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Prelude

Introduction to resonances




Resonances

Resonances appear as large peaks in the scattering cross-section.

T (a) Neutrons off iridium T 200 }— (b) 7* off protons
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Furthermore, the scattering phase shift § (k) jumps rapidly by m across a resonance.




Resonances

Potentials with a repulsive barrier may support States with [ > 0 could be trapped by the

resonances. centrifugal barrier l(l;;l).
£.g.: For S-waves(l - 0)'rt2he potent|:12I E.g.: For P-wave (I = 1), the potential
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supports a resonance at Ep = 0.209 ° i
R ' ' supports a resonance at Er = 0.0471.
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Gamow states

George Gamow (1904 — 1968) explained alpha
decayed as quantum tunneling through the
nuclear potential.

The metastable state formed by the alpha-daughter
system corresponds to a complex-E solution of the
time independent Schrodinger equation —a Gamow state.

—— Time delay
il

E=ER_?

Im(E) < 0 = state decays with time evolution e ~#t/%,



Gamow states

Gamow states correspond to poles in the second Reimann sheet of the S-matrix, They deform
their vicinities in the complex S-matrix-plane and if close enough, can give rise to the peaks on

the physical scattering line (positive real line).
4 Im(E)

Scattering states

(branch cut)
< = = = = » Re(E)
Bound states .
(15t sheet) : °
Resonances
(2" sheet)

Pole in the S-matrix <& Jost function = 0 < Purely outgoing boundary condition
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Finite Volume Eigenvector
Continuation (FVEC)




Why finite volume EC?

Sometimes, we have to calculate E vs. L (energy spectrum for varying box size)

»
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Periodic .
\ boundary
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Useful for
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1. Infinite volume properties via Luscher formalism

2. ldentifying resonances via avoided crossings <«——— In this talk




|dentifying resonances
(avoided crossings)

How do we get avoided crossings?
= plL = 2nn for periodic boundary

= pL+ 26(p) = 2mn when a scattering
potential is present

= When 6 (p) goes from 0 to i, the boundary
condition changes
from pL = 21n
to pL = 2n(n—1) >

= We see energy levels “crossing” a step

U.J. Wiese, Identification of resonance parameters
from the finite volume energy spectrum (1989)
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Finite volume construction

Few-body Hamiltonian without the center-of-mass energy:

H =Z%+V(n) —ﬁ(Zw)z

l

rn—"1, ;I<n

We use simple relative coordinates: x; =< 1 .
® ‘
After this canonical transformation, the Hamiltonian becomes X
qi 4;
=3 v
— L 2U
[ Jjs<i

where g; are the conjugate momenta to x; and u = %is the reduced mass.




Finite volume construction

Discrete Variable Representation (DVR): Discrete Fourier Transform of a discrete momentum basis.

. 0.8

_ 0.6
. . . 0.4}
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-6 -4 — 2 6
Vs
n plane waves n Kronecker-4 functions
(discrete momenta) (“almost” discrete positions)

Periodic by construction.



Finite volume construction

Kinetic energy matrix elements (k|K|l) can be calculated exactly because the derivative d is exact.

( —i k=1
.n(k—l))
k

exp (—l - |
sin (n(kn— D) ,

T
(l|]o|k) = 7 (—1)k-

\

Potential energy matrix elements (k|V|l) are diagonal, but an approximation.

kL>
X =—
n

kL
(klV|l) =V (x - 7) Oki

k) =~




Finite Volume Eigenvector Continuation
(FVEC): 2-body example

Two identical particles withm =1
interacting via the potential

V(r) =V,exp (— (%)2)

where Vy = 2.0, Ry = 1.5, a = 3.

Has a known resonance with
energy Ep = 1.606 and
half-width I' = 0.097.
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Finite Volume Eigenvector Continuation
(FVEC): 3-body example

Three identical spin-0 bosons
with m = 939.0 MeV

6_"W'|""|'"*|'"I|T"'|""1'Hf|'f”_
interacting via the two-body potential 4‘ A — T R
5 5 - - FVEC |
V(r)—VOexp( (T) )+V1exp( (rR—_a)) 2: o training ]
Rg 1
0

where IV, = =55 MeV, V; = 1.5 MeV, Ry =
V5 fm, R, = 10 fm, a = 5 fm.

1goundstateat 373MeV
Has a known resonance with 20 25 %0 25 00 ®5 %0 375 400

energy Er = —5.31 MeV and L (fm)

half-width I' = 0.12 MeV.



Does FVEC make sense?

Hij = <1/JLi Hy,

)

— Inner products and matrix elements between different Hilbert spaces!

N;j = <1/1Li 1/JLJ->

Solution: Periodic Matching

Define the dilatation operator D, ;: by (DL,L:f) (x) = %f (5 x)

Now, the inner product can be redefined as <¢Li“/’LJ-> = f_Li/fz (DLj,LL.l/JLi) (x)* lpLj(x)dx
j

The matrix element can be defined in a similar manner.
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Bound-state-to-resonance EC
via complex-scaling




Partial wave projection

We work with spherically symmetric potentials in the partial wave basis where the radial Schrodinger
equation becomes

d2  I(l+1
ldrz X :; )_ 2uV(r) + kz‘l/}z,k(r) =0

42 + k2T (@) — 20 j 4q' Vi@, (@) = 0

where k = ,/2uE,

Y, i is the reduced radial wavefunction, and
[ is the angular-momentum quantum number.

Reduces the 3D problem into a 1D problem.



Complex-scaling method (CSM)

For bound states and resonances, For example, [ = 0 gives ¢, () ~ exp(ikr)
Y (1) ~ hf (kr) = ikr hl(l)(kr) atr — oo asymptotically.
Yo (r)

hif (z) are the Riccati-Hankel functions of the Al N
first kind. ' :

hgl) (z) are the spherical Hankel functions of
the first kind.

For bound states k = ik withkx > 0
For resonances Re(k) > 0 and Im(k) < 0




Complex-scaling method (CSM)

CSM involves the transformation Then exp(ikr) — exp(ikr e'?).
r— re'® The growing tail turns into a decaying one.
where ¢ is some angle such that ¢ > arg Pox(re’?)

. 4
This is equivalent to g — ge™*® in momentum f
space, which exposes a section of the 2"

sheet.

4 Im(E)

A

2] ” Re(E) .

. ¥——_ sectionof 2" sheet
exposed via CSM




Non-hermiticity and c-product

In traditional QM, non-degenerate
eigenvectors of a Hamiltonian are orthogonal

under the inner product (scalar product). Traditional QM Non-Hermitian QM

(Bilipz) = [ dx 9100 o) H = HY H=HT
Inner product c-product
However, with CSM, the Hamiltonian is no Real eigenvalues Complex eigenvalues
longer Hermitian, and the eigenvectors are Unitary time evolution  States can decay/grow

only orthogonal under the “c-product”.

(W1lY,) = fdx Y1(x) Yo (x)



S-matrix pole trajectory

A bound state may become a resonance when
the interaction is made weaker.

A=Hy+cV ﬂ =
I bound state
this coupling parameter is (large ) unitarity cut
gradually decreased \
L 2 k4 "'3.,.'_
¥~ section of 2" sheet
j exposed via CSM
Note: This may or may not happen depending on resonance
the details of the potential. Purely attractive

: (small ¢)
potentlal cannot support S-wave resonances.

They will instead become virtual (anti-bound)
states.



Resonance-to-resonance extra polation

Consider a 2-body system withm = 1:

0.000
r? r? ~0.025
V(r) =c|-5exp —5 )t 2exp(——
—0.050
in the S-wave (I = 0) partial wave. ~0.075
Uncertainties are estimated by repeating the ~0-100
calculation 128 times while randomizing the =0.125 -
. . . . 124
location of 5 training points. ~0.150 I E—
[ training region -
. -0.175 1+ ® exact
EC for resonance-to-resonance extrapolation x extrapolated (median) .
i —-0.2004+ = extrapolated (68.2% interval)
works out of the box with the only caveat + extrapolated (95.4% interval) 8
i - -0.225 l .' : .
belng the c prOdUCt' 0.00 0.05 0.10 0.15 0.20 0.25




Bound-state-to-resonance extrapolation

However, naively using EC to extrapolate from
bound states to resonances fails.

In fact, it can be easily shown that Qi |

(Ngc)ij = (¢i|1/)j) €ER -l MO

—-0.05 |
-0.10 e

-0.15 e

(HEC)ij — (lpllHllp]) eER PO | v i °

® exact

—0.25 4 X extrapolated (median)

4 extrapolated (68.2% interval)
- extrapolated (95.4% interval)

and that Ny and Hg are symmetric under ¢-  _ous]

-0.6 —6.4 —(IJ.Z 0.0 0.2 0.4
product.




Conjugate-Augmented Eigenvector
Continuation (CA-EC)

Bound-state-to-resonance extrapolation can be
accomplished with one simple extra step:

Double the EC basis by including the complex-

0.10

conjugates of the original training vectors 0.05 - }
. ] . (01, 0 0 | X
That is, include ¥; foreach y; (i =1, ..., Ng¢) ~0.05 - ‘, , .
—0.10 A i—l
Or, alternatively, separate the real and imaginary  -o1s ——— -
. o B — traang region
parts of the EC vectors, with no additional e | - T
' 4 extrapolated (68.2% interval) -
memory usagel —0.301 < extrapolated (95.4% interval)
lpi — {RE(I/)l) ) Im(l/)l)} 08 ~0.4 ~0.2 0.0 0.2 0.4
because,

span{Re(;),Im(y;)} = span{y;, y;}



Conjugate-Augmented Eigenvector
Continuation (CA-EC)

P-wave ([ = 1) example:

2
V(r) = —cexp (— —>

4 0.05
0. 00
|
So, why does CA-EC work so well? —0.05 »
s training region
-0.10 1 -
® exact ﬂ
X extrapolated (median) ™
—0157 4 extrapolated (68.2% interval) ]
- extrapolated (95.4% interval)
-0.20 T 1
-0.3 -0.2 -0.1 0.0 0.1 0.2

X

[




Why does CA-EC work?

Short answer: | k ©
o)
: . 3
Complex-conjugated vectors have better seuthuing g
asymptotics for emulating resonances. ! COHtjmum 1(3%
® x
Long answer: M, 3
“u, @

Consider the asymptotic tail of the complex- '
scaled wavefunction under complex conjugation: l >
] ip —i(— —i¢ Kei® &
pikre'® _ o-i(-K)re . * LS :
. . . —_ 7 \\ 3
which is equivalent to k - k e~2'®. . : s
N, x
h\ * g
These values (indicated by * in the figure) have a N =
positive real part and are closer to the resonant ‘ L T .

region in the complex-k plane.




Why does CA-EC work?

Proof:

Instead of adding complex-conjugated vectors,

let’s try augmenting the basis with Riccati- 0.10
. 0.05 A
Hankel functions - i
~+ _ (1) ~0.05 s
hi (kr) = ikr h;™ (kr) o B
with the same k values corresponding to the s »
. s training region
complex-conjugated vectors. 0209 ¢ exact 2':1'
—0.25 4 X extrapolated (median)
4 extrapolated (68.2% interval)
~0.301 - extrapolated (95.4% interval)
—0.35 T T
-0.6 -0.4 -0.2 0.0 0.2 0.4




Why does CA-EC work?

Proof:

To verify that original training vectors are also

contributing, we can repeat the previous 0.10 |
. . 0.05 A 1 1
extrapolation after removing them. 1,00 ) e——————————————
' S
~0.05 ‘, : 1
In summary, we can conclude that, ~0.10 ’LL_. i
e . . . . . R s training region -l—ﬁi—me
1. Original training vectors are contributing to 0207 ¢ exact ®
. . —0.25 1 xtrapolated (median)
the internal part of the wavefunction. P23 extrapolaed {68.2% interval)
~0.301 - extrapolated (95.4% interval)
. -0.35 T T
2. Complex-conjugated vectors are =015 Lt =02 0. 2 o

contributing to the asymptotic part of the
wavefunction.



Analytic continuation of the
wavetunction

In the case when Y (r) or ¥(q) is only known along the real line, for CA-EC to applicable, we need to
continue it on to a complex-scaled contour. This can be done with the integral Schrodinger equation
(homogenous) equation.

(0@) , 1

I2
0 _4q

V(ge™,q" )¥(q")

Therefore, we can lay out a plan for implementing CA-EC:

1. Using exact methods, calculate bound wavefunctions Y¥;(q) of H(c;) for a set of ¢; > cy,.
2. Analytically continue Y¥;(q) — wi(qe‘i‘l’) via the above method.

3. Construct the EC basis with CA-EC. That is, include wf(qe_i"’) for each wi(qe‘i¢).

4. Extrapolate resonances of H(c;) for ¢; < cyp-



Futures goals

1. Extend for few-body systems.

2. Implement offline/online decomposition because H(c) has affine dependence on c.

3. A better uncertainty estimation scheme.

doesn’t work because of the non-hermiticity!

- J(chuH — Egcl?l¥sc)

(Yec|H?[Wec)




Thank you for listening!
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