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Fast & accurate emulation of two-body scattering
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Motivation: mining scattering data

See also: talks at ISNET-9 last week at

WUSTL.: https://physics.wustl.edu/isnet9
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Scattering experiments yield invaluable

data for testing, validating, and improving
chiral EFT (as well as reaction theory)

Competing formulations of chiral EFT
with open questions on issues including
e EFT power counting
e sensitivity to regulator artifacts

e Differing predictions for medium-
mass to heavy nuclei

see, e.g., Yang, Ekstrom et al., arXiv:2109.13303
Furnstahl, Hammer, Schwenk, Few Body Syst. 62, 72

Bayesian methods can provide important
insights into the issues of these potentials:
e parameter estimation
e model comparison
e sensitivity analysis
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Scattering egns. (FOM) can be solved accurately in few-body systems.
But: prohibitively slow for statistical analyses of A > 2 scattering

Construct ROMs by removing superfluous information



Eigenvector Continuation vs Reduced Basis Method OHIO
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Highlights Recent  Accepted Collections  Authors Referees Search Press  About Editorial Team Model Order

H(6) [9(6)) = E(O) [v(e)) . Reduetion

Eigenvector Continuation with Subspace Learning

Dillon Frame, Rongzheng He, llse Ipsen, Daniel Lee, Dean Lee, and Ermal Rrapaj
Phys. Rev. Lett. 121, 032501 — Published 17 July 2018

PhyéTc‘s See Synopsis: Making Quantum Computations Behave EC has been a game Changer
for applying Bayesian methods in NP

Exciting opportunities to learn from the PMOR
community, including language, algorithms,
software, workflows error analysis, and many more

Eigenvector continuation (EC) is a specific

Article References Citing Articles (59) Supplemental Material m
implementation of the RBM (which has been

known for decades) for emulating parametric ))

eigenvalue (and scattering) problems Literature Guide: Melendez, CD, Garcia, Furnstahl, and Zhang, J. Phys. G 49, 102001




Open-Source MOR software libraries
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TABLE I. A sampling of recent MOR software libraries; see Ref. [13, Sec. 13.3] for an extensive listing.

Library

Language

Website

Remark

pyMOR™ [86]

libROM

MORLAB [87]

modred [88]

pyROM [89]

pressio [90]

Python

C+

MATLAB

Python

Python

O+

pymor.org

librom.net

mpi-magdeburg.mpg.de/projects/morlab

modred.readthedocs.io

github.com/CurtinIC/pyROM

pressio.github.io

focuses on RBMs for parameterized
PDEs; integrates with external PDE
solvers

library for efficient MOR tech-
niques and physics-constrained data-
driven methods; includes POD,
DMD, projection-based ROM, hyper-
reduction, greedy algorithm

MOR of dynamical systems based on
the solution of matrix equations using
spectral projection methods

library for computing modal decom-
positions and ROMs, including POD,
DMD, and Petrov-Galerkin projection

framework that employs Python visual-
isation tools; includes POD and DMD

minimally-intrusive interface for
MOR routines, including Galerkin
projections

@ See also the website of the Model Reduction for Parametrized Systems (MoRePaS) collaboration: morepas.org.



Road Map: RBMs for emulating scattering observables OHIO
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A few remarks on projection-based ROMs
(mainly for bound states)

Melendez, CD, Garcia, Furnstahl, and Zhang, J. Phys. G 49, 102001
CD, Melendez, Garcia, Furnstahl, and Zhang, Front. Phys. 10, 92931

(General) Kohn Variational Principle: Toward emulating nuclear
reactions using eigenvector continuation (with wave functions)

CD, Quinonez, Giuliani, Lovell, and Nunes, Phys. Lett. B 823, 136777
extends: Furnstahl, Garcia, Millican, and Zhang, Phys. Lett. B 809, 135719

Newton Variational Principle: Fast & accurate emulation of
two-body scattering observables without wave functions

Melendez, CD, Garcia, Furnstahl, and Zhang, Phys. Lett. B 821, 136608

Wave-function-based emulation for nucleon-nucleon
scattering in momentum space (Kohn vs Newton VP)

Garcia, CD, Furnstahl, Melendez, and Zhang, Phys. Rev. C 107, 054001

See also: CD & Zhang'’s contribution to Few Body Syst. 63, 67



- - https://kylegodbey.github.io/nuclear-rbom/
Pedagoglcal IntrOdUCtlon Bonilla, Giuliani et al., PRC 106, 054322
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P frontiers (edagogical review artiie

BUQEYE Guide to Projection-Based Emulators in

Nuclear Physics Front. Phys. 10, 92931 (open access)
C. Drischler,">* J. A. Melendez,? R. J. Furnstahl,® A. J. Garcia,* and Xilin Zhang®

Pedagogical & interactive
Jupyter notebooks online!

ABSTRACT | see also
The BUQEYE collaboration (Bayesian Uncertainty Quantification: Errors in Your EFT) presents our Literature Guide
a pedagogical introduction to projection-based, reduced-order emulators for applications in low- Melendez, CD et al.,

energy nuclear physics. The term emulator refers here to a fast surrogate model capable of reliably ~ J. Phys. G 49, 102001
approximating high-fidelity models. As the general tools employed by these emulators are not yet
well-known in the nuclear physics community, we discuss variational and Galerkin projection methods,
emphasize the benefits of offline-online decompositions, and explore how these concepts lead to
emulators for bound and scattering systems that enable fast & accurate calculations using many
different model parameter sets. We also point to future extensions and applications of these emulators
for nuclear physics, guided by the mature field of model (order) reduction. All examples discussed  (variational vs Galerkin)
here and more are available as interactive, open-source Python code so that practitioners can readily Model Reduction
adapt projection-based emulators for their own work.
Keywords: emulators, reduced-order models, model order reduction, nuclear scattering, uncertainty quantification, effective field theory,
variational principles, Galerkin projection open questions
future directions

Discusses:
eigen-emulators

scattering emulators

Companion website with lots of pedagogical material: https://github.com/bugeye/frontiers-emulator-review




Constructing ROMs: Variational & Galerkin Projection

high-fidelity space

trajectory
k\

|91 >

from FOM . .
Parametric eigenvalue problem

H(6:) i) = E£(8:) [43)

Results in very effective trial wave functions!

Functional:
ElY] = (Y| H(8)|) — Eﬂ@)(@l@ — 1)
Trial wave function: |1Z> = Zﬁz ¥s) = X0

Find stationary point of the functional
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Consider weak form:

(CIH(0) —E0)|V) =0 V(|
Reduce: |¢)) — |ZZ> = Zﬁz ;) = X3

Choose nj, test functions ((;| = (] :

(G|H(0)— E0)|T) =0 Vi

Other choices possible = Petrov-Galerkin ROM

Reduced Order Model

generalized eigenvalue problem

ff(f)ﬁ = E(O)NB

H)=X"H(0)X

projected Hamiltonian
norm matrix

N=X'Xx
X:[¢1¢2 wnb]

snapshots




lllustrative example: anharmonic oscillator ¢, Meendez Garca Fumstari. - Q H 1O

and Zhang, Front. Phys. 10, 92931 UNIVERSITY

Basis —— Exact oooo KEmulator
- RBM
T
i Wave Function Absolute Residuals
=
=
= 1073 |
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= 1077 |
=
~
HO
L L I ] 10—9 .
0 1 2 3 RBM
| | | 1 | | |

r [fm] 00 05 10 15 20 25 30

Results obtained via diagonalization in the reduced space r [fm]



lllustrative example: anharmonic oscillator ¢, Meendez Garca Fumstari. - Q H 1O

and Zhang, Front. Phys. 10, 92931 UNIVERSITY

RBM combines the ideas from the other emulators:

v' Uses snapshot (wave) functions rather than scalar
(energies) for training (no nodes)

v' Knows about the underlying eigenvalue problem

Ground-State Energy Residuals Ground-State Radius Residuals
1 GP
_ 107" |
1072 HO
RBM
107° 107% F
1078 | 10-7 k
| | | | | |
0 20 40 0 20 40
Validation Index OscillatorEmulator(...) Validation Index RBM (with snapshots)

EigenEmulator(...) outperforms GPs & HO




Constructing Galerkin_ROMs CD, Melendez, Garcia, Furnstahl, O H IO

and Zhang, Front. Phys. 10, 92931 UNIVERSITY

High-fidelity system

H(6) ) =& 1)

L

Construct (snapshot-based) ROMs by systematically removing
=E superfluous information in high-fidelity models

Nh X Nh Nh Nh

Time: ( ) per 8 sample

CPU time scales with the length of ( )

Offline-online decomposition:
Perform all demanding operations once upfront  Offline stage (size-N,, operations):

(which is crucial for achieving high speed-ups) e Solve high-fidelity system and construct snapshot basis
s straightforward for operators with an affine e Project high-fidelity system to reduced space
parameter dependence Online stage (size-n, operations only):

use hyper-reduction methods to handle non-linear @ fast & accurate model predictions (e.g., for MC sampling)
systems and/or non-affine parameters



Constructing Galerkin-ROMs

CD, Melendez, Garcia, Furnstanhl, O H IO

and Zhang, Front. Phys. 10, 92931 UNIVERSITY

High-fidelity system

Constructing a reduced-order model for bound states

Offline stage Online stage
H(6) ) =E |¥) Snapshots ¥(80)) Projection (after orthonormalizing snapshots) Emulation (E ~ E)
- . Fe) B —ERp
(N=1)
Nh X Nh Nh Nh Nh X Np np X Nh Nh X Nh Nh X Np Ny X Np All size—nb operations
Time: ( ) per 8 sample np X C ) ~ C D () per 6 sample
CPU time scales with the length of ( )

Offline-online decomposition:
Perform all demanding operations once upfront
(which is crucial for achieving high speed-ups)

Is straightforward for operators with an affine
parameter dependence

use hyper-reduction methods to handle non-linear
systems and/or non-affine parameters

Offline stage (size-N,, operations):
e Solve high-fidelity system and construct snapshot basis
e Project high-fidelity system to reduced space

Online stage (size-n, operations only):
e fast & accurate model predictions (e.g., for MC sampling)



Affine Parameter Dependence | Snapshot basis OHIO
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Hierarchy of chiral forces (Weinberg PC)

NN forces 3N forces

How to choose the snapshot basis?

Multiple approaches and their hybrids possible.
NLO (Q2) For instance:

obtain space-filling snapshots using Latin
N2LO (Q3) hypercube sampling (for small 9 spaces)

choose the snapshots near the to-be-emulated
parameter ranges (ideally interpolation)

Proper Orthogonal Decomposition (POD)

Greedy algorithms and other active-learning
methods to reduce the emulator’s error iteratively

N3LO (Q%)

e.g., see Sarkar & Lee, PRR 4, 023214

The POD can be used to diagnose and (further)
optimize the snapshot basis.

with deltas, e.g., see Piarulli & Tews, Front Phys 7, 245



OHIO

Proper Orthogonal Decomposition (POD) R TVERSIT

POD is based on a (truncated) Singular Value Decomposition (SVD) of the snapshot basis:
See also Principal Component Analysis (PCA)

VAl

U

nXxr

rXm

V1

m X m

U and V are unitary matrices (e.g., UUt = UtU = 1|) containing the singular vectors
2 is a diagonal matrix with decreasing, nonnegative diagonal entries (singular values)

Truncating singular vectors corresponding to the r smallest singular values results in the best possible
rank-r approximation (in Frobenius norm) to the original M (low-rank approximation)



Road Map: RBMs for scattering observables OHIO
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A few remarks on projection-based
emulators in general

Melendez, CD, Garcia, Furnstahl, and Zhang, J. Phys. G 49, 102001
CD, Melendez, Garcia, Furnstahl, and Zhang, Front. Phys. 10, 92931

(General) Kohn Variational Principle: Toward emulating nuclear
reactions using eigenvector continuation (with wave functions)

CD, Quinonez, Giuliani, Lovell, and Nunes, Phys. Lett. B 823, 136777
extends: Furnstahl, Garcia, Millican, and Zhang, Phys. Lett. B 809, 135719

Newton Variational Principle: Fast & accurate emulation of
two-body scattering observables without wave functions

Melendez, CD, Garcia, Furnstahl, and Zhang, Phys. Lett. B 821, 136608

Wave-function-based emulation for nucleon-nucleon
scattering in momentum space

Garcia, CD, Furnstahl, Melendez, and Zhang, Phys. Rev. C 107, 054001

See also: CD & Zhang'’s contribution to Few Body Syst. 63, 67



Kohn Variational Principle with RBM P, Cer o e, i)
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( Ke L N\
6 Hwtrial” — ? - 2:“ <wtrial | H(e) —F | wtria1> p = QME
J stationary approximation to exact K; matrix [accurate up to O(6u?)]

: 1 . K 78
u}?fg‘l(r) ~ Esm(ng) + ?g cos(ny) ne = kr — 56 HO)=T+V(0)

. ) —
A

s

N
Training: solve RSE exactly for a set {9@-}?]:”1 |rial) = Eb:c. ACH) :
rial/ — ? v
1=1

and construct the trial wave function: \ :
C Gi H(6), the stati int i - A
iven , the stationary point is ] — No . _
obtained by simple linear algebra: OBlmial =0 st 3 e =1

<

: Q

_ (”) 143 (AD)-LEDE) =

‘8 c; = Z(AU);l <K£ (E) _ )\) \ — + Z’LJ( ~)w_1 D g

t—; J p Zz’j(AU)ij ®
y | with matrix AT, = 2 (6(60)|2V(0) ~ V(8) ~ V(8) [vs(8,) ),

_ (i) D ~ for R matrix theory,
Approximate K;=tan 6;: [K/(F)]exact = Zz cilly (E) — 9 r ¢iAUjj¢; see Bai & Ren,
PRC 103, 014612




Wave functions and phase shifts

Furnstahl, Garcia, Millican, Zhang,

PLB 809, 10135719
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u(r) (fm)

Also studied:

e local & nonlocal potentials
e incl. optical potentials
e higher partial waves

do (degree)

NN scattering

. NN (1S0)

AN |E=50 Mev
AN \\\ vary Vor, Vos

\\\

\\\

é’.
. ‘0/
— - . -
1 N._.r NT
—+ Basis, =— EC, == Exact
) I I I I ]
0 1 2 3 4 5) 6
r (fm)
] ] I ] ] ] ]
50 Y () —+ Basis, — EC —— Exact | -
\ ;
100 F '\ 50 MeV: |
" [NN (*S0); vary Vor, Vo)
50 | "~ .
0 -
50 | St _ A
1 1 i 1 1 LS

Training set: 4 Hamiltonians with
different (Vor, Vos @ ) and fixed (kg, Ks)

X”(XX ] ] ]
O o x& xxxx x % X @ basis
XX K % x x ’§2<% * Minn.
. —50F % x 3O . X int.
e xx &x xxx x R Xex X extr.
= X X x %
~ —100 x X X+
o )§5>8‘ XX Xx Q)g(
X xX %ﬁ% §
—150 |
Q”‘ LTS
—200 . .

150 200 250 300
Vor (MeV)

Emulated wavefunctions and phase
shifts reproduce well the exact
results at the physical point (%)



Small residuals

Furnstahl, Garcia, Millican, Zhang,
PLB 809, 10135719
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= p cot J;

residual of
PIK,(E)

200 sampling B

= p cot §,

residual of
P/K(E)

—_
e}
\

—

—_
e}
|

w

Mean of |Relative error|

— — —
(@) (@) (@)
| | |
(o) w =

Mean of |Relative error|
—
7
~J

interpolation extrapolation

- :'\ lNN (*So)

——Nb:4 _Nb:6 saan
vary Vor,

] 1r 4
I
" G ’}‘\
N L L ~ —

SN[ ~

| sl RBM trial wave functions are effective for ~
_ both interpolation and extrapolation but...
_[Interpolation] L ]
] ] ] ] ] ] [ B ] ] ]
0 25 50 75 100 125 150 0 25 50 75 100 125 150
. ill-conditioning Spurious singularities
1
[ i 5 Schwartz, PR 124, 1468 (1961)
i EC trial wave function renders the L, ,’“ Schwartz (or Kohn) anomalies can
kernel matrix AU increasingly ill- \l render variational calculations of
| | conditioned with increasing N, I | scattering observables ineffective
: regularization: add small parameter ﬁ"“; Zhang et al., JChP 88, 6233
i ‘ to the diagonal elements AU i Adhikari. JCP 103. 415
Engl, Hanke, and Neubauer, Aymar et al., RMP 68, 1015
! Regularization of Inverse Problemsﬂ{)- ! Nesbet (Plenum Press, 1980)
0 0

E (MeV)

E (MeV)

linear
parameters
varied only

variation:
+ 100 MeV

near and
onlinear
arameters
aried

ariation:
100 MeV;
50%



General Kohn variational principle

Lucchese, PRA 40, 112

4 L, 2 ™)
Bu “wtrialﬂ — — det <¢trial | H(H) —F | wtrial>
stationary approximation to %act L, matrix [accurate up to O(6u?)]
L ¢ (1) ~ uoo sin(ne) + uo1 cos(ne) T
ria 0 d 1
uffg'(r) ~ ¢“<> 2 . e =hr— St
; p ¢ (1) ~uigsin(ne) + ui1 cos(ne) b
Ny ) A
Training: solve RSE ex. 0; N
and corglst 10 him [rriat) = > il (67))
L =K for u= 0 1] =l )
2 - )
Given L=2S for u—= i —1 uo1 + u11 L —1
obtain i1 K = ¢
31 0 upo + u10L S
o L =T for u= ; 1] )(E) S
© €= - 1 =
= .. any nonsingular matrix Zij (AU)ZJ ®
(S i - _
a| with m ; e )12V (0)—V(6;) (0,)|vE(8;)) y
i 1
Approximate L;:  [Lo(E)]exact & » Ly (B) - 5 Zij G AU¢;

for applications to
N-d scattering, see:

Viviani, KievsKky,
and Rosati,
FBS 30, 3
Kievsky,

NPA 624, 125

Kievsky, Viviani,

and Rosati,
NPA 577, 511

OHIO

UNIVERSITY




Schwartz anomalies cD, Quinonez, Giuliani, Lovel, and () H [ O

Nunes, Phys. Lett. B 823, 136777 UNIVERSITY

Minnesota potential: 180

75 F :
o0 N ]
S 50f 2 parameters J
£ : ° N, =4 ] Spurious singularities occur when
I ; there is no (unique) stationary
£ OoF \ o ;{ approximation due to the functional; i.e.,
T R G — 7 det AUM = 0
_ ] | exac i
= 10° 3 No guarantee: all KVPs are prone to
jg F ] Schwartz anomalies, and we found
f 0F 3 anomalies for all potentials studied
£ 107°F : : Advantage: for complex KVPs and/or
= L R T [ ((d) 3 optical potentials both, the real and

0 25 50 75 100 imaginary part, need to cross zero

Energy FE [MeV]

see also: Lucchese, Phys. Rev. A 40, 112
Schwartz, Phys. Rev. 124, 1468

NN scattering Nesbet, Variational methods in electron-atom scattering theory




Schwartz anomalies cD, Quinonez, Giuliani, Lovel, and () H [ O

Nunes, Phys. Lett. B 823, 136777 UNIVERSITY

realistic real potentials

Minnesota potential: 180 Chiral potential: 1SO Woods-Saxon potential: ds/o
75 iLCLEL N LN BLFUNL BN BRI N LI B N B B S B B P S B L B B B B B N R B L™ " S R LI RN R
. F 1 60 1 150 F f .
5 ] - ; : K ;
=, 2 parameters L 8 parameters- i — ]
g N,=4 7 40f N, =47 100 - ]
E E : ] i —T ]
= - ] I i I exact i
[ ] s b = i
_25 AV B SR e AT BT | (Iajl)l_ 0 I TN N T [N T T N S N N T B B (I L1 0 [ (I T [N TN TN TN AN T N N N T Y N |((|:)| ]
]_01 L B R N B L L LI R L BRI | LI B B B L B S S B L B U S B N B B B B N LN B B B S L N B S B R S B B
Ei ] '
= 10° - 1074 4 107%}F _
= : ; ;
5 107" ! i - 4
0 FRUM: 10 I
. 1072 L i - . 6 parameters
8 : =N 110°° N,=6 .
< F : (d) 110°F (e) 3 (£)
10_ P RN T T N T | PN S N [N N T T A N W i N N N T N T T T M T SO T T A T T A N B B PR TN N [N TN NN N [N N TN T NN T N T A Y B
0 25 50 75 100 0 25 50 75 100 0 2 4 6 8 10
Energy FE [MeV] Energy F [MeV] Energy F [MeV]

NN scattering n+1°Be scattering



Anomaly detection and removal o euneea @) weelerd (015010,
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Basic idea: emulate a variety of matrices How can Kohn anomalies
associated with different boundary be detected and removed n
conditions and check for consistency [ =
, =
L(1L
AL (Ll, L2) = ( ) —1 Using: ) K T S
| L(Lz)
relative error 15 ' 1 - e "
Viviani, Kievsky, and Rosati, FBs 30,3 X®) = e€"[Fcosd +Gsind] po—— [F + KGlg F+TH 5[H™ —SH™]
Kievsky, Viviani, and Rosati, NPA 577, 511 ¥ 1
= ) arctan K arctan —InS
1 +1T 21
Filter out all inconsistent pairs {L; L}; T IS
TS 1) K= tan K 1

and average over (“mix”) the 1 +1T 1+S
remaining pairs with weight AG(L;, L) L K ;

T= e sin & K ={l.=8)
Vary the size of the training set to K T
shift the Schwartz anomalies and repeat S = 28 — 1 42T S

V= —0 K=0 | T=0 S=1

V real d real K real I1+2T|=1 IS| =1

P B

Thompson & Nunes, Cambridge University Press (2009)




Anomaly detection and removal o euneea AUl leelerd (015010

UNIVERSITY

But: not all KVPs are complementary. How can Kohn anomalies
We derived a simple analytic condition be detected and removed g
to identify redundant KVPs.
70
Redundant (canonical) pairs:
60
(S, T) 50
-1 -1
(K1, T) -
(S, S-1 )* 30
generalized S- & T-matrix KVP
*complex conjugated if Vis real 20
We showed analytically that 1
KVPs are redundant if the cross- 0
kernel matrix is singular: K S K- T T S-1 Rand u
/
. U1 Uqq L=0|A=40]| E=5-20 MeV 5 random matrices covering a
C = —U _ul Woods-Saxon potential wide range in |det(u)|
10 10 5 training points sample size: 500



Numerical noise due to ill-conditioning ~ $;Qurorez Suieni Loveti s QO H 1O
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Condition number increases '
with increasing number of training points g

Methods to control the noise in matrix
inversions include:

0 S matrix
L 1071 L=3 T
e nugget regularization

e Moore-Penrose inverse 10-2¢ J

e Tikhonov regularization
10-4} "\ !
Golden Rule of numerical linear algebra:

relative error

’ . 10—6 _
Don’t compute a matrix inverse unless you must. MP inverse LS Solver
Simple yet robust: find stationary point 107°H ______ nugget (10)
numerically (e.g., using an LS solver) 10-101
inverse-free, 1012 W
if possible . ; . ;
5 10 15 20 25 30

(Most methods will apply some sort of regularization) Ecm [MeV]



n e - , [ z, Giuliani, Lovell, and
Emulated differential cross sections S B b e e OHIO
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V(r) = — Vi fus(r; Ry av)

— Wy fws(r; Ry, ay)

Training set: N, random points within a
+20% interval centered around the
Koning—Delaroche values to probe a
realistic region of the parameter space

Diff. Cross Section [mb/sr]

3
< N
e
7 Sample again 500 random points:
f - _ resulting bands are spanned by the
; M median and 95% limit of the residuals
%o} /\,/«/’\ :
| | | relative rlesidual For N, > 6, the emulator residuals
0o s 100 1m0 do not exceed the experimental
Scattering Angle 0 [deg] —— uncertainty, typically =10%



UQ With an Optlcal CD, Quinonez, Guiliani, Lovell, O H IO

and Nunes, PLB 823, 136777 UNIVERSITY

2

mmmm emulated (median) dO‘ 1 o0
10%F = = exact (median) D B 2 NP 0 1
:rr::lated (95% C.L.) d§? 21 Z< L+ 1) Fi{cos 0)(5: )

I exact (95% C.1.)

posteriors

102_

Koning—-Delaroche (optical) potential

do/dQ [mb/sr]

Train emulators across partial-wave
channels up to /=10, with N, = 8

R, [fm]

Proof of principle: fast & accurate
emulation of scattering observables for

MCMC parameter estimation (using mock data)
sampling

)

Wy [MeV]
\?0

excellent agreement between emulator
@ (red) and exact scattering solution (black)

Mixed approach obtains anomaly-free
results without adapting the training set

Ry [fm]
4

¥ PP PP RE FPa® W W Goal: improving next-generation optical
o | G Relinl WaHeY] R o) models & chiral interactions in the FRIB era
Kohn Variational Principle  40Ca(n,n)




Road Map: RBMs for scattering observables OHIO

UNIVERSITY

A few remarks on projection-based
emulators (mainly for bound states)

Melendez, CD, Garcia, Furnstahl, and Zhang, J. Phys. G 49, 102001
CD, Melendez, Garcia, Furnstahl, and Zhang, Front. Phys. 10, 92931

(General) Kohn Variational Principle: Toward emulating nuclear
reactions using eigenvector continuation (with wave functions)

CD, Quinonez, Giuliani, Lovell, and Nunes, Phys. Lett. B 823, 136777
extends: Furnstahl, Garcia, Millican, and Zhang, Phys. Lett. B 809, 135719

Newton Variational Principle: Fast & accurate emulation of
two-body scattering observables without wave functions

Melendez, CD, Garcia, Furnstahl, and Zhang, Phys. Lett. B 821, 136608

Wave-function-based emulation for nucleon-nucleon
scattering in momentum space

Garcia, CD, Furnstahl, Melendez, and Zhang, Phys. Rev. C 107, 054001

See also: CD & Zhang'’s contribution to Few Body Syst. 63, 67



. . . . R. G. Newton, .
Newton variational principle scatorng theory o Melendez. ¢ gareis, Fumsan. () H 1O

waves and particles UNIVERSITY

~

KIK] =V 4+ VGoK + KGy)V — KGoK + KGoVGyK,
with the free-space Green's function Gy( E, = g%/ (2u) )

stationary approximation to exact K (or T) matrix [accurate up to O(6K?), J
v,

q
Training: solve LSE exactly for aset {6;}", 7~ = No 0
' ifi=1 _ I
and construct the trial K (or T) matrix: \ K(B) = Zz’zl il
" G H(0), the stati int i —~f h
iven , the stationary pointis dJC _ = S
obtained by simple linear algebra: 3 |§* =0 Mp.(0)=m <
2| | with matrices  mi(6) = (¢/| [K:GoV (6) + V(0)GoKi] |¢) S
= Mz(H) = <¢/| [KzGon = KZG()V(O)GQK] @
51 L J + K;GoK; — K;GoV(0)GoK] o) )
1
|| Approximate - (6110} = (#1K.16) = (& V) + b1~
|




Emulating phase shifts s s wrciass QELLO

UNIVERSITY

180 | | | | | | | .
B Train -
120 —— Exact 1

E [ eeoo Emulator | |
o 60 ] - I .
= M Training set: 4 Hamiltonians with
0 different (Vor, Vo @ ) and fixed (Kg, Ks)
. -_ _- IX”(X xl | | |
60 ! ! ! ! ! ! | 0 Bak, o’ xxx:z x X M @ basis

T T T T T T | xx x%’*‘ K Xy 3K X R * Minn.
0107 | : - 50y S S
3 NN scattering —~ Xy XX ¥ x X X x X int.
g Z e xS % x R x X

X x X X% extr.

- = & RXX e x X
s < 100 F x X x
o ].0 = o 3 X X )?( )g ’ X
2 S X kgl X K B
[} xx& X %X X %X %
5 fast & accurate —0 ;:,zg Hxy x X xx&(_
0 10—7 n lati al X Vad %
o emulation X
= 00 L @x X XX X K x |

' L L L L ' : 100 150 200 250 300

0 25 50 75 100 125 150 Vor (MeV)

Ecm [MeV] More accurate than equivalent KVP
Newton Variational Principle calculation: KVP residuals: O(10-3)



Using the emulator for extrapolation s eeadaut, (015010,

UNIVERSITY

K matrix
l T3 & 13 ! | 3
111 [ e
6 L re d 3 ] oooo Emulator |
emulator as a robust tool for
extrapolations (even from the 3|
repulsive to attractive regime) v
Training set: two parameter sets with § 0 peBe5o o T000000 00T
different Vs > 0 (purely repulsive) and \
(Vor, Kr, Ks) fixed at the physical point Training
-3 Points -
Colors correspond to different c.m.
energies in the range 1—-70 MeV. "
Remarkable extrapolation far from the Extrapolation
support of data and across 5 c 14 T % ) ,
singularities in the K and K-! matrix —400 —-300 —200 —100 0 100
Vos [MGV] .
repulsive

Newton Variational Principle attractive



Adding the Coulomb potential Melendsz CD) Gardla, Furnstah, OHIO

UNIVERSITY

180 F T | T T T ]
Train —— Exact eee Emulator | | VE(T? T/) — Vzﬁi?ﬁrwrge_m(rjw/)
— 120 | -
<,
oo 60T Il Long range potentials: problematic
for any LS equation (whether an
0 emulator is used)
wlil | | | | | | 1
- 1071 F ' | ' ' ' i Vincent-Phatak method: cut off the
2 : ] Coulomb potential at a finite radius and
% then restore this physics using a
é 10-11 L p—a scattering : matching procedure
o ] Training set: 4 Hamiltonians with
£ different linear parameters V,,, and
< q0-12 = . ; : : . 3 nonlinear [y fixed at the physical point.

0 10 20 30 40 50 60
Ecm [MeV]

Newton Variational Principle

Residuals are negligible in this range



Coupled channel scattering st eeadnaretr,  (O)H1I0

UNIVERSITY

. _ 3S,-3D, channel with
Straightforwardly extended to coupled channel scattering

I O .
1k E ! K : K, |- Train
! 9 Exact
[ ! lleeee Emulator
0
Residuals are far below experimental
X ; uncertainties
| |
| I
10°° | Abs.
10-° L Residual
10—12 =2 =
| | | | | | | | | | | |
0 100 200 300 0 100 200 300 0 100 200 300
Elab [MeV] Elab [MeV] Elab [MeV]
SMS chiral NN potential at N*LO+ with 12 training points randomly
momentum cutoff A = 450 MeV chosen in the range [-5, +5] in

Newton Variational Principle Reinert, Krebs, and Epelbaum, EPJ A 54, 86 the units used in the potential



Emulating total cross sections st eeadnaretr,  (O)H1I0

UNIVERSITY

SMS chiral NN potential at N4LO+ with _
momentum cutoff A = 450 MeV R

D (27 + 1) Re{Tx[S;(q) - 1]}

cooo KEmulator —— Exact
— 10-2 L Sampled Best ] Train emulators across partial-
fé wave channels up to j = 4 (while the
! — 107 | - remaining channels are fixed)
10° 2 ) ,.g 5
= - E) LURS 1 26 free parameters (LECs) varied
E . —8 — o
" A = Residuals are vanishingly small
& < 10-10 | J compared to the and its
! ! ! ! experimental uncertainty
102 100 200 300
: Erap [MeV] Randomly
Y, o extrapolation of ¥10 [unit] beyond
P dmax e ——— the range of the training data
|

: . Eab [M2eo\(/)] - > 3 O OX

Newton Variational Principle faster than the exact calculation



Emulating gradients s B QHIO

UNIVERSITY

— L — Exact
I s ==
) coo0o0 K

= NN scattering 45/ dVar

2. 0.10 | il ol
Gradients w.r.t. the input parameters E 0.05 -
are useful for various optimization and % ' % 2
Monte Carlo sampling algorithms. 0.00 L 3 oeoosSeeees0ees00es S EEEECEECEEEE

Proof of principle:

We find that emulated gradients

e have negligible residuals at the
physical point and

e can be incorporated in optimizers
with little computational overhead

Abs. Residual [MeV ']
=

| | |
0 25 50 75 100 125 150
Eem [MeV]

Newton Variational Principle



Road Map: RBMs for scattering observables OHIO

UNIVERSITY

A few remarks on projection-based
emulators (mainly for bound states)

Melendez, CD, Garcia, Furnstahl, and Zhang, J. Phys. G 49, 102001
CD, Melendez, Garcia, Furnstahl, and Zhang, Front. Phys. 10, 92931

(General) Kohn Variational Principle: Toward emulating nuclear
reactions using eigenvector continuation (with wave functions)

CD, Quinonez, Giuliani, Lovell, and Nunes, Phys. Lett. B 823, 136777
extends: Furnstahl, Garcia, Millican, and Zhang, Phys. Lett. B 809, 135719

Newton Variational Principle: Fast & accurate emulation of
two-body scattering observables without wave functions

Melendez, CD, Garcia, Furnstahl, and Zhang, Phys. Lett. B 821, 136608

Wave-function-based emulation for nucleon-nucleon
scattering in momentum space

Garcia, CD, Furnstahl, Melendez, and Zhang, Phys. Rev. C 107, 054001

See also: CD & Zhang'’s contribution to Few Body Syst. 63, 67



Kohn vs Newton Variational Principle e, @5, Pt e, (015010,

UNIVERSITY

two implementations of the KVP

| =—— Standard o KRR NVP 200 '_ Basis —— Simulator ©©o Emulator
10 [ np scattering
: 5 e 100 F
: = S, "
B <~
I E:é 0 :
= 10% | z -
E 10 E g _100 [ 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1
S E . d A 10° | Qlé
o 5 | N R N W 'I\ (R .1 IR I S W S N NN TR - OCkIe - Standard U NVP
b
0 100 200 300 10k o ’1\§\/_\ .
2 L Elab [MeV] 8 1 - - - S \/‘-\ / \/ / i
10% | = HON e Y
: (Ol S AL ¥
- with anomaly mitigation 10-12 L
[ | —— Simulator 0o Emulator
101 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 10—16 a Pesdi of s 1
0 100 200 300 0 100 200 300
Elab [MeV] Elab [MeV]

SMS chiral NN potential at N*LO+ with momentum cutoff A = 450 MeV Reinert, Krebs, and Epelbaum, EPJ A 54, 86



Complementary approaches

Variational Principle Galerkin Projection Information
Name Functional for K Strong Form Trial Basis Test Basis Constrained?
Kohn Kg + (|H — E|J) H ¢y = E ) ;) (1] Yes
L) N 150
{(X|H — E|xX) + (¢|VIX)
Kohn - [E—H]|x)=V|¢) |Xi) {xil No
(No \) T (o|H — El¢) + (X|V|$) 100
. (WIV18) + (4|V])
Schwinger ~ _ V) = |¢) + GoV |¢) 1) (i No 50
| — @V = VGoV|¥) )
V 4+ VGoK + KGoV
Newton — _  _ . K=V+VGiK K K No 0
—KGoK + KGoVGyK

1073
These variational emulators have G-ROM counterparts. But there are also

OHIO

UNIVERSITY

Potential permits all phase
shifts, wave functions, etc.
to be evaluated analytically

| 1

Abs. Residual [deg]

non-variational, e.g., “origin” ROMs with (r¢)(0) =0, (r¢)(0) =1 10-7 | KVP ()\) SVP
KVP (No \) NVP
Complementary approaches to construct (two-body) ROMs: 10~ k
coordinate vs momentum space; variational vs Galerkin methods; ...
: _ ! Zhang & Furnstahl, 0.5 1.0 1.5 2.0
How do we construct reliable three-body scattering ROMs? - % 05, 064004 C.M. Momentum g




Questions! Answers? OHIO

UNIVERSITY

How large are emulator errors? When G-ROMs for two-body scattering
are they non-negligible? Are simple

implementations of ROMs good

enough for NP?

e convergence analyses are needed (for
inter- and extrapolation)

e Understand their limitations and What are the best practices for implementing ROMs
investigate potential improvements efficiently? What can we learn from MOR software libraries
like pyMOR or libROM?

How can we construct efficient greedy

algorithms? POD-based and hybrid Can we construct improved ROMs via Petrov-Galerkin
methods should be further projection? These ROMs are more general than G-ROMs (and
investigated. variational ROMs).

[ What are the limits of hyper-reduction methods (in terms of
How can we leverage ROMs’ accuracy and speed) applied to non-linear problems in NP?
remarkable extrapolation capabilities?
For continuous and discrete How can we leverage ROMs as collaboration tools and open-
problems? source mini-apps accessible to non-experts?

Extensive MOR/RBM literature can (and should) provide guidance.



