

Eigenvector Continuation for Few-Body Resonances

Nuwan Yapa

Supervised by: Sebastian König

June 2nd, 2023

ESNT 2023

CEA Paris-Saclay

Outline

Prelude

Introduction to resonances

Part I

Finite Volume Eigenvector Continuation (FVEC)

Part II

Bound-state-to-resonance EC via complex-scaling

Prelude

Introduction to resonances

Resonances

Resonances appear as large peaks in the scattering cross-section.

Taylor, J.R. (2012). Scattering Theory: The Quantum Theory of Nonrelativistic Collisions. Dover Publications.

Furthermore, the scattering phase shift $\delta(k)$ jumps rapidly by π across a resonance.

Resonances

Potentials with a repulsive barrier may support resonances.

E.g.: For S-wave (l = 0), the potential $V(r) = -\frac{5}{2} \exp\left(-\frac{r^2}{3}\right) + \exp\left(-\frac{r^2}{10}\right)$ supports a resonance at $E_R = 0.209$.

States with l > 0 could be trapped by the centrifugal barrier $\frac{l(l+1)}{r^2}$. E.g.: For P-wave (l = 1), the potential $V(r) = -\frac{8}{2}\exp\left(-\frac{r^2}{4}\right)$ supports a resonance at $E_R = 0.0471$. $V_{\rm eff}(r)$ 0.4 0.2 E_R r 2 6 8 10 -0.2 -0.4 -0.6

Gamow states

George Gamow (1904 – 1968) explained alpha decayed as quantum tunneling through the nuclear potential.

The metastable state formed by the alpha-daughter system corresponds to a complex-E solution of the time independent Schrödinger equation – a Gamow state.

 $Im(E) < 0 \Rightarrow$ state decays with time evolution $e^{-iHt/\hbar}$.

Gamow states

Gamow states correspond to poles in the second Reimann sheet of the S-matrix, They deform their vicinities in the complex S-matrix-plane and if close enough, can give rise to the peaks on the physical scattering line (positive real line).

Pole in the S-matrix \Leftrightarrow Jost function = 0 \Leftrightarrow Purely outgoing boundary condition

Part I

Finite Volume Eigenvector Continuation (FVEC)

Why finite volume EC?

Sometimes, we have to calculate *E* vs. *L* (energy spectrum for varying box size)

Useful for

- 1. Infinite volume properties via Lüscher formalism
- 2. Identifying resonances via avoided crossings ← In this talk

Identifying resonances (avoided crossings)

How do we get avoided crossings?

- $pL = 2\pi n$ for periodic boundary
- $pL + 2\delta(p) = 2\pi n$ when a scattering potential is present
- When $\delta(p)$ goes from 0 to π , the boundary condition changes from $pL = 2\pi n$ to $pL = 2\pi (n-1)$
- We see energy levels "crossing" a step

U.J. Wiese, Identification of resonance parameters from the finite volume energy spectrum (1989)

Finite volume construction

Few-body Hamiltonian without the center-of-mass energy:

$$H = \sum_{i} \frac{p_i^2}{2m} + V(r_i) - \frac{1}{2nm} \left(\sum_{i} p_i \right)$$

We use simple relative coordinates: $x_i = \begin{cases} r_i - r_n & ; i < n \\ \frac{1}{n} \sum r_i & ; i = n \end{cases}$

After this canonical transformation, the Hamiltonian becomes

$$H = \sum_{i} \sum_{j \le i} \frac{q_i \ q_j}{2\mu} + V(r_i)$$

where q_i are the conjugate momenta to x_i and $\mu = \frac{m}{2}$ is the reduced mass.

Finite volume construction

Discrete Variable Representation (DVR): Discrete Fourier Transform of a discrete momentum basis.

Periodic by construction.

Finite volume construction

Kinetic energy matrix elements $\langle k|K|l \rangle$ can be calculated exactly because the derivative ∂ is exact.

$$\langle l|\partial|k\rangle = \frac{\pi}{L} \begin{cases} -i & ;k = l\\ (-1)^{k-l} \frac{\exp\left(-i\frac{\pi(k-l)}{n}\right)}{\sin\left(\frac{\pi(k-l)}{n}\right)} & ;k \neq l \end{cases}$$

Potential energy matrix elements $\langle k|V|l \rangle$ are diagonal, but an approximation.

$$|k\rangle \approx \left| x = \frac{kL}{n} \right|$$
$$\langle k|V|l\rangle \approx V\left(x = \frac{kL}{n}\right) \delta_{kl}$$

Finite Volume Eigenvector Continuation (FVEC): 2-body example

Two identical particles with m = 1 interacting via the potential

$$V(r) = V_0 \exp\left(-\left(\frac{r-a}{R_0}\right)^2\right)$$

where
$$V_0 = 2.0$$
, $R_0 = 1.5$, $a = 3$.

Has a known resonance with energy $E_R = 1.606$ and half-width $\Gamma = 0.097$.

Finite Volume Eigenvector Continuation (FVEC): 3-body example

Three identical spin-0 bosons with m = 939.0 MeVinteracting via the two-body potential

$$V(r) = V_0 \exp\left(-\left(\frac{r}{R_0}\right)^2\right) + V_1 \exp\left(-\left(\frac{r-a}{R_1}\right)^2\right)$$

where $V_0 = -55$ MeV, $V_1 = 1.5$ MeV, $R_0 = \sqrt{5}$ fm, $R_1 = 10$ fm, $a = 5$ fm.

Has a known resonance with energy $E_R = -5.31$ MeV and half-width $\Gamma = 0.12$ MeV.

Does FVEC make sense?

Inner products and matrix elements between different Hilbert spaces!

Solution: Periodic Matching

Define the **dilatation operator** $D_{L,L'}$ by $(D_{L,L'}f)(x) = \sqrt{\frac{L}{L'}} f\left(\frac{L}{L'}x\right)$ Now, the inner product can be redefined as $\left\langle \psi_{L_i} \middle| \psi_{L_j} \right\rangle = \int_{-L_j/2}^{L_j/2} \left(D_{L_j,L_i}\psi_{L_i} \right) (x)^* \psi_{L_j}(x) dx$ The matrix element can be defined in a similar manner.

Part II

Bound-state-to-resonance EC via complex-scaling

Partial wave projection

We work with spherically symmetric potentials in the partial wave basis where the radial Schrodinger equation becomes

$$\left[\frac{\mathrm{d}^2}{\mathrm{d}r^2} - \frac{l(l+1)}{r^2} - 2\mu V(r) + k^2\right]\psi_{l,k}(r) = 0$$
$$[q^2 + k^2]\psi_{l,k}(q) - 2\mu\int\mathrm{d}q'\,V_l(q,q')\psi_{l,k}(q') = 0$$

where $k = \sqrt{2\mu E}$, $\psi_{l,k}$ is the reduced radial wavefunction, and l is the angular-momentum quantum number.

Reduces the 3D problem into a 1D problem.

Complex-scaling method (CSM)

For bound states and resonances, $\psi_{l,k}(r) \sim \hat{h}_l^+(kr) = ikr h_l^{(1)}(kr) \text{ at } r \to \infty$

 $\hat{h}_l^+(z)$ are the Riccati-Hankel functions of the first kind.

 $h_l^{(1)}(z)$ are the spherical Hankel functions of the first kind.

For bound states $k = i\kappa$ with $\kappa > 0$ For resonances $\operatorname{Re}(k) > 0$ and $\operatorname{Im}(k) < 0$ For example, l = 0 gives $\psi_{l,k}(r) \sim \exp(ikr)$ asymptotically.

Complex-scaling method (CSM)

CSM involves the transformation $r \rightarrow r e^{i\phi}$

where ϕ is some angle such that $\phi > \frac{\arg}{2}$. This is equivalent to $q \rightarrow q e^{-i\phi}$ in momentum space, which exposes a section of the 2nd sheet. Then $\exp(ikr) \rightarrow \exp(ikr \ e^{i\phi})$. The growing tail turns into a decaying one.

Non-hermiticity and c-product

In traditional QM, non-degenerate eigenvectors of a Hamiltonian are orthogonal under the inner product (scalar product).

$$\langle \psi_1 | \psi_2 \rangle = \int dx \ \psi_1^*(x) \ \psi_2(x)$$

However, with CSM, the Hamiltonian is no longer Hermitian, and the eigenvectors are only orthogonal under the "c-product".

$$(\psi_1|\psi_2) = \int dx \ \psi_1(x) \ \psi_2(x)$$

Traditional QM	Non-Hermitian QM
$H = H^{\dagger}$	$H = H^T$
Inner product	c-product
Real eigenvalues	Complex eigenvalues
Unitary time evolution	States can decay/grow

S-matrix pole trajectory

A bound state may become a resonance when the interaction is made weaker.

states.

Resonance-to-resonance extrapolation

Consider a 2-body system with m = 1:

 $V(r) = c \left[-5 \exp\left(-\frac{r^2}{3}\right) + 2 \exp\left(-\frac{r^2}{10}\right)\right]$

in the S-wave (l = 0) partial wave.

Uncertainties are estimated by repeating the calculation 128 times while randomizing the location of 5 training points.

EC for resonance-to-resonance extrapolation works out of the box with the only caveat being the c-product.

Bound-state-to-resonance extrapolation

However, naively using EC to extrapolate from bound states to resonances fails.

In fact, it can be easily shown that

$$(N_{EC})_{ij} = (\psi_i | \psi_j) \in \mathbb{R}$$

$$(H_{EC})_{ij} = (\psi_i | H | \psi_j) \in \mathbb{R}$$

and that N_{EC} and H_{EC} are symmetric under c-product.

Conjugate-Augmented Eigenvector Continuation (CA-EC)

Bound-state-to-resonance extrapolation can be accomplished with one simple extra step:

Double the EC basis by including the complexconjugates of the original training vectors

That is, include ψ_i^* for each ψ_i $(i = 1, ..., N_{EC})$

Or, alternatively, separate the real and imaginary parts of the EC vectors, with no additional memory usage,

 $\psi_i \rightarrow \{\operatorname{Re}(\psi_i), \operatorname{Im}(\psi_i)\}$

because,

 $\operatorname{span}\{\operatorname{Re}(\psi_i), \operatorname{Im}(\psi_i)\} = \operatorname{span}\{\psi_i, \psi_i^*\}$

Conjugate-Augmented Eigenvector Continuation (CA-EC)

P-wave (l = 1) example:

 $V(r) = -c \exp\left(-\frac{r^2}{4}\right)$

So, why does CA-EC work so well?

Why does CA-EC work?

Short answer:

Complex-conjugated vectors have better asymptotics for emulating resonances.

Long answer:

Consider the asymptotic tail of the complexscaled wavefunction under complex conjugation: $e^{ikr \ e^{i\phi}} \rightarrow e^{-i \ (-k) \ r \ e^{-i\phi}}$ which is equivalent to $k \rightarrow k \ e^{-2i\phi}$.

These values (indicated by * in the figure) have a positive real part and are closer to the resonant region in the complex-k plane.

Why does CA-EC work?

Proof:

Instead of adding complex-conjugated vectors, let's try augmenting the basis with Riccati-Hankel functions

$$\hat{h}_l^+(kr) = ikr \ h_l^{(1)}(kr)$$

with the same k values corresponding to the complex-conjugated vectors.

Why does CA-EC work?

Proof:

To verify that original training vectors are also contributing, we can repeat the previous extrapolation after removing them.

In summary, we can conclude that,

- 1. Original training vectors are contributing to the internal part of the wavefunction.
- 2. Complex-conjugated vectors are contributing to the asymptotic part of the wavefunction.

Analytic continuation of the wavefunction

In the case when $\psi(r)$ or $\psi(q)$ is only known along the real line, for CA-EC to applicable, we need to continue it on to a complex-scaled contour. This can be done with the integral Schrodinger equation (homogenous) equation.

$$\psi(qe^{-i\phi}) = \int_0^\infty q'^2 \, dq' \, \frac{1}{E - \frac{q'^2}{2\mu}} V(qe^{-i\phi}, q')\psi(q')$$

Therefore, we can lay out a plan for implementing CA-EC:

- 1. Using exact methods, calculate bound wavefunctions $\psi_i(q)$ of $H(c_i)$ for a set of $c_i > c_{\text{th}}$.
- 2. Analytically continue $\psi_i(q) \rightarrow \psi_i(qe^{-i\phi})$ via the above method.
- 3. Construct the EC basis with CA-EC. That is, include $\psi_i^*(qe^{-i\phi})$ for each $\psi_i(qe^{-i\phi})$.
- **4**. Extrapolate resonances of $H(c_i)$ for $c_i < c_{th}$.

Futures goals

- **1**. Extend for few-body systems.
- 2. Implement offline/online decomposition because H(c) has affine dependence on c.
- 3. A better uncertainty estimation scheme.

Note: $\sqrt{\frac{\langle \psi_{EC} | [H - E_{EC}]^2 | \psi_{EC} \rangle}{\langle \psi_{EC} | H^2 | \psi_{EC} \rangle}}$ doesn't work because of the non-hermiticity!

Thank you for listening!

References and further reading:

- P. Klos, S. König, H.-W. Hammer, J. E. Lynn, and A. Schwenk. "Signatures of Few-Body Resonances in Finite Volume." *Physical Review C* 98, no. 3 (September 24, 2018): 034004. <u>https://doi.org/10.1103/PhysRevC.98.034004</u>.
- Nuwan Yapa, and Sebastian König. "Volume Extrapolation via Eigenvector Continuation." *Physical Review C* 106, no. 1 (July 18, 2022): 014309. <u>https://doi.org/10.1103/PhysRevC.106.014309</u>.
- Nuwan Yapa, Kévin Fossez, and Sebastian König. "Eigenvector Continuation for Emulating and Extrapolating Two-Body Resonances." arXiv, March 10, 2023. <u>https://doi.org/10.48550/arXiv.2303.06139</u>.