Eigenvector continuation for the anharmonic oscillator and the pairing Hamiltonian Phys. Lett. B 830 (2022) 137101 and arXiv:2302.08373

Margarida Companys Franzke

with A. Tichai, K. Hebeler and A. Schwenk

European Research Council

Established by the European Commission

erc

Eigenvector continuation (EC)

 \Box For Hamiltonians $\hat{H}(c)$ with continuous parametric dependence

$$\hat{H}(\mathbf{c}) = \hat{H}_0 + \mathbf{c} \cdot \hat{H}_1$$

□ Based on **analytical continuation** of eigenvalues and eigenvectors outside original domain Frame *et al.*, PRL (2018)

□ Predictions obtained by solving the generalized eigenvalue problem

 $egin{aligned} & \mathcal{H}X = \epsilon \mathcal{N}X \ & \mathcal{H}_{pq} = \langle \Psi^{(p)} | \hat{\mathcal{H}}(\mathbf{c}) | \Psi^{(q)}
angle \ & \mathcal{N}_{pq} = \langle \Psi^{(p)} | \Psi^{(q)}
angle \end{aligned}$

 \Box For set of training vectors $|\Psi^{(p)}\rangle$

With matrix elements

Eigenvector continuation

TECHNISCHE UNIVERSITÄT DARMSTADT

This talk: Two different applications

- As a PT resummation tool
- State corrections as EC basis e.g. Demol et al. PRC (2020) Sakar and Lee PRL (2021)
- Here for the anharmonic oscillator (AHO) with high-order state corrections
- For the pairing Hamiltonian with low-order state corrections

- As an emulator tool
- \triangleright Solution known for some c_i
- Exact solutions used as EC basis e.g. König et al. PLB (2020) Furnstahl et al. PLB (2020) Drischler et al. PLB (2021)
- ▷ For the pairing Hamiltonian with truncated training vectors

The anharmonic oscillator

 Hamiltonian of a harmonic oscillator with a quartic perturbation (in natural units)

$$\hat{H}(c) = rac{1}{2}\hat{p}^2 + rac{1}{2}\hat{x}^2 + c\hat{x}^4$$

- Perturbation expansion is well known to diverge Bender, Wu, PR (1969), PRD (1973)
- Expression in terms of ladder operators

$$\hat{H}=\hat{a}^{\dagger}\hat{a}+rac{1}{2}+\mathsf{c}ig(rac{\hat{a}^{\dagger}+\hat{a}}{\sqrt{2}}ig)^{4}$$

□ Pentadiagonal matrix

Companys Franzke et al., PLB (2022)

EC based on ground state

TECHNISCHE UNIVERSITÄT DARMSTADT

- \Box EC basis generated by PT expansion
 - ▷ Reference state: ground state of HO
- Most rapid convergence for ground state
- Goal: Extend EC framework for excited states
- □ Also sequences for **excited states**
 - Solving the same generalized eigenvalue problem
 - Only eigenstates of the same symmetries can be accessed

Companys Franzke et al., PLB (2022)

Computational difficulties

June 2, 2023 | TU Darmstadt | Institut für Kernphysik | M. Companys Franzke | 6

Orthogonalizing EC basis

 \Box EC solves generalized eigenvalue problem $\mathbf{H}^{V}X = \epsilon \mathbf{N}^{V}X$ with EC basis V and

$$\mathbf{H}^{\mathbf{V}} = \mathbf{V}^{\mathsf{T}} \mathbf{H} \mathbf{V}$$
$$\mathbf{N}^{\mathbf{V}} = \mathbf{V}^{\mathsf{T}} \mathbf{V}$$

 \Box Equivalent to eigenvalue problem $(\mathbf{N}^{V})^{-1}\mathbf{H}^{V}X = \epsilon X$

Orthogonalizing EC basis

 \Box EC solves generalized eigenvalue problem $\mathbf{H}^{V}X = \epsilon \mathbf{N}^{V}X$ with EC basis V and

$$\mathbf{H}^{\mathbf{V}} = \mathbf{V}^{\mathsf{T}} \mathbf{H} \mathbf{V}$$
$$\mathbf{N}^{\mathbf{V}} = \mathbf{V}^{\mathsf{T}} \mathbf{V}$$

- \Box Equivalent to eigenvalue problem $(\mathbf{N}^V)^{-1}\mathbf{H}^V X = \epsilon X$
- \Box Can be shown to be equivalent to problem in orthogonal basis W

Orthogonalizing EC basis

 \Box EC solves generalized eigenvalue problem $\mathbf{H}^{V}X = \epsilon \mathbf{N}^{V}X$ with EC basis V and

$$\mathbf{H}^{\mathbf{V}} = \mathbf{V}^{\mathsf{T}} \mathbf{H} \mathbf{V}$$
$$\mathbf{N}^{\mathbf{V}} = \mathbf{V}^{\mathsf{T}} \mathbf{V}$$

- $\Box \text{ Equivalent to eigenvalue problem } (\mathbf{N}^V)^{-1}\mathbf{H}^V X = \epsilon X$
- \Box Can be shown to be equivalent to problem in orthogonal basis W
- \Box Let *T* and *T*⁻¹ be the transformation matrices, such that $V = W \cdot T$.

$$\Longrightarrow (\mathbf{N}^{V})^{-1}\mathbf{H}^{V} = T^{-1}\mathbf{H}^{W}T$$

 \Box Solve $\mathbf{H}^{W}Y = \epsilon Y$ for Y = TX instead

June 2, 2023 | TU Darmstadt | Institut für Kernphysik | M. Companys Franzke | 7

EC based on an excited state

- □ EC basis generated by PT expansion
 - ▷ reference state: excited state of HO
- $\hfill\square$ Reference state sequence converges quickly
- Other sequences do not converge to exact eigenvalues until high order
 - ▷ Jump at high orders
 - Variational principle

Companys Franzke et al., PLB (2022)

EC based on an excited state

- □ EC basis generated by PT expansion
 - ▷ reference state: **excited** state of HO
- □ Reference state sequence converges quickly
- Other sequences do not converge to exact eigenvalues until high order
 - ▷ Jump at high orders
 - Variational principle

EC for coupling strength (c = 0.1)

Reference state: ground state

Reference state: first excited state

Companys Franzke et al., PLB (2022)

 \Box Same general trend as for c = 1

□ Converges faster

Variation of the coupling strength for EC

- EC basis from PT for first excited state for different c
 - Only lowest sequence shown
- □ Jump independent of *c*
 - ▷ EC spans the same subspace

Companys Franzke et al., PLB (2022)

EC compared to configuration interaction

- Configuration interaction (CI) basis consists of the eigenstates of the HO
- Diagonalization in truncated HO basis
- □ PT strongly divergent
 - ▷ EC performs worse than CI
 - ▷ EC still converges
 - \Longrightarrow PT chooses poor basis

Summary AHO Companys Franzke et al., PLB (2022)

- □ EC sequence converges quickly for the reference state
- \square EC for the ground-state reference state also produces sequences converging to exited states
- Reference state EC sequence converges faster than same state in ground-state EC
 Simultaneous assessment of multiple excited states challenging
- □ The EC order where the jump occurs is independent of c
 - \Longrightarrow EC provides a robust framework to extract ground and excited states

Pairing Hamiltonian

 \Box Pairing Hamiltonian for model-space size Ω and pair states p and \bar{p}

$$\hat{\mathcal{H}}_{\mathsf{pairing}} \equiv \sum_{p}^{\Omega} \epsilon_{p} (\mathbf{c}_{p}^{\dagger} \mathbf{c}_{p} + \mathbf{c}_{ar{p}}^{\dagger} \mathbf{c}_{ar{p}}) - g \sum_{pq}^{\Omega} \mathbf{c}_{p}^{\dagger} \mathbf{c}_{ar{p}}^{\dagger} \mathbf{c}_{ar{q}} \mathbf{c}_{q} \,,$$

⇒ exactly solvable due to Richardson without large-scale diagonalization e.g. Richardson et al. PL (1964)

Courtesy of Alexander Tichai

Pairing Hamiltonian

 \Box Pairing Hamiltonian for model-space size Ω and pair states p and $ar{p}$

EC as a resummation method of PT (1/2)

$$\Box$$
 PT: $\hat{H}_0 = \hat{H}^{(0)} + \hat{H}^{(1)}$ and $\hat{H}_1 = \hat{H}^{(2)}$

 $\Box \hat{H}^{(k)}$ normal ordered *k*-body part of the Hamiltonian

$$egin{aligned} & E^{(0)}|\Phi
angle = H_0|\Phi
angle = (2\sum_i \epsilon_i - gN_{
m occ})|\Phi
angle \ & |\Psi^{(1)}
angle = rac{1}{2}\sum_{ai}rac{g}{f_i - f_a}|\Phi^{aar a}_{ar lar i}
angle \ & E^{(2)} = -rac{1}{2}\sum_{ai}rac{g^2}{f_i - f_a} \end{aligned}$$

 $\Box \text{ Where } f_p = \epsilon_p - n_p g$

□ Reference state:

$$|\Phi
angle\equiv\prod_{i=1}^{N_{
m occ}}c_{i}^{\dagger}c_{\overline{i}}^{\dagger}|0
angle$$
 .

\Box PT: $\hat{H}_0 = \hat{H}^{(0)} + \hat{H}^{(1)}$ and $\hat{H}_1 = \hat{H}^{(2)}$

 $\Box \hat{H}^{(k)}$ normal ordered *k*-body part of the Hamiltonian

$$\begin{split} E^{(0)}|\Phi\rangle &= H_{0}|\Phi\rangle = (2\sum_{i}\epsilon_{i} - gN_{\rm occ})|\Phi\rangle \\ |\Psi^{(1)}\rangle &= \frac{1}{2}\sum_{ai}\frac{g}{f_{i} - f_{a}}|\Phi^{a\bar{a}}_{l\bar{l}}\rangle \\ E^{(2)} &= -\frac{1}{2}\sum_{ai}\frac{g^{2}}{f_{i} - f_{a}} \end{split}$$

 \square EC:

$$|\Phi
angle\equiv\prod_{i=1}^{N_{
m occ}}c_{i}^{\dagger}c_{\overline{i}}^{\dagger}|0
angle\,.$$

$$\begin{split} \mathbf{H} &= \begin{pmatrix} \langle \Psi^{(0)} | \hat{H} | \Psi^{(0)} \rangle & \langle \Psi^{(0)} | \hat{H} | \Psi^{(1)} \rangle \\ \langle \Psi^{(1)} | \hat{H} | \Psi^{(0)} \rangle & \langle \Psi^{(1)} | \hat{H} | \Psi^{(1)} \rangle \end{pmatrix} = \begin{pmatrix} E^{(0)} & E^{(2)} \\ E^{(2)} & \mathbf{H}_{11} \end{pmatrix} \\ \mathbf{N} &= \begin{pmatrix} \langle \Psi^{(0)} | \Psi^{(0)} \rangle & \langle \Psi^{(0)} | \Psi^{(1)} \rangle \\ \langle \Psi^{(1)} | \Psi^{(0)} \rangle & \langle \Psi^{(1)} | \Psi^{(1)} \rangle \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{N}_{11} \end{pmatrix} . \end{split}$$

EC as a resummation method of PT (1/2)

EC as a resummation method of PT (2/2)

$$\begin{split} \mathbf{N}_{11} &= \frac{1}{4} \sum_{abij} \frac{g^2 \langle \Phi_{i\bar{i}}^{aa} | \Phi_{i\bar{i}}^{aa} \rangle}{(f_i - f_a)(f_j - f_b)} = \frac{1}{4} \sum_{ai} \frac{g^2}{(f_i - f_a)^2} \\ \mathbf{H}_{11} &= \frac{1}{4} \sum_{ai} \frac{g^2 (2 \sum_k \epsilon_k - g N_{\text{occ}})}{(f_i - f_a)^2} - \frac{1}{2} \sum_{ai} \frac{g^2}{f_i - f_a} \\ &- \frac{1}{4} (\sum_{abi} \frac{g^3}{(f_i - f_a)(f_i - f_b)} + \sum_{aij} \frac{g^3}{(f_i - f_a)(f_j - f_a)}) \end{split}$$

Scales polynomially with system size
 Similar in spirit to Ekström and Hagen PRL (2019)

Companys Franzke, M.Sc. thesis (2023)

EC as a resummation method of PT (2/2)

$$\begin{split} \mathbf{N}_{11} &= \frac{1}{4} \sum_{abij} \frac{g^2 \langle \Phi_{\bar{l}\bar{l}}^{a\bar{a}} | \Phi_{\bar{l}\bar{l}}^{a\bar{a}} \rangle}{(f_i - f_a)(f_j - f_b)} = \frac{1}{4} \sum_{ai} \frac{g^2}{(f_i - f_a)^2} \\ \mathbf{H}_{11} &= \frac{1}{4} \sum_{ai} \frac{g^2 (2 \sum_k \epsilon_k - g N_{\text{occ}})}{(f_i - f_a)^2} - \frac{1}{2} \sum_{ai} \frac{g^2}{f_i - f_a} \\ &- \frac{1}{4} (\sum_{abi} \frac{g^3}{(f_i - f_a)(f_i - f_b)} + \sum_{aij} \frac{g^3}{(f_i - f_a)(f_j - f_a)}) \end{split}$$

- Scales polynomially with system size
- □ Similar in spirit to Ekström and Hagen PRL (2019)
- Superfluidity cannot be captured by MBPT around normal state

Companys Franzke, M.Sc. thesis (2023)

EC compared to other methods

$$E^{(2)}=-rac{1}{2}\sum_{ai}rac{g^2}{f_i-f_a} ext{ with } f_p=\epsilon_p-n_pg$$

$$\Box$$
 Singularity at $g = -\Delta \epsilon = -1$

□ pCI-2p2h and EC-PT(1) both are diagonalizations on 2p2h-spaces

EC compared to other methods

 \implies EC gives good approximations for large coupling range, although HF and MBPT(2) do not

June 2, 2023 | TU Darmstadt | Institut für Kernphysik | M. Companys Franzke | 16

EC as an emulation tool

TECHNISCHE UNIVERSITÄT DARMSTADT

 EC can be used to emulate Hamiltonians from training data e.g. Frame et al. PRL (2018)

Baran and Nichita PRB (2023)

Can be used to

- ▷ Interpolate with training points from both sides of g_{crit}
- Extrapolate from only normal or superfluid training points

□ Either exact or approximated training data can be used

 $\triangleright\,$ Here the CI truncation of the training states is varied

Different EC applications for the pairing Hamiltonian

- \Box EC from PT state corrections only good around g = 0
- One-sided training points only approximate the same side well
- Training points from both sides of the interval give good results

Companys Franzke et al., arXiv:2302.08373 (2023)

Norm matrix for the pairing Hamiltonian

- Block matrix structure
- Dependent on critical g
- Strongly suppressed overlap between normal and superfluid ground state

Companys Franzke et al., arXiv:2302.08373

Norm matrix for the pairing Hamiltonian

- □ Block matrix structure
- □ Dependent on critical g
- Strongly suppressed overlap between normal and superfluid ground state
- $\hfill\square$ Most singular values zero

20exact pCI-2p2h E_0 15pCl-4p4h pCI-6p6h pCl-8p8h 10 FCI ······ training data -0.5 $q_{crit}0.5$ -0.5 $g_{crit}0.5$ 1 - 1-0.5 $q_{crit}0.5$ 0 1 -10 a a a

TECHNISCHE UNIVERSITÄT DARMSTADT

Variation of the CI truncation of the EC training points

Companys Franzke, M.Sc. thesis (2023)

 \implies 6p6h truncated CI gives basically the same results as full CI

June 2, 2023 | TU Darmstadt | Institut für Kernphysik | M. Companys Franzke | 20

Eigenvector continuation compared to configuration interaction

TECHNISCHE UNIVERSITÄT DARMSTADT

 EC approximates CI with lower truncation better

Companys Franzke et al., arXiv:2302.08373 (2023)

Eigenvector continuation compared to configuration interaction

TECHNISCHE UNIVERSITÄT DARMSTADT

□ EC approximates CI with lower truncation better

 Higher CI truncations give more accurate training vectors

Companys Franzke et al., arXiv:2302.08373

Summary Pairing Hamiltonian arXiv:2302.08373

- Pairing Hamiltonian changes from normal to superfluid ground state with increasing coupling
- \Box Eigenvector continuation with MBPT state correction only approximates solutions around g = 0 well
- □ One-sided training points can only approximate coupling values from the same side well
- Overlap between eigenvectors from superfluid couplings with eigenvectors from normal couplings is small
- □ Eigenvector continuation approximates lower CI truncations better

- Design of many-body emulator for chiral Hamiltonians following the work of Ekström and Hagen PRL (2019)
- □ Hartree-Fock states as EC basis

TECHNISCHE UNIVERSITÄT DARMSTADT

- Design of many-body emulator for chiral Hamiltonians following the work of Ekström and Hagen PRL (2019)
- Hartree-Fock states as EC basis

Thank you for your attention!