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Problem

• A good emulator should be detailed enough to capture salient 
aspects of the mathematical problem at hand, but a highly 
detailed model can make it computationally expensive, hindering 
its usability.

• An emulator is designed using some training points where the 
exact data is known.

• How many training points do we need to reach a 
desired accuracy?
• Where should we select these training points?



Background

• EC approximates the target eigenvector with the best linear 
combination of training eigenvectors that minimizes error in energy.



Convergence properties of EC
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[1] - A. Sarkar and D. Lee, Phys. Rev. Lett.126, 032501 (2021).



Background

• Convergence determined by the orthogonality of the training 
eigenvectors

[1] - A. Sarkar and D. Lee, Phys. Rev. Lett.126, 032501 (2021).
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Rephrasing the problem

• Input variable : x ∈ 𝐷 Output variable : 𝑦

• Emulated approximation: 𝑓 𝑥𝑖 = ෥𝑦𝑖
• Assume that we can find any 𝑦𝑖 for any 𝑥𝑖, but it is 

computationally expensive

• We want to choose a set of input points 𝑥𝑖 which we will use 
to build an emulator.

• Which points 𝑥𝑖 should we choose and how many?

• There is an immense amount of data, and we wish to select a 
subset of data points that is most useful for us = Active 
Learning.



Active-learning

• Active learning (also called “query learning,” or sometimes “optimal 
experimental design” in the statistics literature) is a subfield of 
machine learning.

• The key hypothesis is that, if the learning algorithm is allowed to 
choose the data from which it learns it will perform better with less 
training.

• It has been used in a variety of fields [1 - 4] and is often combined 
with other machine learning methods like neural networks.

[1] - D. Cohn,  L. Atlas,  and R. Ladner,  Machine learning 15,  201(1994).
[2] - D. A. Cohn, Z. Ghahramani, and M. I. Jordan, Journal of artificial intelligence research 4, 129 (1996).
[3] - B. Settles, Computer Sciences Technical Report 1648, University of Wisconsin–Madison (2009).
[4] - A. G. Ellis, R. Iskandar, C. H. Schmid, J. B. Wong, and T. A. Trikalinos, Stat Med.39, 3521 (2020), 1812.07673.



Criteria for data selection

• Iterative algorithm

• Choose the point where the emulator has largest error

• Problem: Error = 𝑦𝑖 − ෥𝑦𝑖 requires knowledge of 𝑦𝑖 which is hard to 
compute

• Have the emulator give us 𝑓 𝑥𝑖 = ෥𝑦𝑖 + ∆෥𝑦𝑖

• Choose the point where ∆෥𝑦𝑖 is largest [1, 2]

• Is there some intuitive way to find out when our emulator 
approximation is bad?

[1] - D.  J.  C.  MacKay,  Neural  Computation 4,  590  (1992),  ISSN0899-7667.
[2] - A. G. Ellis, R. Iskandar, C. H. Schmid, J. B. Wong, and T. A. Trikalinos, Stat Med.39, 3521 (2020), 1812.07673.



Emulator for solving constraint problems

• Suppose that we are emulating the solution to a set of 
constraint equations 𝐺𝑖 𝑦, 𝑐 = 0.

• Examples: Finding the roots of a polynomial with variable 
coefficients, solution of a differential equation, eigenvector 
of a large matrix, etc.

• Constraint equations lets us test how good our emulated 
approximation is.
• 𝐺 ෥𝑦𝑖 , 𝑐 = 0.001 ~ ෥𝑦𝑖 is probably good solution
• 𝐺 ෥𝑦𝑗 , 𝑐 = 1000 ~ ෥𝑦𝑗 is probably bad solution



Self-learning Emulator

• Data selection criteria for self-learning emulator:
• Use the constraint equations to find an estimate of the exact error. 

• Each iteration we emulate and find the error estimate everywhere

• Find the point where the error estimate is largest and take that as the 
next training point.

• The computational advantage is the acceleration factor of the 
emulator itself.

• At the end find the exact error at a few points and use that to 
estimate the exact error.



Self-learning Cubic Spline Interpolator

• 𝑝 𝑥 = 5𝑥5 + 𝑐𝑥4 + 3𝑥3 + 2𝑥2 + 1𝑥 + 1

• Let 𝑥(𝑐) be the smallest real root.
• From few data points 𝑐𝑖 , we interpolate to all domain 𝑐 ∈ 𝐷 using natural 

cubic spline interpolation.
• Emulator approximation: 𝑓 𝑐𝑖 = ෤𝑥(𝑐𝑖)
• Exact error: ∆𝑥 𝑐𝑖 = 𝑥 𝑐𝑖 − ෤𝑥(𝑐𝑖)
• Constraint equation: 𝑝 𝑥 (𝑐𝑖) = 0

• We want an error estimate 𝐹 𝑝 ෤𝑥 𝑐 , 𝑐 which is proportional to the exact 
error ∆𝑥(𝑐) so that they have maxima at the same point.

log |∆𝑥 𝑐 | = log𝐹 𝑝 ෤𝑥 𝑐 , 𝑐 + 𝐴 + 𝐵(𝑐)



Error Estimate function
• We can estimate the error using the Newton-Raphson method,

∆𝑥(𝑐) ≈
|𝑝 ෤𝑥 𝑐 |

|𝑝′ ෤𝑥 𝑐 |2 + 𝜖2

• As ∆𝑥(𝑐) → 0, this estimate becomes the actual error, and thus we take 
the above expression to be our error estimate.
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Self-learning process



Actual Error



EC Emulator

• Assume that we can find the exact solution at some training 
points 𝑐𝑖 = 𝑐𝑖0,···, 𝑐𝑖𝑁. Denote them by 

ൿψ 𝑐𝑖0 , ൿψ 𝑐𝑖1 , … , |ψ ൿ𝑐𝑖𝑁 .

• Effectively, eigenvector continuation attempts to 
approximate ۧ|ψ (𝑐𝑡) by finding the best linear combination 
of ൿ|ψ (𝑐𝑖0) , … , ൿ|𝜓 (𝑐𝑖𝑁) , minimizing error in energy.

• We want to optimize our selection of training points 𝑐𝑖 =
𝑐𝑖0,···, 𝑐𝑖𝑁 .



Self-learning EC

• Algorithm to find best training points for EC.

• Constraint Equation: 𝐻(𝑐) ۧ|ψ(𝑐) = 𝐸(𝑐) ۧ|ψ(𝑐)

• EC approximation: ෨𝐸 𝑐 , ෩ψ(𝑐)

• Error: ∆ ۧ|ψ(𝑐) = ۧ|ψ(𝑐) − ൿ|෩ψ(𝑐)

• Error estimate: 𝐹(𝑐) =
෩ψ(𝑐) [𝐻 𝑐 − ෩𝐸(𝑐)]2 ෩ψ(𝑐)

෩ψ(𝑐) [𝐻 𝑐 ]2 ෩ψ(𝑐)



Four particles in lattice

• Consider 4 distinguishable particles in a 3D lattice with zero-range 
interaction.

• Lattice volume: 𝐿 = 43, Hamiltonian dimension: 262,144.

• Generalization of Bose-Hubbard model with 4 bosons [1] or 4 two-
component fermions on lattice [2 - 4].

• 𝐻 = 𝐻𝐹𝑟𝑒𝑒 + σ𝑖<𝑗σ𝑛 𝑐𝑖𝑗𝜌𝑖(𝑛)𝜌𝑗(𝑛) ; 𝜌𝑖 𝑛 = density operator

• Learning the 6-dimensional subspace with matrix size 262,144 is a 
challenge, but is possible with self-learning EC.

[1] - D. Frame, R. He, I. Ipsen, D. Lee, D. Lee, and E. Rrapaj, Phys.Rev. Lett.121, 032501 (2018), 1711.07090. 
[2] - A. Sarkar and D. Lee, Phys. Rev. Lett.126, 032501 (2021).
[3] – S. Bour, Xin Li, D. Lee, Ulf-G. Meißner, L. Mitas (2011), 1104.2102
[4] – S.Elhatisari, K. Katterjohn, D. Lee, Ulf-G. Meißner, G. Rupak (2017), 1610.09095  



Two parameter variation

Actual Error Error Estimate



Short range correlations



Summary

• Self-learning emulator – a new algorithm to train emulators.

• We use the emulator directly for training, and the computational 
advantage is the acceleration factor of the emulator itself, which can 
grow to five orders of magnitude or more for large systems. [1]

• It can be used with any emulator for solving a system of constraint 
equations – solving a system of algebraic equations, linear and 
nonlinear differential equations, and linear and nonlinear eigenvalue 
problems.

• We used it to find training points for EC in a six-dimensional vector 
space of eigenvectors. Using EC, we emulated over 106 points and 
had error about 10−3 with 80 training points.
[1] - A. Ekstr ̈om and G. Hagen, Phys. Rev. Lett.123, 252501 (2019),1910.02922



Floating-block EC

• Applying EC to quantum Monte Carlo simulations using Lattice EFT.

• Key idea: Euclidean time evolution with transfer matrix formalism

• Notation: 

• Problem:           𝑁𝑖𝑗 = ? ?



Previous work

• Norm matrix ill-conditioned

[1] - D. K. Frame, Ph.D. thesis, Michigan State University (2019), 1905.02782. 



Floating-blocks



Floating-block EC

• Extrapolate? – restrained by error/need more computation time

• Fast emulators

• Two computational tricks



Shifting Auxiliary Fields



3-step Calculation



• Study phase transition with two different interactions

• 𝐻𝑎 = 𝐾 + 𝑉𝐿 ,      𝐻𝑏 = 𝐾 + 𝑉𝑁𝐿
• Tune smearing parameter                                     rs such that both 

interactions reproduce 4𝐻𝑒 energy correctly.

• For larger systems ( 8𝐵𝑒 , 12𝐶 , 16𝑂), 𝑉𝐿 interaction produces 
overbinding, and 𝑉𝑁𝐿 interaction makes the system alpha gas.

• EC emulate: 𝐻 𝑐𝐿 , 𝑐𝑁𝐿 = 𝐾 + 𝑐𝐿𝑉𝐿 + 𝑐𝑁𝐿𝑉𝑁𝐿



EC emulator





12C EC error

(𝒄𝑳, 𝒄𝑵𝑳) Energy 2nd order EC 3rd order EC 4th order EC

(0.8,0.2) -338.57 -330.63 -333.15 -333.24

(0.3,0.7) -141.11 -139.63 -141.09 -141.1

(0.4,0.7) -217.73 -217.70 -217.71 -217.72

(0.4,0.8) -259.35 -258.19 -258.31 -258.32

(0.8,0.3) -382.41 -371.08 -374.24 -374.34

(0.8,0.8) -606.63 -574.23 -579.97 -580.12

(0.2,0.6) -41.54 -31.91 -37.75 -41.64

(0.2,0.2) 31.26 101.48 99.18 69.72

• Training points: (0.5,0.5), (0.2,0.8), (0.0,1.0), (0.2,0.6)

• Error in each EC estimate can be calculated using trimmed sampling

[1] – C. Hicks and D. Lee, Phys. Rev. Research 5, L022001, 2023



Summary

•New algorithm to perform EC in lattice Monte 
Carlo.

•Error limits what can be done, but extrapolation 
is possible

•Can be used to build EC emulators



Thank you for 
your attention
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