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Prelude
Introduction to resonances
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Resonances
Resonances appear as large peaks in the scattering cross-section.

Furthermore, the scattering phase shift jumps rapidly by across a resonance.
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Taylor, J.R. (2012). Scattering Theory: The Quantum 
Theory of Nonrelativistic Collisions. Dover Publications.



Resonances
Potentials with a repulsive barrier may support 
resonances.

E.g.: For S-wave ( ), the potential
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supports a resonance at ோ .

States with could be trapped by the 

centrifugal barrier ௟ ௟ାଵ

௥మ .

E.g.: For P-wave ( ), the potential
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supports a resonance at ோ .
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Gamow states
George Gamow (1904 – 1968) explained alpha
decayed as quantum tunneling through the
nuclear potential.

The metastable state formed by the alpha-daughter
system corresponds to a complex- solution of the
time independent Schrödinger equation – a Gamow state.

ோ

state decays with time evolution ି௜ு௧/ℏ.
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Time delay



Gamow states
Gamow states correspond to poles in the second Reimann sheet of the S-matrix, They deform 
their vicinities in the complex S-matrix-plane and if close enough, can give rise to the peaks on 
the physical scattering line (positive real line).

Pole in the S-matrix   Jost function Purely outgoing boundary condition
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Re (𝐸)

Im(𝐸)

Resonances
(2nd sheet)

Bound states
(1st sheet)

Scattering states 
(branch cut)



Part I
Finite Volume Eigenvector 
Continuation (FVEC)



Why finite volume EC?
Sometimes, we have to calculate vs. (energy spectrum for varying box size)

Useful for

1. Infinite volume properties via Lüscher formalism

2. Identifying resonances via avoided crossings
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Periodic 
boundary

In this talk



Identifying resonances
(avoided crossings)

How do we get avoided crossings?

 for periodic boundary

 when a scattering 
potential is present

 When goes from to , the boundary 
condition changes
from 
to 

 We see energy levels “crossing” a step
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U.J. Wiese, Identification of resonance parameters 
from the finite volume energy spectrum (1989)
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Finite volume construction
Few-body Hamiltonian without the center-of-mass energy:

௜
ଶ

௜

௜ ௜

௜

ଶ

We use simple relative coordinates:  ௜

௜ ௡
ଵ

௡ ௜

After this canonical transformation, the Hamiltonian becomes
௜ ௝

௝ஸ௜௜

௜

where ௜ are the conjugate momenta to ௜ and ௠

ଶ
is the reduced mass.
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Finite volume construction
Discrete Variable Representation (DVR): Discrete Fourier Transform of a discrete momentum basis.

Periodic by construction.
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DFT

plane waves
(discrete momenta)

Kronecker- functions
(“almost” discrete positions)



Finite volume construction
Kinetic energy matrix elements can be calculated exactly because the derivative is exact.

௞ି௟

Potential energy matrix elements are diagonal, but an approximation.

௞௟
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Finite Volume Eigenvector Continuation 
(FVEC): 2-body example
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Two identical particles with 
interacting via the potential

଴
௥ି௔

ோబ

ଶ

where ଴ , ଴ , .

Has a known resonance with
energy ோ and
half-width .



Finite Volume Eigenvector Continuation 
(FVEC): 3-body example
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Three identical spin-0 bosons
with 
interacting via the two-body potential

଴
௥

ோబ

ଶ

ଵ
௥ି௔

ோభ

ଶ

where ଴ , ଵ , ଴

, ଵ , .

Has a known resonance with
energy ோ and
half-width .



Does FVEC make sense?
௜௝ ௅೔ ௅∗ ௅ೕ

௜௝ ௅೔ ௅ೕ

Solution: Periodic Matching

Define the dilatation operator ௅,௅ᇲ by ௅,௅ᇲ
௅

௅ᇲ

௅

௅ᇲ

Now, the inner product can be redefined as ௅೔ ௅ೕ ௅ೕ,௅೔ ௅೔
∗

௅ೕ

௅ೕ/ଶ

ି௅ೕ/ଶ

The matrix element can be defined in a similar manner.

16

Inner products and matrix elements between different Hilbert spaces!



Part II
Bound-state-to-resonance EC 
via complex-scaling
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Partial wave projection
We work with spherically symmetric potentials in the partial wave basis where the radial Schrodinger 
equation becomes

ଶ

ଶ ଶ
ଶ

௟,௞

ଶ ଶ
௟,௞ ௟ ௟,௞

where ,
௟,௞ is the reduced radial wavefunction, and
is the angular-momentum quantum number.

Reduces the 3D problem into a 1D problem.
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Complex-scaling method (CSM)
For bound states and resonances,

௟,௞ ௟
ା

௟
ଵ at 

௟
ା are the Riccati-Hankel functions of the 

first kind.

௟
ଵ are the spherical Hankel functions of 

the first kind.

For bound states with 
For resonances and 

For example, gives ௟,௞

asymptotically.
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Complex-scaling method (CSM)
CSM involves the transformation

௜థ

where is some angle such that ୟ୰୥

ଶ

This is equivalent to ି௜థ in momentum 
space, which exposes a section of the 2nd

sheet.

Then ௜థ .
The growing tail turns into a decaying one.
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2𝜙 Re (𝐸)
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section of 2nd sheet 
exposed via CSM



Non-hermiticity and c-product
In traditional QM, non-degenerate 
eigenvectors of a Hamiltonian are orthogonal 
under the inner product (scalar product).

ଵ ଶ ଵ
∗

ଶ

However, with CSM, the Hamiltonian is no 
longer Hermitian, and the eigenvectors are 
only orthogonal under the “c-product”.

ଵ ଶ ଵ ଶ

Non-Hermitian QMTraditional QM
்ற

c-productInner product

Complex eigenvaluesReal eigenvalues

States can decay/growUnitary time evolution
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S-matrix pole trajectory
A bound state may become a resonance when 
the interaction is made weaker.

଴

Note: This may or may not happen depending on 
the details of the potential. Purely attractive 
potential cannot support S-wave resonances. 
They will instead become virtual (anti-bound) 
states.

22

this coupling parameter is 
gradually decreased

bound state
(large 𝑐)

resonance
(small 𝑐)

section of 2nd sheet 
exposed via CSM

unitarity cut



Resonance-to-resonance extrapolation
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Consider a 2-body system with :

௥మ

ଷ

௥మ

ଵ଴

in the S-wave ( ) partial wave.

Uncertainties are estimated by repeating the 
calculation 128 times while randomizing the 
location of 5 training points.

EC for resonance-to-resonance extrapolation 
works out of the box with the only caveat 
being the c-product.



Bound-state-to-resonance extrapolation
However, naively using EC to extrapolate from 
bound states to resonances fails.

In fact, it can be easily shown that

ா஼ ௜௝ ௜ ௝

ா஼ ௜௝ ௜ ௝

and that ா஼ and ா஼ are symmetric under c-
product.
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Conjugate-Augmented Eigenvector 
Continuation (CA-EC)
Bound-state-to-resonance extrapolation can be 
accomplished with one simple extra step:

Double the EC basis by including the complex-
conjugates of the original training vectors

That is, include ௜
∗ for each ௜ ( ா஼)

Or, alternatively, separate the real and imaginary 
parts of the EC vectors, with no additional 
memory usage,

௜ ௜ ௜

because,
௜ ௜ ௜ ௜

∗
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Conjugate-Augmented Eigenvector 
Continuation (CA-EC)
P-wave ( ) example:

ଶ

So, why does CA-EC work so well?
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Why does CA-EC work?
Short answer:

Complex-conjugated vectors have better 
asymptotics for emulating resonances.

Long answer:

Consider the asymptotic tail of the complex-
scaled wavefunction under complex conjugation:

௜௞௥ ௘೔ഝ ି௜ (ି௞) ௥ ௘ష೔ഝ

which is equivalent to ିଶ௜థ.

These values (indicated by in the figure) have a 
positive real part and are closer to the resonant 
region in the complex- plane.
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𝑘

𝑘𝑒௜థ

Before com
plex-scaling

After com
plex-scaling



Why does CA-EC work?
Proof:

Instead of adding complex-conjugated vectors, 
let’s try augmenting the basis with Riccati-
Hankel functions

௟
ା

௟
ଵ

with the same values corresponding to the 
complex-conjugated vectors.
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Why does CA-EC work?
Proof:

To verify that original training vectors are also 
contributing, we can repeat the previous 
extrapolation after removing them.

In summary, we can conclude that,

1. Original training vectors are contributing to 
the internal part of the wavefunction.

2. Complex-conjugated vectors are 
contributing to the asymptotic part of the 
wavefunction.
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Analytic continuation of the 
wavefunction
In the case when or is only known along the real line, for CA-EC to applicable, we need to 
continue it on to a complex-scaled contour. This can be done with the integral Schrodinger equation 
(homogenous) equation.

ି௜థ ଶ
ஶ

଴
ଶ

ି௜థ

Therefore, we can lay out a plan for implementing CA-EC:

1. Using exact methods, calculate bound wavefunctions ௜ of ௜ for a set of ௜ ୲୦.

2. Analytically continue ௜ ௜
ି௜థ via the above method.

3. Construct the EC basis with CA-EC. That is, include ௜
∗ ି௜థ for each ௜

ି௜థ .

4. Extrapolate resonances of ௜ for ௜ ୲୦.
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Futures goals
1. Extend for few-body systems.

2. Implement offline/online decomposition because has affine dependence on .

3. A better uncertainty estimation scheme.

Note: 
ா஼ ா஼

ଶ
ா஼

ா஼
ଶ

ா஼

doesn’t work because of the non-hermiticity!
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Thank you for listening!
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