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A common challenge faced in many fields of quantum physics is finding the 
extremal eigenvalues and eigenvectors of a Hamiltonian matrix too large to 
store in computer memory.  

Motivation and three questions

There are numerous efficient methods developed for this task.  All existing 
methods either use Monte Carlo simulations, diagrammatic expansions, 
variational methods, or some combination.

The problem is that they generally fail when some control parameter in 
the Hamiltonian matrix exceeds some threshold value.
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Question 1
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How can this extrapolation be done more accurately? 
 

Is there a general systematic framework?
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Elhatisari, D.L., Rupak, Epelbaum, Krebs, Lähde, Luu, Meißner, Nature 528, 111 (2015)

Question 2

Adiabatic Projection Method



Use projection Monte Carlo to propagate cluster wavefunctions in 
Euclidean time to form dressed cluster states
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Evaluate matrix elements of the full microscopic Hamiltonian with 
respect to the dressed cluster states,

Since the dressed cluster states are in general not orthogonal, we 
construct a norm matrix given by the inner product



The adiabatic Hamiltonian is defined by the matrix product

How can we use perturbation theory beyond first order in this framework?
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Question 3

In order to find the extremal eigenvectors of H, the Lanczos method 
diagonalizes a small Krylov subspace starting from an initial vector 

Are there other subspaces that might converge even faster, while 
allowing for the treatment of linear spaces that are too large to store 
in memory?
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Consider a one-parameter family of Hamiltonian matrices of the form

where H0 and H1 are Hermitian.  Let the eigenvalues and eigenvectors be

11

We can perform series expansions around the point c = 0.

This is the strategy of perturbation theory.  We can compute each term in 
the series when the eigenvalues and eigenvectors of H0 are known or 
computable.

Perturbation theory
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Perturbation theory

convergence region
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Bose-Hubbard model

In order to illuminate our discussion with a concrete example, we consider
a quantum Hamiltonian known as the Bose-Hubbard model in three 
dimensions.  It describes a system of identical bosons on a three-dimensional
cubic lattice.

The parameter t controls the hopping the bosons on the lattice, and U is the 
single-site pairwise interaction.  We set the chemical potential to be
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Perturbation theory fails at strong attractive coupling
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Restrict the linear space to the span of three vectors

D. Frame, R. He, I. Ipsen, Da. Lee, De. Lee, E. Rrapaj, PRL 121 (2018) 032501
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analytic continuation



The eigenvector can be well approximated as a linear combination of a 
few vectors, using either the original series expansion
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or the rearranged multi-series expansion we obtained through analytic 
continuation 

As c is varied the eigenvector does not explore the large dimensionality of 
the linear space, but is instead well approximated by a low-dimension 
manifold.
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We can “learn” the eigenvector trajectory in one region and perform 
eigenvector continuation to another region

D. Frame, R. He, I. Ipsen, Da. Lee, De. Lee, E. Rrapaj, PRL 121 (2018) 032501
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The Riemann surfaces of the degenerate eigenvectors are entwined at 
branch point singularities.



-10

-8

-6

-4

-2

 0

 2

 4

 6

-5 -4 -3 -2 -1  0  1  2

E/
t

U/t

exact energies
EC with 1 sampling point

EC with 2 sampling points
EC with 3 sampling points
EC with 4 sampling points
EC with 5 sampling points

sampling points

23

Applying eigenvector continuation to more than one eigenvector at a time 
accelerates convergence near avoided level crossings.



See talk by Pepjin Demol on Thursday
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See talk by Sebastian König today
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See talk by Gaute Hagen on Wednesday
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See talks by Christian Drischler on 
Wednesday and Xilin Zhang on Thursday
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Kohn variational principle

For trial states close to the exact scattering wave function,

Consider the functional

Consider the differential operator for partial wave scattering

the linear variation of the functional vanishes,
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See talk by Avik Sarkar on Wednesday
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Projection-based emulators

Reduced basis methods have been well-studied in the field of partial 
differential equations for several decades.  Part of a larger class of methods 
called model order reduction.  Use of Galerkin methods, extensions to 
nonlinear systems, etc.

See talks by Pablo Giuliani on Thursday 
and Kyle Godbey on Friday
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Trimmed sampling algorithm

Projection-based emulator such as eigenvector continuation require solving 
the generalized eigenvalue problem.  This can be very difficult if there are
errors in the calculations of the matrix elements.
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Trimmed sampling uses the mean values and error estimates for the elements 
of N and H to produce a large ensemble of random samples.  These 
correspond to the Bayesian prior distribution.  The Bayesian likelihood 
functions are composed of physics-informed constraints.
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Matrix eigenvalue emulators

Consider the one-parameter affine problem

We now do eigenvector continuation with A training vectors.  This 
corresponds to solving the eigenvalue problem for the new one-parameter 
affine system, 

where the matrices are A by A.  
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Note that the eigenvalues will be roots of the characteristic polynomial

The polynomial P will be degree A in with respect to E(c) and degree A 
with respect to c.  

In contrast with polynomial interpolation or rational interpolation (Pade 
approximants), we see that eigenvector continuation is performing 
algebraic interpolation using roots of polynomials.
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Suppose that we don’t have access to the training vectors.  We then 
still make the matrix model

The unknown elements of these matrices are learned using the training 
data for the eigenvalues E(c).  This is an example of physics-informed implicit 
deep learning.

Cook, Jammooa, Hjorth-Jensen, D.L., et al., work in progress
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Lipkin-Meshkov-Glick Model



Cook, Jammooa, Hjorth-Jensen, D.L., et al., work in progress
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Cook, Jammooa, Hjorth-Jensen, D.L., et al., work in progress
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Cook, Jammooa, Hjorth-Jensen, D.L., et al., work in progress
43



44



Summary

This talk discussed several general concepts 
related to eigenvector continuation.  The 
list included motivation from problems in 
quantum many-body theory, connections to 
perturbation theory and analytic 
continuation.  We also discussed some early 
work in the field and the connection to 
other work on projection-based emulators.  
The last part of the talk covered some new 
material on the trimmed sampling algorithm 
and matrix eigenvalue emulators.  The hope 
is that this discussion of general concepts 
will lead to fruitful discussion!  

45


