

High-order resummation of Bogoliubov many-body perturbation theory

Pepijn DEMOL

Supervisors: Thomas DUGUET Riccardo RAABE Co-supervisor: Alexander TICHAI

June 1st, 2023

Ab initio approach to nuclear structure

Pushing ab initio requires computationally affordable many-body methods

→ What about perturbation theory (PT)?

KU LEUVEN

Outline

- Perturbation theory and its potential pitfalls
- Closed-shell many-body perturbation theory (MBPT)
- Open-shell Bogoliubov many-body perturbation theory (BMBPT)
 - Bogoliubov states and Hartree-Fock-Bogoliubov (HFB)
 - $_{\circ}~$ Low-order results
 - $_{\circ}~$ High-order behaviour
- Resuming PT with eigenvector continuation (EC)

Outline

• Perturbation theory and its potential pitfalls

- Closed-shell many-body perturbation theory (MBPT)
- Open-shell Bogoliubov many-body perturbation theory (BMBPT)
 - Bogoliubov states and Hartree-Fock-Bogoliubov (HFB)
 - Low-order results
 - High-order behaviour
- Resuming PT with eigenvector continuation (EC)

" The nuclear many-body problem is intrinsically non-perturbative."

" The nuclear many-body problem is intrinsically non-perturbative."

No meaning in absolute *→* Perturbative with respect to what **starting point**?

Perturbation

$$\uparrow$$
Partitioning: $H = H_0 + H_1$
 \downarrow
Unperturbed problem
 \downarrow solvable, i.e., $H_0 |\Phi_n^{(0)}\rangle = E_n^{(0)} |\Phi_n^{(0)}\rangle$

" Can one find an approviate H_0 such that the eigenstate of H can be obtained from a perturbative expansion in powers of H_1 ?"

Two potential sources of non-perturbativeness

Infra-red (IR)

- Low energy ↔ long range
- Around Fermi surface
- Interaction: large scattering lengths

Ultra-violet (UV)

- High energy \leftrightarrow short range
- Low-to-high momentum coupling
- Interaction: hard core

Department of Physics and Astronomy Institute for Nuclear and Radiation Physics

Two potential sources of non-perturbativeness

Infra-red (IR)

- Low energy ↔ long range
- Around Fermi surface
- Interaction: large scattering lengths

(Near) degenerate reference state

Alter H_0 to account for static corralations

Ultra-violet (UV)

- High energy \leftrightarrow short range
- Low-to-high momentum coupling
- Interaction: hard core

8

Department of Physics and Astronomy Institute for Nuclear and Radiation Physics

Two potential sources of non-perturbativeness

(a,b)

Fermi surface IR Infra-red (IR) (i, j)Low energy \leftrightarrow long range Around Fermi surface $H^{[4]}$ UV Interaction: large scattering lengths [1] k'2 (fm-2) (Near) degenerate reference state 6 8 10 0 2 4 6 8 10 2 4 k² (fm⁻²) $\Delta E_{\rm F}$ **p**3/2 k² (fm⁻²) 2 Non-degenerate Near degenerate Degenerate 10 [1] (Closed shell) (Open shell)

Alter H_0 to account for static corralations

Ultra-violet (UV)

High energy \leftrightarrow short range

k² (fm⁻²)

 $\lambda = 3.0 \text{ fm}$

 $\lambda = 1.0 \text{ fm}^{-1}$

0.8

0.6 0.4 0.2 0 (fm)

-0.2

-0.4 -0.6

-0.8

[2]

- Low-to-high momentum coupling
- Interaction: hard core

 $\lambda = 2.0 \text{ fm}^{-1}$

Tamed by preprocessing $H \rightarrow SRG$ transformation

[1] A. Tichai et al., Front. Phys. 8:164 (2020) S. K. Bogner et al., Phys. Rev. C 75 (2007) [2]

9

Outline

- Perturbation theory and its potential pitfalls
- Closed-shell many-body perturbation theory (MBPT)
- Open-shell Bogoliubov many-body perturbation theory (BMBPT)
 - Bogoliubov states and Hartree-Fock-Bogoliubov (HFB)
 - Low-order results
 - High-order behaviour
- Resuming PT with eigenvector continuation (EC)

KU LEUVEN

Research Foundation

Opening new horizons

10

Formal perturbation theory

Partitioning

$$H = H_0 + H_1$$

$$\downarrow \text{ solvable, i.e., } H_0 |\Phi_n^{(0)}\rangle = E_n^{(0)} |\Phi_n^{(0)}\rangle$$

$$\downarrow \text{ Lowest: reference state } |\Phi\rangle$$

• Perturbative expansion is a **powers series** in H_1

$$|\Psi\rangle = |\Phi\rangle + \sum_{k=1}^{\infty} (RH_1)^k |\Phi\rangle_{\rm C}$$
$$E = \langle \Phi | H | \Psi \rangle = \langle \Phi | H | \Phi \rangle + \sum_{k=1}^{\infty} \langle \Phi | H_1 (RH_1)^k | \Phi \rangle_{\rm C}$$

where R is the **resolvent**. In Rayleigh-Schrödinger PT

$$R \equiv \sum_{n \neq 0} \frac{|\Phi_n^{(0)}\rangle \langle \Phi_n^{(0)}|}{E^{(0)} - E_n^{(0)}}$$

Department of Physics and Astronomy Institute for Nuclear and Radiation Physics

KU LEUVEN

MBPT formalism

Slater determinant reference state

$$|\Phi\rangle \equiv \prod_{i}^{A} c_{i}^{\dagger} |0\rangle$$

• **Partitioning** of *H* in normal-order wrt. $|\Phi\rangle$

$$\begin{split} H_0 &\equiv H^{0B} + \sum_p e_p : c_p^{\dagger} c_p : \\ H_1 &\equiv H^{1B} - \sum_p e_p : c_p^{\dagger} c_p : + H^{2B} \end{split}$$

• np-nh excitations of $|\Phi\rangle$ form **eigenbasis** of H_0

$$H_0|\Phi_{ij\cdots}^{ab\cdots}\rangle = H^{0B} + (e_a + e_b + \dots - e_i - e_j - \dots)|\Phi_{ij\cdots}^{ab\cdots}\rangle$$

• E.g. MBPT energy correction at second order

$$E^{(2)} = -\sum_{ai} \frac{H_{ai}H_{ia}}{e_a - e_i} - \frac{1}{4}\sum_{abij} \frac{H_{abij}H_{ijab}}{e_a + e_b - e_i - e_j}$$

KU LEUVEN

Convergence of MBPT: IR

• High-order obtained by iterative scheme restricted to small model space → exact diagonalization (NCSM) feasible

Adapting H_0 enabled to overcome IR divergence

Department of Physics and Astronomy Institute for Nuclear and Radiation Physics

Convergence of MBPT: UV

• H_0 = Hartree-Fock

- → Faster convergence for softer interactions
- ➔ Oscillatory behaviour for hard interactions

Optimized H_0 combined with sufficient SRG softening \rightarrow well-controlled PT for closed-shell nuclei

Department of Physics and Astronomy Institute for Nuclear and Radiation Physics

Extending MBPT for open-shell

• MBPT at second order

- More general class of H_0 to lift degeneracy
 - 1. Multi-reference
 - Multi-configurational perturbation theory (MCPT) ^[4]
 - Projected generator coordinate method with PT (PGCM-PT) ^[5]
 - 2. Symmetry breaking

15

- Singly-open shell: particle-number symmetry, U(1) → Bogoliubov vacuum state
- Doubly-open shell: rotational symmetry, SU(2) -> Deformed Slater determinant / Bogoliubov vacuum

[1] A. Tichai et al., Front. Phys. 8:164 (2020)
[4] Z. Rolik et al., J. Chem. Phys. 119 (2003)
[5] M. Frosini et al., Eur. Phys. J A 58 (2022)

Outline

- Perturbation theory and its potential pitfalls
- Closed-shell many-body perturbation theory (MBPT)
- Open-shell Bogoliubov many-body perturbation theory (BMBPT)
 - Bogoliubov states and Hartree-Fock-Bogoliubov (HFB)
 - Low-order results
 - High-order behaviour
- Resuming PT with eigenvector continuation (EC)

Bogoliubov vacuum state

Quasi-particle operators defined via unitary Bogoliubov transformation

$$\beta_k = \sum_p U_{pk}^* c_p + V_{pk}^* c_p^\dagger$$

Bogoliubov vacuum

$$|\Phi\rangle \equiv \mathcal{C} \prod_k \beta_k |0\rangle$$

• Breaks particle-number symmetry

$$\hat{A}|\Phi\rangle \neq A|\Phi\rangle$$

• Grand potential operator Ω normal ordered wrt. $|\Phi\rangle$

$$\Omega \equiv H - \lambda A = \Omega^{00} + \Omega^{20} + \Omega^{11} + \Omega^{02} + \Omega^{40} + \Omega^{31} + \dots + \Omega^{60} + \dots$$

where e.g.

$$\Omega^{31} \equiv \frac{1}{3! \ 1!} \sum_{k_1 k_2 k_3 k_4} \Omega^{31}_{k_1 k_2 k_3 k_4} \beta^{\dagger}_{k_1} \beta^{\dagger}_{k_2} \beta^{\dagger}_{k_3} \beta^{\dagger}_{k_3} \beta_{k_4}$$

KU LEUVEN

Hartree-Fock-Bogoliubov

- Hartree-Fock-Bogoliubov extends HF and minimizes energy over manifold of Bogoliubov states
- Minimization under **constraint** of $\langle \Phi | A | \Phi \rangle = A_0$

$$\frac{\delta}{\delta |\Phi\rangle} \left(\frac{\langle \Phi | H | \Phi \rangle}{\langle \Phi | \Phi \rangle} - \lambda \frac{\langle \Phi | (A - A_0) | \Phi \rangle}{\langle \Phi | \Phi \rangle} \right) = 0$$

• Boils down to self-consistent diagonalization of HFB Hamiltonian matrix

HF field
$$\begin{pmatrix} h-\lambda & \Delta \\ -\Delta^* & -(h-\lambda)^* \end{pmatrix} \begin{pmatrix} U_k \\ V_k \end{pmatrix} = E_k \begin{pmatrix} U_k \\ V_k \end{pmatrix}$$

pairing field Quasi-particle energies: $E_k \ge \Delta_F > 0$

KU LEUVEN

Bogoliubov many-body perturbation theory [6,7]

Partitioning

19

$$\Omega_0 \equiv \Omega^{00} + \sum_k E_k \beta_k^{\dagger} \beta_k$$

$$\Omega_1 \equiv \Omega^{20} + (\Omega^{11} - \sum_k E_k \beta_k^{\dagger} \beta_k) + \Omega^{02} + \Omega^{40} + \Omega^{31} + \cdots$$

• 2n-quasiparticle excitations of $|\Phi\rangle$ form **eigenbasis** of Ω_0

$$\Omega_0 |\Phi^{k_1 k_2 \dots}\rangle = \Omega^{00} + (E_{k_1} + E_{k_2} + \dots) |\Phi^{k_1 k_2 \dots}\rangle$$

• E.g. **BMBPT** at second order

$$E^{(2)} = -\frac{1}{2} \sum_{k_1 k_2} \frac{\Omega_{k_1 k_2}^{20} \Omega_{k_1 k_2}^{02}}{E_{k_1} + E_{k_2}} - \frac{1}{24} \sum_{k_1 k_2 k_3 k_4} \frac{\Omega_{k_1 k_2 k_3 k_4}^{40} \Omega_{k_1 k_2 k_3 k_4}^{04}}{E_{k_1} + E_{k_2} + E_{k_3} + E_{k_4}} \longrightarrow 0$$

- Perturbative expansion under **constraint** $\langle A \rangle = A_0$ at each order
 - Similar in spirit to MBPT-based orbital-dependent DFT^[8]
 - Different strategies to implement this constraint, e.g. redefinition of $|\Phi\rangle$ and/or λ at each order in PT ^[9,10]
 - No correction at BMBPT(2) when using HFB reference state

[7] P. Arthuis et al., Comput. Phys. Commun. 240 (2019)

9) [10] PD, A.Tichai, T. Duguet (2023), to be submitted **KU LEUVEN**

Outline

- Perturbation theory and its potential pitfalls
- Closed-shell many-body perturbation theory (MBPT)
- Open-shell Bogoliubov many-body perturbation theory (BMBPT)
 - Bogoliubov states and Hartree-Fock-Bogoliubov (HFB)
 - $_{\circ}~$ Low-order results
 - High-order behaviour
- Resuming PT with eigenvector continuation (EC)

Low-order BMBPT results

- BMBPT(2) compared to non-perturbative many-body methods
 - VS-IMSRG(2)
 - BCCSD
- BMBPT(2) in very good agreement at fraction of the cost
- Low-order BMBPT great workhorse for sufficiently soft interactions
- BCC promising new method for harder interaction & higher accuracy

KU LEUVEN

Research Foundation

Opening new horizons

Department of Physics and Astronomy Institute for Nuclear and Radiation Physics

Low-order BMBPT results

- BMBPT(2) compared to non-perturbative many-body methods
 - VS-IMSRG(2)
 - BCCSD
- BMBPT(2) in very good agreement at fraction of the cost
- Low-order BMBPT great workhorse for sufficiently soft interactions
- BCC promising new method for harder interaction & higher accuracy

Department of Physics and Astronomy Institute for Nuclear and Radiation Physics

Outline

- Perturbation theory and its potential pitfalls
- Closed-shell many-body perturbation theory (MBPT)
- Open-shell Bogoliubov many-body perturbation theory (BMBPT)
 - Bogoliubov states and Hartree-Fock-Bogoliubov (HFB)
 - Low-order results
 - $_{\circ}$ High-order behaviour
- Resuming PT with eigenvector continuation (EC)

High-order BMBPT

- Investigate high-order behaviour in small model space
 → allowing exact diagonalization (BCI)
- Use all tricks of closed-shell MBPT
 - o SRG-softening to tackle UV
 - o HFB partitioning to treat IR
- Particle number constrained at each order
- Closed shell (BMBPT → MBPT) convergent behaviour
- Open shell, Taylor series diverges
- First idea, Padé resummation

Department of Physics and Astronomy Institute for Nuclear and Radiation Physics

Padé resummation

- Based on rational function approximation instead of simple polynomial
- Can incorporate poles in complex plane \rightarrow larger domain of convergence

Taylor: $f(x) = \sum_{i=0}^{P} c_i x^i + O(x^{P+1})$

Padé:
$$f(x)$$

$$f(x) = \frac{\sum_{i=1}^{M} p_i x^i}{1 + \sum_{i=1}^{N} q_i x^i} + O(x^{M+N})$$

Padé resummation

- Padé approximants show erratic behavior
 - Due to particle number constraint
 - $\circ~$ Eventually do approach the exact limit when $P\sim 30$
 - Rely on some a priori analytic knowledge of underlying expansion

Padé resummation not reliably applicable in this BMBPT context

Outline

27

- Perturbation theory and its potential pitfalls
- Closed-shell many-body perturbation theory (MBPT)
- Open-shell Bogoliubov many-body perturbation theory (BMBPT)
 - Bogoliubov states and Hartree-Fock-Bogoliubov (HFB)
 - Low-order results
 - High-order behaviour
- Resuming PT with eigenvector continuation (EC)

KU LEUVEN

Research Foundation

Opening new horizons

Resumming PT with EC [12,13]

Parameter-dependent partitioning

 $H(c) \equiv H_0 + c H_1$

- There exists a regime $0 \le c \le c_e < 1$ where solving the many-body problem is easier than at c = 1
- The eigenvectors of H(c) visit a low-dimensional subspace when varying $\,c\,$

1) Solve for $N_{\rm EC}$ auxiliary states (training points) $|\Psi(c_i)\rangle, i=0,\ldots,N_{\rm EC}$ associated with $H(c_i), c_i \in [0,c_e]$

2) Construct and compute eigenstates of $N_{\rm EC} \times N_{\rm EC}$ matrix $\langle \Psi(c_j) | H(1) | \Psi(c_i) \rangle$

• State associated to $H(c_i)$ at order P in PT

$$|\Psi_P(c_i)\rangle \equiv \sum_{p=0}^P c_i{}^p |\Phi^{(p)}\rangle$$

28

Department of Physics and Astronomy Institute for Nuclear and Radiation Physics

Resumming PT with EC

• State associated to $H(c_i)$ at order P in PT

$$\Psi_P(c_i)\rangle \equiv \sum_{p=0}^P c_i{}^p |\Phi^{(p)}\rangle$$

Linear transformation

$$\begin{pmatrix} |\Psi_{P}(c_{1})\rangle \\ |\Psi_{P}(c_{2})\rangle \\ \vdots \\ |\Psi_{P}(c_{N_{\mathrm{EC}}})\rangle \end{pmatrix} = \begin{pmatrix} 1 & c_{1} & c_{1}^{2} & \cdots & c_{1}^{P} \\ 1 & c_{2} & c_{2}^{2} & \cdots & c_{2}^{P} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & c_{N_{\mathrm{EC}}} & c_{N_{\mathrm{EC}}}^{2} & \cdots & c_{N_{\mathrm{EC}}}^{P} \end{pmatrix} \begin{pmatrix} |\Phi^{(0)}\rangle \\ |\Phi^{(1)}\rangle \\ |\Phi^{(2)}\rangle \\ \vdots \\ |\Phi^{(P)}\rangle \end{pmatrix}$$

$$\operatorname{span}\{|\Psi_P(c_i)\rangle; i=1,\cdots,N_{\mathrm{EC}}\}=\operatorname{span}\{|\Phi^{(p)}\rangle; p=0,\cdots,P\}$$

• Construct and compute eigenstates $(P+1) \times (P+1)$ matrix $\langle \Phi^{(p)} | H | \Phi^{(q)} \rangle$

 \rightarrow Access to excited states^[14] \rightarrow Talk by Margarida tomorrow

Department of Physics and Astronomy Institute for Nuclear and Radiation Physics

KU LEUVEN

EC-resumed BMBPT

- EC yields rapidly convergent BMBPT expansion
- EC is variational → monotonic convergence from above

KU LEUVEN

→ Does EC improve also closed-shell MBPT?

30

Department of Physics and Astronomy Institute for Nuclear and Radiation Physics

EC-resumed closed-shell MBPT

- Note: very different scale !
- EC accelerates convergence significantly, outperforming Padé

→ Is EC capable resumming divergent closed-shell MBPT?

EC-resumed MBPT: ³H

- HO partitioning
- No SRG softening (left panels)

- → EC is able to overcome both IR and UV sources of divergence
- ➔ Padé performs as well as EC

Conclusion

- Perturbative expansions may face IR and UV sources of divergence
- Closed-shell MBPT
 - IR tackled by using the HF reference state
 - UV treated by SRG softening
 - EC overcomes both UV & IR and delivers rapid convergence
- Open-shell BMBPT
 - Low-orders give reliable results
 - High-orders diverge, even with SRG & HFB tricks
 - o EC elegantly achieves convergence
- Outlook
 - EC for excited states → talk by Margarida
 - EC-BMBPT in realistic model spaces?
 - All tools available

Collaborators

T. Duguet R. Raabe

T. Duguet J.-P. Ebran M. Frosini A. Porro A. Roux A. Scalesi V. Somà

G. Hagen

R. Roth A. Tichai

KU LEUVEN

Padé approximants

Department of Physics and Astronomy Institute for Nuclear and Radiation Physics

KU LEUVEN

Particle number constraint

• Method used in this study: counteract particle-number shift by compansating with the reference state

• Other strategies are possible

\rightarrow PD, T. Duguet, A. Tichai (2023), to be submitted

KU LEUVEN