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Motivation and three questions

A common challenge faced in many fields of quantum physics is finding the
extremal eigenvalues and eigenvectors of a Hamiltonian matrix too large to
store in computer memory.

There are numerous efficient methods developed for this task. All existing
methods either use Monte Carlo simulations, diagrammatic expansions,
variational methods, or some combination.

The problem is that they generally fail when some control parameter in
the Hamiltonian matrix exceeds some threshold value.



Question 1
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Nuclear lattice simulations using symmetry-sign extrapolation

Timo A. Lahde!':?, Thomas Luu', Dean Lee?, Ulf-G. Meifiner®!4, Evgeny Epelbaum®, Hermann Krebs®, and
Gautam Rupak®
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How can this extrapolation be done more accurately?

Is there a general systematic framework?



Question 2

Adiabatic Projection Method
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Start with localized cluster states for all possible separation vectors R
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Elhatisari, D.L., Rupak, Epelbaum, Krebs, Lihde, Luu, Meifiner, Nature 528, 111 (2015)



Use projection Monte Carlo to propagate cluster wavefunctions in
Fuclidean time to form dressed cluster states

|R), = exp(—HT)|R)

Evaluate matrix elements of the full microscopic Hamiltonian with
respect to the dressed cluster states,

[HT]E,E/ — T<E|H‘é/>7

Since the dressed cluster states are in general not orthogonal, we
construct a norm matrix given by the inner product

[NT]E,EI — T<ﬁ|é’>7



The adiabatic Hamiltonian is defined by the matrix product

How can we use perturbation theory beyond first order in this framework?



Question 3

In order to find the extremal eigenvectors of H, the Lanczos method
diagonalizes a small Krylov subspace starting from an initial vector

|UI>7 H|UI>7 H2 ‘UI>7 Ty H" |UI>

Are there other subspaces that might converge even faster, while
allowing for the treatment of linear spaces that are too large to store
in memory?
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Perturbation theory

Consider a one-parameter family of Hamiltonian matrices of the form
H (C) = H 0 + CH 1
where Hy, and H; are Hermitian. Let the eigenvalues and eigenvectors be

H(c)|i(c)) = Ej(c)|i(c))

We can perform series expansions around the point ¢ = 0.

Ei(c) =Y E™(0)c" /n! bi(e)) =[S (0))e" /n!
n=0 n=0

This is the strategy of perturbation theory. We can compute each term in
the series when the eigenvalues and eigenvectors of H, are known or
computable.
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Perturbation theory

convergence region
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Bose-Hubbard model

In order to illuminate our discussion with a concrete example, we consider

a quantum Hamiltonian known as the Bose-Hubbard model in three
dimensions. It describes a system of identical bosons on a three-dimensional
cubic lattice.

H=—t Y alm)alm) + o > pm)pm) —1] - Y o(n)
(n’,n) n n
p(n) = of (n)a(n)

The parameter ¢ controls the hopping the bosons on the lattice, and U is the
single-site pairwise interaction. We set the chemical potential to be

@ = —6¢t
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Ey/t

Perturbation theory fails at strong attractive

coupling

exact energies ¥
perturbation order 1 - - - -
perturbation order2 --------
perturbation order 3 — - —
perturbation order 4 ——
perturbation order 5 — - -
perturbation order 6 - - -
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Restrict the linear space to the span of three vectors
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D. Frame, R. He, I. Ipsen, Da. Lee, De. Lee, E. Rrapaj, PRL 121 (2018) 032501
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Rec

5(c)) = | lim ZZW*W

nOmO

w™(c—w)"/(m!n!)
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The eigenvector can be well approximated as a linear combination of a
few vectors, using either the original series expansion

|¢] Z |¢(”) )" /nl

or the rearranged multi-series expansion we obtained through analytic
continuation

5(c)) = lim ZZW*M w™(c — w)"/(m!n))

nOmO

As c is varied the eigenvector does not explore the large dimensionality of
the linear space, but is instead well approximated by a low-dimension
manifold.



We can “learn” the eigenvector trajectory in one region and perform
eigenvector continuation to another region

Ey/t

-4 + exact energies % .
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D. Frame, R. He, I. Ipsen, Da. Lee, De. Lee, E. Rrapaj, PRL 121 (2018) 032501
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The Riemann surfaces of the degenerate eigenvectors are entwined at
branch point singularities.
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Applying eigenvector continuation to more than one eigenvector at a time

accelerates convergence near avoided level crossings.
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Improved many-body expansions from eigenvector continuation

P. Demol, T. Duguet, A. Ekstrom, M. Frosini, K. Hebeler, S. Konig, D. Lee, A. Schwenk, V. Soma, and A. Tichai
Phys. Rev. C 101, 041302(R) — Published 9 April 2020
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See talk by Pepjin Demol on Thursday
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Physics Letters B

Volume 810, 10 November 2020, 135814

ELSEVIER

Eigenvector continuation as an efficient and
accurate emulator for uncertainty quantification
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Figure 1. Comparison of different emulators for the “He ground-state energy using 12 training data points to explore a space
where three LECs are varied. The left panel includes samples for both interpolation (solid symbols) and extrapolation (semi-
transparent symbols). See main text on how these are defined. The right panel shows the same data restricted to interpolation
samples (note the smaller axis range).

See talk by Sebastian Konig today
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Ground-state energy (MeV)

Charge radius (fm)

Sub-space projected coupled-cluster
Andreas Ekstrom, Gaute Hagen PRL 123, 252501 (2019)

—100
= Generalization of the eigenvector
~120 continuation method [Frame D.
et al., Phys. Rev. Lett. 121,
—140 - 032501 (2018)]
= Write the Hamiltonianin a
—160 linearized form
180 A Hf] =3 5" = o
2.8
= Select “training points” where
2.7 we solve exact CCSD
= Project the target Hamiltonian
2.6 - onto sub-space of training
vectors and diagonalize the
™~ : generalized eigen value problem
bl | | | H(dg)c= E(ag) N
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Low-energy constant Cig, (10* GeV™%)

See talk by Gaute Hagen on Wednesday 26



Physics Letters B

Volume 809, 10 October 2020, 135719

Efficient emulators for scattering using eigenvector
continuation

R.J. Furnstahl =, A.J. Garcia K, P.J. Millican =, Xilin Zhang 2 =
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See talks by Christian Drischler on
Wednesday and Xilin Zhang on Thursday
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Kohn variational principle

Consider the differential operator for partial wave scattering

> (0 +1
D= — + e+ )+U<T)—p2.

dr? r2

Consider the functional

Blut] = Terial — /0 N dr uy(r)Dug (1),

1

ug(r) —— - sin(pr — %Eﬁ) + Tirial COS(Pr — %KW).

r—00

For trial states close to the exact scattering wave function,
Ut (1) = Uexact (1) + du(r),

the linear variation of the functional vanishes,

58 =0+ O(5u?).
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PHYSICAL REVIEW LETTERS 126, 032501 (2021)

Convergence of Eigenvector Continuation

Avik Sarkar®” and Dean Lee®’

Facility for Rare Isotope Beams and Department of Physics and Astronomy, Michigan State University,

East Lansing, Michigan 48824, USA
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FIG. 1: (Color online) Logarithm of the error versus order N
for eigenvector continuation (asterisks), vector continuation (solid
lines), and perturbation theory (dashed lines). The three different

colors (black, blue and red) correspond with Models 1A, 1B, and 1C
respectively.

See talk by Avik Sarkar on Wednesday

Eigenvector Continuation
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Projection-based emulators

Model reduction methods for nuclear emulators

J A Melendez' (), C Drischler? (), R J Furnstahl®'(2), A J Garcia' (i) and Xilin Zhang?
Published 1 September 2022 - © 2022 IOP Publishing Ltd

Journal of Physics G: Nuclear and Particle Physics, Volume 49, Number 10

Citation J A Melendez et al 2022 J. Phys. G: Nucl. Part. Phys. 49 102001

DOI 10.1088/1361-6471/ac83dd

Training and projecting: A reduced basis method emulator
for many-body physics

Edgard Bonilla, Pablo Giuliani, Kyle Godbey, and Dean Lee
Phys. Rev. C 106, 054322 — Published 17 November 2022

Reduced basis methods have been well-studied in the field of partial
differential equations for several decades. Part of a larger class of methods
called model order reduction. Use of Galerkin methods, extensions to
nonlinear systems, etc.

See talks by Pablo Giuliani on Thursday
and Kyle Godbey on Friday
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RB Approximation

RB Approximation
(new parameter value, 4

PROJECTION) Vh
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Alfio Quarteroni
Andrea Manzoni
Federico Negri
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An Introduction
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@ Snapshots computed offline

» 8 springer (properly selected parameters)
1 o 9 o RB space: V,, = span{up(ul),..., un(p™)}
7 uoop
. . . . = span{(i,..., (,}

7 L e RB problem P, (u) solved online

Andrea Manzoni CMCS - EPFL Lausanne



Trimmed sampling algorithm

Projection-based emulator such as eigenvector continuation require solving
the generalized eigenvalue problem. This can be very difficult if there are
errors in the calculations of the matrix elements.

Hy) = EN [¢)

PHYSICAL REVIEW RESEARCH §, L022001 (2023)

Trimmed sampling algorithm for the noisy generalized eigenvalue problem

Caleb Hicks ® and Dean Lee
Facility for Rare Isotope Beams and Department of Physics and Astronomy),
Michigan State University, East Lansing, Michigan 48824, USA

33



Trimmed sampling uses the mean values and error estimates for the elements
of N and H to produce a large ensemble of random samples. These
correspond to the Bayesian prior distribution. The Bayesian likelihood
functions are composed of physics-informed constraints.

Ntrial = N+ AN
Htrial = H+ AH

sampling

34



Fourth Order Fifth Order
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FIG. 1. Ground-state energy of the Bose-Hubbard model as a function of coupling strength U/¢. The “exact” ground-state energies are
plotted as solid lines. The “noiseless EC” data are presented with dashed lines. The “noisy EC” results corresponding to matrix elements A
and N are plotted with open circles. The results using “ridge regression” are shown with times symbols. The “raw data” obtained by sampling

the prior probability distribution are displayed with open triangles and error bars. The “trimmed sampling” results are plotted as filled circles
with error bars.
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Ground State First Excited State
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FIG. 2. Ground-state and first excited state energies of the one-dimensional Heisenberg chain as a function of coupling strength J.
The “exact” energies are plotted as solid lines. The “noiseless time projection” data are dashed lines. The “noisy time projection” results
corresponding to the matrix elements H and N are plotted with open circles. The data obtained using “ridge regression” are shown with times
symbols. The “raw data” obtained by sampling the prior probability distribution are drawn with open triangles and error bars. The “trimmed
sampling” results are plotted as filled circles with error bars.
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Matrix eigenvalue emulators

Consider the one-parameter affine problem

H(C) = H() —|—CH1

We now do eigenvector continuation with A training vectors. This
corresponds to solving the eigenvalue problem for the new one-parameter
affine system,

M(C) = MO —|—CM1

where the matrices are A by A.
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Note that the eigenvalues will be roots of the characteristic polynomial

P[E(c)] = det [E(c)I — M(c)] = det [E(c)] — My — cMq]

The polynomial P will be degree A in with respect to E(c) and degree A
with respect to c.

P[E(c)] = [E(c)]* +ba—1a[E(@) T e +ba—10[B(e)] 7 "+ - +bo,a[E(c)]°c”

In contrast with polynomial interpolation or rational interpolation (Pade
approximants), we see that eigenvector continuation is performing
algebraic interpolation using roots of polynomials.
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Suppose that we don’t have access to the training vectors. We then
still make the matrix model

M(C) = M() +CM1

The unknown elements of these matrices are learned using the training
data for the eigenvalues E(c). This is an example of physics-informed implicit
deep learning.

Cook, Jammooa, Hjorth-Jensen, D.L., et al., work in progress
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Lipkin-Meshkov-Glick Model
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Cook, Jammooa, Hjorth-Jensen, D.L., et al., work in progress
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Cook, Jammooa, Hjorth-Jensen, D.L., et al., work in progress
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Interpolating between small- and large-g expansions using
Bayesian model mixing

A. C. Semposki, R. J. Furnstahl, and D. R. Phillips
Phys. Rev. C 106, 044002 — Published 20 October 2022
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Cook, Jammooa, Hjorth-Jensen, D.L., et al., work in progress



zero-dimensional ¢* theory partition funciton
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Summary

This talk discussed several general concepts
related to eigenvector continuation. The
list included motivation from problems in
quantum many-body theory, connections to
perturbation theory and analytic
continuation. We also discussed some early
work in the field and the connection to
other work on projection-based emulators.
The last part of the talk covered some new
material on the trimmed sampling algorithm
and matrix eigenvalue emulators. The hope
is that this discussion of general concepts
will lead to fruitful discussion!
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