Catacora-Rios,^{2,4} M. Chan,⁵ E. Bonilla,⁶ K. Godbey,² R. J. Furnstahl,⁷ and F. M. Nunes^{2,4},

Required for the vanilla Kohn variational principle

$$\phi(r)_{r \to \infty} \to \frac{1}{p} \Big(\sin(pr - \ell\pi/2) + \tan(\delta_\ell) \cos(pr - \ell\pi/2) \Big)$$

Challenges:

1) Boundary conditions

2) Anomalies

3) Energy dependence

4) Non-affine potentials

Efficient emulators for scattering using eigenvector continuation

R.J. Furnstahl, A.J. Garcia, P.J. Millican, Xilin Zhang*

Toward emulating nuclear reactions using eigenvector continuation

C. Drischler^{a,*}, M. Quinonez^{a,b}, P.G. Giuliani^{a,c}, A.E. Lovell^d, F.M. Nunes^{a,b}

(complex Kohn variational principle) https://github.com/odell/rose

Applications <a>3and Results

Presenting ROSE, a Reduced Order Scattering Emulator

D. Odell,^{1,1} P. Giuliani,^{2,3} M. Catacora-Rios,^{2,4} M. Chan,⁵ E. Bonilla,⁶ K. Godbey,² R. J. Furnstahl,⁷ and F. M. Nunes^{2,4}, ¹

Challenges:

- 1) Boundary conditions
- 2) Anomalies
- 3) Energy dependence

4) Non-affine potentials

Efficient emulators for scattering using eigenvector continuation

R.J. Furnstahl, A.J. Garcia, P.J. Millican, Xilin Zhang*

Toward emulating nuclear reactions using eigenvector continuation

C. Drischler^{a,*}, M. Quinonez^{a,b}, P.G. Giuliani^{a,c}, A.E. Lovell^d, F.M. Nunes^{a,b}

(complex Kohn variational principle) https://github.com/odell/rose

Challenges:

- 1) Boundary conditions
- 2) Anomalies
- 3) Energy dependence
- 4) Non-affine potentials

https://github.com/odell/rose

ttps://colab.research.google.com/drive/1Vtg 1apJv0o4D2MloDz1D0WbxbxlwW8H

Presenting ROSE, a Reduced Order Scattering Emulator

D. Odell,¹, P. Giuliani,^{2, 3} M. Catacora-Rios,^{2, 4} M. Chan,⁵ E. Bonilla,⁶ K. Godbey,² R. J. Furnstahl,⁷ and F. M. Nunes^{2, 4},

$$igg(-rac{d^2}{dr^2}+rac{\ell(\ell+1)}{r^2}+U(r,lpha)-p^2igg)\phi(r)$$

Challenges:

- 1) Boundary conditions
- 2) Anomalies
- 3) Energy dependence

4) Non-affine potentials

Presenting ROSE, a Reduced Order Scattering Emulator

D. Odell,^{1,} P. Giuliani,^{2,3} M. Catacora-Rios,^{2,4} M. Chan,⁵ E. Bonilla,⁶ K. Godbey,² R. J. Furnstahl,⁷ and F. M. Nunes^{2,4},

Challenges:

- 1) Boundary conditions
- 2) Anomalies
- 3) Energy dependence

4) Non-affine potentials

Presenting ROSE, a Reduced Order Scattering Emulator

D. Odell,^{1,1} P. Giuliani,^{2,3} M. Catacora-Rios,^{2,4} M. Chan,⁵ E. Bonilla,⁶ K. Godbey,² R. J. Furnstahl,⁷ and F. M. Nunes^{2,4},

Challenges:

- 1) Boundary conditions
- 2) Anomalies
- 3) Energy dependence
- 4) Non-affine potentials

The roses

https://colab.research.google.com/drive/1Vtg 11apJy0o4D2MloDz1D0WbxbxlwW8H

0.6

0.4

0.2

0.0

 10^{4}

 10^{5}

- 1) Boundary conditions
- 2) Anomalies
- 3) Energy dependence
- 4) Non-affine potentials

The roses

 10^{6}

Requested samples

 $\Delta E = 2$

 $\Delta E = 3$ $\Delta E = 5$

 $\Delta E = 10$ $\Delta E = 25$

 $\Delta E = 50$

 10^{8}

 10^{7}

Presenting ROSE, a Reduced Order Scattering Emulator

D. Odell,¹, P. Giuliani,^{2,3} M. Catacora-Rios,^{2,4} M. Chan,⁵ E. Bonilla,⁶ K. Godbey,² R. J. Furnstahl,⁷ and F. M. Nunes^{2,4},

Challenges:

- 1) Boundary conditions
- 2) Anomalies
- 3) Energy dependence
- 4) Non-affine potentials

Presenting ROSE, a Reduced Order Scattering Emulator

D. Odell,¹, P. Giuliani,^{2,3} M. Catacora-Rios,^{2,4} M. Chan,⁵ E. Bonilla,⁶ K. Godbey,² R. J. Furnstahl,⁷ and F. M. Nunes^{2,4},

Optical Potential

$$U(r,\alpha) = -V_v \left[1 + \exp\left(\frac{r - R_v}{a_v}\right) \right] - iW_v \left[1 + \exp\left(\frac{r - R_w}{a_w}\right) \right] - i4a_d W_d \frac{d}{dr} \left[1 + \exp\left(\frac{r - R_d}{a_d}\right) \right]$$

$$F_lpha(\phi)=igg(-rac{d^2}{dr^2}+rac{\ell(\ell+1)}{r^2}+U(r,lpha)-p^2igg)\phi(r)=0$$

Presenting ROSE, a Reduced Order Scattering Emulator

D. Odell,^{1,1} P. Giuliani,^{2,3} M. Catacora-Rios,^{2,4} M. Chan,⁵ E. Bonilla,⁶ K. Godbey,² R. J. Furnstahl,⁷ and F. M. Nunes^{2,4},¹

Optical Potential

$$U(r,\alpha) = -V_v \left[1 + \exp\left(\frac{r - R_v}{a_v}\right)\right] - iW_v \left[1 + \exp\left(\frac{r - R_w}{a_w}\right)\right] - i4a_d W_d \frac{d}{dr} \left[1 + \exp\left(\frac{r - R_d}{a_d}\right)\right]$$

$$F_lpha(\phi)=igg(-rac{d^2}{dr^2}+rac{\ell(\ell+1)}{r^2}+U(r,lpha)-p^2igg)\phi(r)=0$$

$$\langle \psi_j | F_\alpha[\hat{\phi}(r)] \rangle = \int \psi_j(r) F_\alpha[\hat{\phi}(r)] dr = 0$$

Presenting ROSE, a Reduced Order Scattering Emulator

D. Odell,¹, P. Giuliani,^{2,3} M. Catacora-Rios,^{2,4} M. Chan,⁵ E. Bonilla,⁶ K. Godbey,² R. J. Furnstahl,⁷ and F. M. Nunes^{2,4},

Optical Potential

$$U(r,\alpha) = -V_v \Big[1 + \exp\left(\frac{r - R_v}{a_v}\right) \Big] - iW_v \Big[1 + \exp\left(\frac{r - R_w}{a_w}\right) \Big] - i4a_d W_d \frac{d}{dr} \Big[1 + \exp\left(\frac{r - R_d}{a_d}\right) \Big]$$

$$F_\alpha(\phi) = \left(-\frac{d^2}{dr^2} + \frac{\ell(\ell+1)}{r^2} + U(r,\alpha) - p^2 \right) \phi(r) = 0$$
Non-affine problem

 $\langle \psi_j | F_\alpha[\hat{\phi}(r)] \rangle = \int \psi_j(r) F_\alpha[\hat{\phi}(r)] dr = 0$

Presenting ROSE, a Reduced Order Scattering Emulator

D. Odell,¹, P. Giuliani,^{2,3} M. Catacora-Rios,^{2,4} M. Chan,⁵ E. Bonilla,⁶ K. Godbey,² R. J. Furnstahl,⁷ and F. M. Nunes^{2,4},

Optical Potential

$$U(r,\alpha) = -V_v \left[1 + \exp\left(\frac{r - R_v}{a_v}\right)\right] - iW_v \left[1 + \exp\left(\frac{r - R_w}{a_w}\right)\right] - i4a_d W_d \frac{d}{dr} \left[1 + \exp\left(\frac{r - R_d}{a_d}\right)\right]$$
$$F_\alpha(\phi) = \left(-\frac{d^2}{dr^2} + \frac{\ell(\ell + 1)}{r^2} + U(r,\alpha) - p^2\right)\phi(r) = 0$$
$$Non-affine \text{ problem}$$

$$\langle \psi_j | F_\alpha[\hat{\phi}(r)] \rangle = \int \psi_j(r) F_\alpha[\hat{\phi}(r)] dr = 0$$

$$M_{\alpha}(r, \alpha) \sim \sum_{m=1}^{m} h_{\alpha}(\alpha) f(r)$$

$$U(r,\alpha) \approx \sum_{i} b_{i}(\alpha) f(r)$$

Empirical Interpolation Method: one work-around

Applications 3 and Results

Presenting ROSE, a Reduced Order Scattering Emulator

D. Odell,^{1, *} P. Giuliani,^{2, 3} M. Catacora-Rios,^{2, 4} M. Chan,⁵ E. Bonilla,⁶ K. Godbey,² R. J. Furnstahl,⁷ and F. M. Nunes^{2, 4}, ¹

Applications 3 and Results

Presenting ROSE, a Reduced Order Scattering Emulator

D. Odell,^{1,†} P. Giuliani,^{2,3} M. Catacora-Rios,^{2,4} M. Chan,⁵ E. Bonilla,⁶ K. Godbey,² R. J. Furnstahl,⁷ and F. M. Nunes^{2,4},[†]

$$U(r_{j}, \alpha) - \sum_{i}^{m} b_{i}(\alpha)f(r_{j}) = 0$$
Obtained by
interpolation $j = \{1, m\}$
Principal components of $U(r, \alpha)$

1) Choose a basis
$$U(r, \alpha) \approx \sum_{i}^{m} b_{i}(\alpha)f(r)$$

$$-U(r, \alpha)$$
Empirical Interpolation Method: one work-around $\frac{1}{5}$
 u

m

Presenting ROSE, a Reduced Order Scattering Emulator

D. Odell,^{1,} P. Giuliani,^{2,3} M. Catacora-Rios,^{2,4} M. Chan,⁵ E. Bonilla,⁶ K. Godbey,² R. J. Furnstahl,⁷ and F. M. Nunes^{2, 4},

10

5

15

20

 $\psi_j(r) = \delta(r - r_j)$ $\langle \psi_j | F_\alpha[\hat{\phi}(r)] \rangle = F_\alpha[\hat{\phi}(r_j)]$

2) Project

Dirac

(collocation method)

 $U(r_j,\alpha) - \sum_i b_i(\alpha) f(r_j) = 0$ Obtained by $j = \{1,m\}$ interpolation Principal components of $U(r, \alpha)$ $- f_1(r)$ $- f_2(r)$ 1) Choose a basis $- f_3(r)$ m $U(r, \alpha) \approx \sum b_i(\alpha) f(r)$ $--U(r,\alpha)$

Empirical Interpolation Method: one work-around

Presenting ROSE, a Reduced Order Scattering Emulator

D. Odell,^{1,6} P. Giuliani,^{2,3} M. Catacora-Rios,^{2,4} M. Chan,⁵ E. Bonilla,⁶ K. Godbey,² R. J. Furnstahl,⁷ and F. M. Nunes^{2,4,6}

$$F_{\alpha}(\phi) = \left(-\frac{d^2}{dr^2} + \frac{\ell(\ell+1)}{r^2} + \frac{2\eta k}{r} + U(r,\underline{\alpha}) - \underline{k^2}\right) \phi(r) = 0$$

Challenges:

- 1) Boundary conditions
- 2) Anomalies

2-body scattering

- 3) Energy dependence
- 4) Non-affine potentials

Presenting ROSE, a Reduced Order Scattering Emulator

D. Odell,¹, P. Giuliani,^{2,3} M. Catacora-Rios,^{2,4} M. Chan,⁵ E. Bonilla,⁶ K. Godbey,² R. J. Furnstahl,⁷ and F. M. Nunes^{2,4},

CAT plot

Applications 3 and Results

Presenting ROSE, a Reduced Order Scattering Emulator

D. Odell,^{1,6} P. Giuliani,^{2,3} M. Catacora-Rios,^{2,4} M. Chan,⁵ E. Bonilla,⁶ K. Godbey,² R. J. Furnstahl,⁷ and F. M. Nunes^{2,4},

Applications 3 and Results

Presenting ROSE, a Reduced Order Scattering Emulator

D. Odell,^{1, 1} P. Giuliani,^{2,3} M. Catacora-Rios,^{2,4} M. Chan,⁵ E. Bonilla,⁶ K. Godbey,² R. J. Furnstahl,⁷ and F. M. Nunes^{2,4}, ¹

Applications 3 and Results

Presenting ROSE, a Reduced Order Scattering Emulator

D. Odell,^{1, 1} P. Giuliani,^{2,3} M. Catacora-Rios,^{2,4} M. Chan,⁵ E. Bonilla,⁶ K. Godbey,² R. J. Furnstahl,⁷ and F. M. Nunes^{2,4}, ¹

Applications 3 and Results

Presenting ROSE, a Reduced Order Scattering Emulator

D. Odell,^{1, 1} P. Giuliani,^{2,3} M. Catacora-Rios,^{2,4} M. Chan,⁵ E. Bonilla,⁶ K. Godbey,² R. J. Furnstahl,⁷ and F. M. Nunes^{2,4}, ¹

Presenting ROSE, a Reduced Order Scattering Emulator

D. Odell,^{1,} P. Giuliani,^{2,3} M. Catacora-Rios,^{2,4} M. Chan,⁵ E. Bonilla,⁶ K. Godbey,² R. J. Furnstahl,⁷ and F. M. Nunes^{2,4},

Presenting ROSE, a Reduced Order Scattering Emulator

D. Odell,^{1, 1} P. Giuliani,^{2,3} M. Catacora-Rios,^{2,4} M. Chan,⁵ E. Bonilla,⁶ K. Godbey,² R. J. Furnstahl,⁷ and F. M. Nunes^{2,4}, ¹

Most important outcome:

Software useful for the community

rose

- Reduced-Order Scattering Emulator
- Python
- BAND Framework v0.3
- Supports local, complex, non-affine interactions.
- Designed to be user-friendly.
 - See pseudo-code ➡
 - Supports user-supplied solutions

import rose

```
def potential(r, alpha):
    alpha0, alpha1, ... = alpha
    return alpha0 *
        woods_saxon(
            r, alpha1, alpha2
        ) + 1j*...
```

```
interaction = InteractionEIM(
    potential,
    num_params,
    reduced_mass,
    energy, Z_1, Z_2,
    is_complex=True
```

```
sae = ScatteringAmplitudeEmulator(
    interaction,
    training_points,
    l_max
```

```
cross section = sae.emulate(alpha)
```


Presenting ROSE, a Reduced Order Scattering Emulator

D. Odell,^{1,7} P. Giuliani,^{2,3} M. Catacora-Rios,^{2,4} M. Chan,⁵ E. Bonilla,⁶ K. Godbey,² R. J. Furnstahl,⁷ and F. M. Nunes^{2,4},

Most important outcome:

Software useful for the community

rose

- Reduced-Order Scattering Emulator
- Python
- BAND Framework v0.3
- Supports local, complex, non-affine interactions.
- Designed to be user-friendly.
 - See pseudo-code 🔿
 - Supports user-supplied solutions

Future

- E emulation with Coulomb
 - works below threshold (AB)
- nonlocal potentials
- 3-body scattering 🔤
 - T instead of t
- Coupled channels

l_max

Applications 3 and Results

Presenting ROSE, a Reduced Order Scattering Emulator

D. Odell,^{1,6} P. Giuliani,^{2,3} M. Catacora-Rios,^{2,4} M. Chan,⁵ E. Bonilla,⁶ K. Godbey,² R. J. Furnstahl,⁷ and F. M. Nunes^{2,4},

Challenges:

Boundary conditions
 Anomalies
 Energy dependence
 Non-affine potentials

Applications 3 and Results

Presenting ROSE, a Reduced Order Scattering Emulator

D. Odell,^{1,6} P. Giuliani,^{2,3} M. Catacora-Rios,^{2,4} M. Chan,⁵ E. Bonilla,⁶ K. Godbey,² R. J. Furnstahl,⁷ and F. M. Nunes^{2,4},

1) Boundary conditions

Applications 3 and Results

Presenting ROSE, a Reduced Order Scattering Emulator

D. Odell,^{1,6} P. Giuliani,^{2,3} M. Catacora-Rios,^{2,4} M. Chan,⁵ E. Bonilla,⁶ K. Godbey,² R. J. Furnstahl,⁷ and F. M. Nunes^{2,4},

5) Incompatible domains

Reference domain

$$\left(-\frac{d^2}{dr^2} + \frac{\ell(\ell+1)}{r^2} + U(r,\alpha) - p^2\right)\phi(r)$$
Re-scale:
$$pr = s$$

$$\left(-\frac{d^2}{dr^2} + \ell(\ell+1) + U(r,\alpha) - p^2\right)\phi(r)$$

$$\left(-\frac{d^2}{ds^2} + \frac{\ell(\ell+1)}{s^2} + U(s,\alpha,p) - 1\right)\phi(s)$$

3) Energy dependence

Applications 3 and Results

Presenting ROSE, a Reduced Order Scattering Emulator

D. Odell,^{1,6} P. Giuliani,^{2,3} M. Catacora-Rios,^{2,4} M. Chan,⁵ E. Bonilla,⁶ K. Godbey,² R. J. Furnstahl,⁷ and F. M. Nunes^{2,4}, ⁶

5) Incompatible domains

FIGURE 7: RB triangulation of the reference domain.

FIGURE 6: RB triangulation when the control rod is withdrawn.

Reference domain

 $\Big(-rac{d^2}{dr^2}+rac{\ell(\ell+1)}{r^2}+U(r,lpha)-p^2\Big)\phi(r)$

Re-scale:
$$pr = s$$

$$\left(-\frac{d^2}{ds^2} + \frac{\ell(\ell+1)}{s^2} + U(s,\alpha,p) - 1\right)\phi(s)$$

A REDUCED ORDER MODEL FOR MULTI-GROUP TIME-DEPENDENT PARAMETRIZED REACTOR SPATIAL KINETICS (2014)

Sartori, et al

Applications and Results

Presenting ROSE, a Reduced Order Scattering Emulator

D. Odell,^{1,1} P. Giuliani,^{2,3} M. Catacora-Rios,^{2,4} M. Chan,⁵ E. Bonilla,⁶ K. Godbey,² R. J. Furnstahl,⁷ and F. M. Nunes^{2,4},

Applications (and Results

Presenting ROSE, a Reduced Order Scattering Emulator

D. Odell,^{1,1} P. Giuliani,^{2,3} M. Catacora-Rios,^{2,4} M. Chan,⁵ E. Bonilla,⁶ K. Godbey,² R. J. Furnstahl,⁷ and F. M. Nunes^{2,4}, ¹

4) Non-affine potentials

Non-affinity and Beyond: Mitigating non-linear and non-affine structures for the efficient emulation of Density Functional Theory

Kyle Godbey $^{1,\ast,+},$ Edgard Bonilla $^{2,+},$ Pablo Giuliani $^{1,3},$ and Yanlai Chen 4

Coming soon

Kyle Godbey^{1,*,+}, Edgard Bonilla^{2,+}, Pablo Giuliani^{1,3}, and Yanlai Chen⁴

Coming soon

Application of reduced basis methods to compact stars

Amy Anderson,^{1, *} Pablo Giuliani,^{2, †} and J.Piekarewicz^{1, ‡}

¹Department of Physics, Florida State University, Tallahassee, FL 32306, USA ²FRIB/NSCL Laboratory, Michigan State University, East Lansing, Michigan 48824, USA

Upcoming highlight

5,000,000 parameter samples

Upcoming highlights

Smart posterior handling

Upcoming highlights

Upcoming highlights	Smart posterior handling Image: Straig of the st
Bayezian Mazz E	Relocer Relocer EX Several Analysis of Nuclear Dynamics
Compute For: Neutron + Target	Welcome to BMEX! Please input your requested nuclei on the left.
Select Quantity: Differential Cross Section	$\overset{10^{3}}{\underset{\text{fig}}{10^{2}}} \overset{40}{\underset{\text{G}}{10^{2}}} \text{Ca}(n,n)$
Select Interaction:	
Protons:	$\begin{array}{c} \bullet \\ \bullet $
20	
Neutrons:	
	V_v W_v W_d R_v a_v R_d a_d

Optical potentials for the rare-isotope beam era

In regions of the nuclear chart away from stability, which represent a frontier in nuclear science over the coming decade and which will be probed at new rareisotope beam facilities worldwide, there is a targeted need to quantify and reduce theoretical reaction model uncertainties, especially with respect to nuclear optical potentials.

Compute For:

Welcome to BMEX! Please input your requested nuclei on the left. Neutron + Target "A future where models are not $^{40}\mathrm{Ca}(n,n)$ defined by parameter values, but Select Quantity: rather by distributions constantly **Differential Cross Section** updated with new data" nd nd Select Interaction: Kyle 10^{0} Koning-Delaroche Godbey 50 100 150 θ (deg) a_v Protons: \mathbb{R}_{d} Neutrons: W_v Wd R_v

I have two

Takeaways

1) These methods are SO cool

1) These methods are SO cool

- 1) These methods are SO cool
- 2) UQ needs multidisciplinary efforts

mathematics
statistics
computational
experimental

- 1) These methods are SO cool
- 2) UQ needs multidisciplinary efforts

Work in collaboration with experts

mathematics
statistics
computational
experimental

This is very important to us

- 1) These methods are SO cool
- 2) UQ needs multidisciplinary efforts /

Work in collaboration with experts

Advanced Scientific Computing and Statistics Network

mathematics
statistics
computational
experimental

1) These methods are SO cool

2) UQ needs multidisciplinary efforts

Work in collaboration with experts

This is very important to us

Work in collaboration with experts ...

... and find that the real UQ is the friends you made along the way