Interpolation and extrapolation methods in quantum chemistry

Andreas Savin ${ }^{1}$, Jacek Karwowski ${ }^{2}$, Thomas Duguet ${ }^{3}$

${ }^{1}$ CNRS and Sorbonne Univ., Paris, France
${ }^{2}$ Nicolaus Copernicus Univ., Toruń, Poland
${ }^{3}$ IRFU, CEA, Université Paris-Saclay, France and KU Leuven, Leuven, Belgium
CEA-Saclay 2023

Overview

- Explaining the title
- Numerical examples (variants)

Explaining the title

- Interpolation and extrapolation
- in quantum chemistry

Interpolation and extrapolation

Interpolation and extrapolation

$$
f(x) \approx \sum_{i=0}^{M_{0}} c_{i} \chi_{i}(x)
$$

- $\chi_{i}(x)$ "appropriately" chosen, often x^{i},
- $f^{(n)}(x), n=0,1, \ldots$ in some points $x_{k}, k=0,1, \ldots$ determine the c_{i}.

Nomenclature

- Interpolation if $x \in\left(\min \left\{x_{0}, x_{1}, \ldots\right\}, \max \left\{x_{0}, x_{1}, \ldots\right\}\right)$
- Extrapolation if $x \notin\left(\min \left\{x_{0}, x_{1}, \ldots\right\}, \max \left\{x_{0}, x_{1}, \ldots\right\}\right)$

Subset of basis set expansion methods Here, E is expanded in a basis, not Ψ.

Variants of interpolation

- Hermite interpolation
- Lagrange interpolation
- Taylor series and perturbation theory
- Quadrature

Variants of interpolation

- Hermite interpolation Known : $f^{(n)}\left(x_{k}\right), n=0,1, \ldots ; k=0,1, \ldots$

Variants of interpolation

- Hermite interpolation Known: $f^{(n)}\left(x_{k}\right), n=0,1, \ldots ; k=0,1, \ldots$
- Lagrange interpolation

Known : $n=0$

Variants of interpolation

- Hermite interpolation Known: $f^{(n)}\left(x_{k}\right), n=0,1, \ldots ; k=0,1, \ldots$
- Lagrange interpolation

Known : $n=0$

- Quadrature

Known : $f\left(x_{0}\right), f^{\prime}\left(x_{k}\right)$: integrand

Variants of interpolation

- Hermite interpolation Known: $f^{(n)}\left(x_{k}\right), n=0,1, \ldots ; k=0,1, \ldots$
- Lagrange interpolation

Known : $n=0$

- Quadrature

Known: $f\left(x_{0}\right), f^{\prime}\left(x_{k}\right)$: integrand

- Taylor series and perturbation theory Known : $k=0$

Practical considerations

- How many points x_{k} are needed?

If evaluation of $f\left(x_{k}\right)$ expensive, their number should be small.

- How many derivatives are needed?

Computing $f^{(n)}\left(x_{k}\right)$ may be cheaper than computing $f\left(x \neq x_{k}\right) ; n=1$!

- How are the points to be chosen?

Cost may differ for different x.

- How to choose the basis functions?

With the correct basis function, $\chi(x) \propto f(x)$, only one point is needed, but providing a small number of good basis functions can be difficult.

In quantum chemistry

In quantum chemistry

$$
H \Psi=E \Psi
$$

Notations

- $H=T+V+W$,
- $T=-\frac{1}{2} \sum_{i=1}^{N} \nabla_{i}^{2}$,
- $V=\sum_{i}^{N} v\left(\mathbf{r}_{i}\right)$,
- $W=\sum_{i<j}^{N} \frac{1}{\left|\boldsymbol{r}_{i}-\mathbf{r}_{j}\right|}$

Remarks

$$
H(\alpha)=H+\alpha A
$$

Property (A): $\left.\frac{d E(\alpha)}{d \alpha}\right|_{\alpha=0}$
Emphasis on E

Beyond quantum chemistry?

- As for eigenvector continuation *, the main idea is to bring in exploit information from related systems.
- In quantum chemistry, electron-electron interaction is the main culprit.
- The challenge is to reduce the computational effort. The path taken here is to consider simplified Hamiltonians.
- To obtain the physically significant results, some formally exact information about the physical system is introduced. ${ }^{\dagger}$

Not discussed

- Valence Bend
- Non-orthogonal Configuration Interaction

[^0]
Models

We are interested in some system ("assumed reality", "exact"), but only some models (characterized by numbers μ_{i} are easily accessible numerically.
Models are supposed to be solved with sufficient accuracy.
Correction to approximate the exact result by extrapolation.

Example: Complete Basis Set extrapolation (CBS)

- Exact: "complete basis set"
- Coulomb potential: in a calculation with the basis set truncated at an angular quantum number $L \gg 0$, the correlation energy error is dominated by a term proportional to $1 / L^{3}$

Kutzelnigg, Morgan J. Chem. Phys. 96, 4484 (1992)

- $E \approx a+b L^{-3}: a, b$ obtained from calculations with different L.
- Extension for "well-chosen" basis sets where $x_{k}=L$ is replaced by another number.

Models in this presentation

$$
H(\lambda, \mu) \Psi(\lambda, \mu)=E(\lambda, \mu) \Psi(\lambda, \mu)
$$

Notations

- $H(\lambda, \mu)=T+V+W(\mu)+\lambda \bar{W}(\mu)$,
- T, V unchanged (risky?)
- $W=\sum_{i<j}^{N} w\left(\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|, \mu\right)$,
- $\bar{W}=\sum_{i<j} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}-w\left(\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|, \mu\right)$,
- μ defines a model, typically: $w(r, \mu=0)=0, w(r, \mu=\infty)=1 / r$,
- λ permits connection to exact system, $\lambda=1$; alternatively through $\mu \rightarrow \infty$.
- λ as argument omitted: $\lambda=0$ (model).
- μ as argument omitted: $\lambda=1$, or $\mu=\infty$ (exact).

Choice of $w(r, \mu)$ and $\bar{w}(r, \mu)$

Evidently, not physical interaction. Range separation [59]:

$$
\frac{1}{r}=\underbrace{\frac{\operatorname{erf}(\mu r)}{r}}_{w(r, \mu)}+\underbrace{\frac{\operatorname{erfc}(\mu r)}{r}}_{\bar{w}(r, \mu)}
$$

Limiting cases

- non-interacting system: $\mu=0$
- physical system: $\mu=\infty$

Alternatives
For example, Yukawa interaction [52]

$$
\frac{1}{r}=\underbrace{\frac{1-e^{-\mu r}}{r}}_{w(r, \mu)}+\underbrace{\frac{e^{-\mu r}}{r}}_{\bar{w}(r, \mu)}
$$

$w(r, \mu)=\operatorname{erf}(\mu r) / r$

- μ : model chosen
- $w(r, \mu)$: long ranged
- $\bar{w}(r, \mu)=1 / r-w(r, \mu)$: short ranged
- correlated wave function for $\mu>0$
- models with small μ are supposed to be more easily accessible

Motivation for the choice of $w(r, \mu)$

- $w(r, \mu)=\frac{\operatorname{erf}(\mu r)}{r}$ better for correlated calculations using common basis sets.
- Description with finite basis sets easier to achieve:

$$
\frac{\operatorname{erf}(\mu r)}{r}=(2 \pi)^{-3} \int_{\mathbb{R}^{3}} d \mathbf{k} \frac{4 \pi}{k^{2}} e^{-\frac{k^{2}}{4 \mu^{2}}} e^{i \mathbf{k} \cdot \mathbf{r}}
$$

$e^{-\frac{k^{2}}{4 \mu^{2}}}$ is a smooth cutoff; components of plane waves with large k projected out; best when $\mu \rightarrow 0$.

- Singularity not present in $w(r, \mu<\infty)$
- Missing part (short-range interaction) "universal", i.e., $v(\mathbf{r})$-independent
- Physical argument: when $\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right| \rightarrow 0$, singularity becomes dominant, $v(\mathbf{r})$ does not matter
- Mathematical argument: Kato cusp condition and generalizations
- Experience: with density functional theory

Practical considerations

$$
E \approx E(\mu)+\sum_{m=1}^{M} c_{k} \chi_{m}(\mu)
$$

to be solved [150].

- How many points μ_{k} are needed for a good interpolation?

Evaluation of $E\left(\mu_{k}\right)$ is expensive: should be kept to a minimum.

- How many derivatives are needed?

Computing $E^{(1)}\left(\mu_{k}\right)=\left\langle\Psi\left(\mu_{k}\right)\right| \bar{W}\left|\Psi\left(\mu_{k}\right)\right\rangle$ is cheaper than computing $E\left(\mu \neq \mu_{k}\right)$.

- How are the points to be chosen?

Cost increases with μ.

- How to choose the basis functions?

We know that for $\mu \rightarrow \infty, E(\mu)+c \mu^{-2} \rightarrow \infty . \mu^{-k}, k \geq 2$ basis, for large μ.

Numerical examples

System: harmonium

for $N=2$ electrons (for numerical examples).

$$
H=-\frac{1}{2}\left(\nabla_{1}^{2}+\nabla_{2}^{2}\right)+\frac{1}{2} \omega^{2}\left(\mathbf{r}_{1}^{2}+\mathbf{r}_{2}^{2}\right)+\frac{1}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|}
$$

is separable with $\mathbf{R}=\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) / 2, \mathbf{r}=\mathbf{r}_{1}-\mathbf{r}_{2}$:

$$
\begin{gathered}
\left(-\frac{1}{4} \nabla_{\mathbf{R}}^{2}+\omega^{2} \mathbf{R}^{2}\right) \Psi_{\mathbf{R}}=E_{\mathbf{R}} \Psi_{\mathbf{R}} \\
\left(-\nabla_{\mathbf{r}}^{2}+\frac{1}{4} \omega^{2} \mathbf{r}^{2}+\frac{1}{r}\right) \Psi_{\mathbf{r}}=E_{\mathbf{r}} \Psi_{\mathbf{r}} \\
\Psi_{\mathbf{r}}=\psi(r) Y_{\ell m}(\Omega)
\end{gathered}
$$

- gives 1D differential equation,
- is analytically solvable for certain values of ω
- generalized to $1 / r \rightarrow w(r, \mu)$ (erfonium, Karwowski).

Convergence w.r.t. basis set size: maximal $L=0,1,2, \ldots$

Harmonium $\omega=1 / 2$

How to read the plots (for energy errors)

- Energy errors for several models with several corrections
- Chemical accuracy $=1 \mathrm{kcal} / \mathrm{mol}$ Pople, Rev. Mod. Phys., 71, 1267 (1999)
- For comparison, errors of $E(\mu)$ and of $\langle\Psi(\mu)| H|\Psi(\mu)\rangle$
- Approximations constructed to be correct for large μ; wall around $\mu \approx 0.5$

Corrections using up to $E(\mu), E^{(1)}(\mu), \ldots, E^{(n)}(\mu)$ [150]

$$
\begin{aligned}
E & \approx E(\mu)+\sum_{k=2}^{n+1} c_{k} \mu^{-k} \\
0 & \approx E^{(1)}(\mu)+\sum_{k=2}^{n+1} c_{k}(-k) \mu^{-k-1} \\
0 & \approx E^{(2)}(\mu)+\sum_{k=2}^{n+1} c_{k}(-k)(-k-1) \mu^{-k-2}
\end{aligned}
$$

- Solved by $\approx \rightarrow=$
- $k \geq 2$: exact result (dimensional)
- Known: $\mu, E(\mu), E^{(1)}(\mu), \ldots$
- Unknown: E, c_{k}; only E needed.

Corrections using up to $E(\mu), E^{(1)}(\mu), \ldots, E^{(n)}(\mu)$

- Increase in n brings improvement for large μ, worsening starts around $\mu=1$, wall around $\mu=0.5$.
- $n=1$ close to $\langle H\rangle($ large $\mu)$: both first-order perturbation theory

Origin of the wall. V independent of μ ?

How to improve V ? DFT?

Origin of the wall. μ^{-k} as basis?

- The basis functions $\chi_{k}(\mu)=\mu^{-k}$ diverge at $\mu=0$
- Many basis sets that don't diverge at $\mu=0$ can be chosen, e.g.,

$$
\chi_{k}(\mu)=1-k \mu\left(1+k^{2} \mu^{2}\right)^{-1 / 2}
$$

satisfy

- $\chi_{k}(\mu \rightarrow \infty) \propto \mu^{-2}$
- $\chi_{k}(\mu=0)=1$
- How to choose the best small set?

Choosing basis sets functions from a large set using EIM

EIM: Empirical Interpolation Method (magic points)
Maday, Nguyen, Patera, Pau, Comm. Pure Appl. Analysis, 8, 383 (2009)
FLEIM: Forward Looking EIM
Polack, Maday, AS [204] .
A greedy method to produce basis sets of increasing size without using the knowledge of the function to interpolate.

Algorithm
1 Choose a large basis set, $L=\left\{\chi_{1}, \chi_{2}, \ldots\right\}$.
2 Select a small subset of basis functions, $S \subset L$.
3 Produce approximants of the basis functions not in S by interpolation; the "worst" is χ_{j}.
4 Enlarge S by including $\chi_{j}, S:=S \cup \chi_{j}$.
5 Iterate from 3.

FLEIM

Lagrange interpolation variant, using points $\leq \mu$
Harmonium $(\omega=1 / 2)$ FLEIM

Polack, Maday, AS [204]
Accuracy increases with number of points; wall remains.

Wall due to basis set expansion?

$E(\mu) \propto \chi_{2}(\mu)$ for small $\mu, E(\mu) \propto \chi_{3}(\mu)$ for large μ : not by $\sum_{m} c_{m} \chi_{m}(\mu)$.

Eigenvector continuation

Frame, He, Ipsen, Lee, Lee, Rrapaj, PRL 121, 032501 (2018) Related eigenfunctions are used

$$
\begin{gathered}
\Psi \approx c_{1} \Psi\left(\mu_{1}\right)+c_{2} \Psi\left(\mu_{2}\right) \\
\mathbb{H} \mathbb{C}=\mathbb{S C E} \\
\mathbb{H}=\left(\begin{array}{cc}
\left\langle\Psi\left(\mu_{1}\right)\right| H\left|\Psi\left(\mu_{1}\right)\right\rangle & \left\langle\Psi\left(\mu_{1}\right)\right| H\left|\Psi\left(\mu_{2}\right)\right\rangle \\
\left\langle\Psi\left(\mu_{2}\right)\right| H\left|\Psi\left(\mu_{1}\right)\right\rangle & \left\langle\Psi\left(\mu_{2}\right)\right| H\left|\Psi\left(\mu_{2}\right)\right\rangle
\end{array}\right) \\
\mathbb{S}=\left(\begin{array}{ll}
\left\langle\Psi\left(\mu_{1}\right)\right| \Psi\left(\mu_{1}\right) & \left\langle\Psi\left(\mu_{1}\right)\right| \Psi\left(\mu_{2}\right) \\
\left\langle\Psi\left(\mu_{2}\right)\right| \Psi\left(\mu_{1}\right) & \left\langle\Psi\left(\mu_{2}\right)\right| \Psi\left(\mu_{2}\right)
\end{array}\right)
\end{gathered}
$$

Example (not used below): hydrogenic atoms as basis for H

- Excited states of $Z=1+\epsilon$ as basis: error $\propto \epsilon^{2}$
- Eigenvector continuation, $Z=1+\epsilon$ and $Z=1+a \epsilon:$ error $\propto a^{2} \epsilon^{4}$

Eigenvector continuation

- $\mu_{1}<\mu_{2}=\mu ; \mu_{1}$ optimized.
- 2 by 2 matrix; larger matrices did not significantly improve the range of μ that give errors within chemical accuracy.
- EC range is larger than that obtained using low derivatives.
- EC is probably cheaper than using $E^{(4)}$, and is variational (much better at $\mu=0$.

Reducing the number of model systems: GCC

- Why?
- Computing $E(\mu)$ is expensive.
- Cost of $E^{(n)}(\mu)$ increases fast with $n>1$.
- How?
- Adiabatic connection
- Generalized coalescence conditions (GCC): behavior of the wave function when electrons are at short distances

Adiabatic connection

$$
\begin{gathered}
f(b)=f(a)+\int_{a}^{b} d x f^{\prime}(x) \\
H(\lambda, \mu)=H(\lambda=0, \mu)+\lambda \bar{W}(\mu) \\
E=E(\lambda=0, \mu)+\int_{0}^{1} d \lambda\langle\Psi(\lambda, \mu)| \bar{W}|\Psi(\lambda, \mu)\rangle
\end{gathered}
$$

- Problem: knowledge of $\Psi(\lambda>0, \mu)$
- Approach: \bar{W} is short-range; only short-range part of $\Psi(\lambda, \mu)$ is needed.

Cusp conditions (behavior of Ψ for $\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right| \rightarrow 0$)

Singularity of the Coulomb interaction \rightarrow cusp in the exact wave function Kato, Commun. Pure Appl. Math., 10, 151 (1957).
Generalized Coalescence Conditions (GCC) from

$$
H^{n} \Psi=E^{n} \Psi
$$

Kurokawa, Nakashima, Nakatsuji, Adv. Quantum Chem., 73, 59 (2016).
Karwowski, AS [201]

Adiabatic connection using GCC for harmonium (1D)

$$
\begin{gathered}
\psi_{\ell} \approx \psi_{\ell, K}(r, \lambda, \mu)=r^{\ell} \sum_{k=0}^{K} \frac{c_{k}}{c_{0}} r^{k} \\
c_{1} / c_{0}=\lambda /(2 \ell+2), \ldots
\end{gathered}
$$

Higher order terms explicit, dependent on ℓ, E, λ, μ known [201].

$$
E \approx E(\lambda=0, \mu)+\left|c_{0}\right|^{2} \int_{0}^{1} d \lambda \int_{0}^{\infty} r^{2} d r\left|\psi_{\ell, K}(r, \lambda, \mu)\right|^{2} \bar{w}(r, \mu)
$$

Remarks

- r^{k} in $\left|\psi_{\ell}\right|^{2}$ gives leading term $\propto \mu^{-k-2}$ for $\mu \rightarrow \infty$; validity range. Analogy to basis set expansion: coefficients fixed by GCC, not interpolation.
- c_{0} needed (normalization, not short-range); obtained from

$$
\langle\Psi(\mu)| \bar{W}(\mu)|\Psi(\mu)\rangle \approx\left|c_{0}\right|^{2} \int_{0}^{\infty} r^{2} d r\left|\psi_{\ell, K}(r, \lambda=0, \mu)\right|^{2} \bar{w}(r, \mu)
$$

Asymptotic behavior $(\mu \rightarrow \infty)$ for adiabatic connection

$$
E \approx E(\mu)+\alpha(\mu)\langle\Psi(\mu)| \bar{W}(\mu)|\Psi(\mu)\rangle
$$

where

$$
\alpha(\mu)=\frac{\int_{0}^{1} d \lambda \int_{0}^{\infty} r^{2} d r\left|\psi_{\ell, K}(r, \lambda, \mu)\right|^{2} \bar{w}(r, \mu)}{\int_{0}^{\infty} r^{2} d r\left|\psi_{\ell, K}(r, \lambda=0, \mu)\right|^{2} \bar{w}(r, \mu)}
$$

and c_{k} / c_{0} are explicitely given in terms of ℓ, μ, λ, E. Good approximation for E in the expression of $c_{k} / c_{0}:\langle\Psi(\mu)| H|\Psi(\mu)\rangle$ (self-consistency possible, but not significant).

AS, Karwowksi [205]
Computational effort for approximating E comparable to that for $\langle\Psi(\mu)| H|\Psi(\mu)\rangle$.

Adiabatic connection for the GCC expansion, $\psi_{\ell, K}$

Wall not eliminated

Reducing the number of model systems:

Perturbation theory

Gori-Giorgi, AS [118]

Asymptotic PT1

- Derivation
- First-order problem in $1 / \mu$ has analytical solution, $\psi_{\ell, \text { asy }}(r, \lambda, \mu)$,
- integration constant fixed by merging into $\mu=\infty$ solution.

Gori-Giorgi, AS [118]

- Energy expression (as before)

$$
E \approx E(\mu)+\alpha(\mu)\langle\Psi(\mu)| \bar{W}(\mu)|\Psi(\mu)\rangle
$$

where

$$
\alpha(\mu)=\frac{\int_{0}^{1} d \lambda \int_{0}^{\infty} r^{2} d r\left|\psi_{\ell, a s y}(r, \lambda, \mu)\right|^{2} \bar{w}(r, \mu)}{\int_{0}^{\infty} r^{2} d r\left|\psi_{\ell, a s y}(r, \lambda=0, \mu)\right|^{2} \bar{w}(r, \mu)}
$$

Asymptotic PT1 result

A hidden error compensation at larger r when integrals are considered

Asymptotic eigenvector continuation

Asymptotic EC: information from a single μ

Reduce 2×2 EC to 1 point by using asymptotic PT1 form of ψ_{ℓ}. Tricks:

- $H=H(\mu)+\bar{W}(\mu)$
- $\partial_{\mu} E(\mu)=\langle\Psi(\mu)| \partial_{\mu} W(\mu)|\Psi(\mu)\rangle ; \partial_{\mu} W(\mu)$ is also short-ranged.
- Decompose matrix elements into terms containing short range operators, and terms depending on μ_{1} only. This can be done both for \mathbb{H} and the overlap.
- Use exact results for μ_{1}.
- Use asymptotic formulas for terms containing μ_{2} and short range operators.

Asymptotic EC result

Effect of $\Delta \mu=\mu_{2}-\mu_{1}$ on EC

Eigenvector continuation

Asymptotic approximation to EC

Remarks:

- EC curves start at μ_{2}, as $\Psi\left(\mu_{2}>\mu_{1}\right)$ needed
- Asymptotic EC curves start at ∞, as only $\Psi\left(\mu_{1}\right)$ is needed.
- Asymptotic EC curve for $\Delta \mu=\infty=$ asymptotic PT1.
- EC curve for $\Delta \mu=\infty$ starts at $\mu_{2}=\infty$.

Improving small μ results

Taylor's method with integral remainder

$$
f(x)=f \sum_{k=0}^{K} \frac{1}{k!}(x-a)^{k} f^{(k)}(x)+\int_{a}^{x} d t \frac{1}{K!}(x-t)^{K} f^{(K+1)}(t)
$$

Proof: integration by parts

$$
E(\lambda=1)=E(\lambda=0)+\sum_{k=0}^{K} \frac{1}{k!} E^{(k)}(0)+\int_{0}^{1} d t \frac{1}{K!}(1-t)^{K} E^{(K+1)}(t)
$$

Taylor's method with integral remainder: special cases

- Perturbation theory

$$
E(\lambda=1)=\underbrace{E(\lambda=0)+\sum_{k=1}^{K} \frac{1}{k!} E^{(k)}(\lambda=0)}_{\text {Perturbation theory to order } K}+\int_{0}^{1} d t \frac{1}{K!}(1-t)^{K} E^{(K+1)}(t)
$$

- Adiabatic connection in DFT: $K=0$

$$
E(\lambda=1)=\underbrace{E(\lambda=0)}_{\text {model }}+\underbrace{\int_{0}^{1} d t E^{(1)}(t)}_{\text {correction to model }}
$$

- Adiabatic connection to order K ?

$$
E(\lambda=1)=\underbrace{E(\lambda=0)+\sum_{k=0}^{K} \frac{1}{k!} E^{(k)}(0)}_{\text {Perturbation theory to order } K}+\underbrace{\int_{0}^{1} d t \frac{1}{K!}(1-t)^{K} E^{(K+1)}(t)}_{\text {correction to model }}
$$

Working formula

In perturbation theory to order K, replace $E^{(K)}$ by $\alpha^{(K)}(\mu) E^{(K)}$
$\alpha^{(K)}(\mu)=\frac{\int_{0}^{1} d \lambda \frac{1}{(K-1)!}(1-\lambda)^{K-1} \int_{0}^{\infty} d r r^{2} \partial_{\lambda}^{K-1}\left|\psi_{\ell, a s y}(r, \lambda, \mu)\right|^{2} \bar{w}(r, \mu)}{\int_{0}^{\infty} d r r^{2}\left(\partial_{\lambda}^{K-1}\left|\psi_{\ell, a s y}(r, \lambda, \mu)\right|^{2}\right)_{\lambda=0} \bar{w}(r, \mu)}$
$\alpha^{(K)}(\mu)$: analytic expression, no empirical parameters.

Results for harmonium, $\omega=1 / 2$

Results for harmonium, $\omega=1 / 2$, zoomed in.

Summary

Summary

- Knowledge of behavior of models with long-range interaction can be effectively corrected by different techniques: interpolation, adiabatic connection, eigenvector continuation.
- Up to now corrections to the non-nteracting model were not possible with the same accuracy. One can get closer starting from low-order perturbation theory.
- No restriction to ground state.
- Asymptotic error estimates.

Appendix

Generalized Coalescence Conditions

For $r=\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right| \rightarrow 0$,

$$
\begin{gathered}
\mathcal{W}=\sum_{i} v\left(\mathbf{r}_{i}\right)+\sum_{i<j} w\left(\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|\right) \\
\mathcal{W}(r, \ldots)=\sum_{k=-1}^{\infty} w_{k}(\ldots) r^{k} \\
\Psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots\right)=\sum_{k=0}^{\infty} r^{k} c_{k}(\ldots) \\
T\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots\right)=-\partial_{r}^{2}+\mathcal{T}(\ldots) \\
-2 c_{1}+w_{-1} c_{0}=0 \\
-6 c_{2}+w_{-1} c_{1}+\left(\widehat{\mathcal{T}}(\ldots)+w_{0}-E\right) c_{0}=0
\end{gathered}
$$

Taylor series

Using $x(\mu)$ such that \times monotonously approaches 0 as $\mu \rightarrow \infty$, e.g., $x(\mu)=\mu^{-2} \ddagger$,

$$
E(x=0)=E(x)-x E^{(1)}(x)+\frac{1}{2} x^{2} E^{(2)}(x)+\ldots
$$

${ }^{\ddagger}$ Derived from the exact analytical behavior of $E(\mu \rightarrow \infty)$

Taylor series

Using $x(\mu)$ such that \times monotonously approaches 0 as $\mu \rightarrow \infty$, e.g., $x(\mu)=\mu^{-2}+\kappa \mu^{-3} \S$,

$$
E(x=0)=E(x)-x E^{(1)}(x)+\frac{1}{2} x^{2} E^{(2)}(x)+\ldots
$$

[^1]μ-LDA and μ-PBE errors for harmonium $\omega=1 / 2$

Ground state and excited states with GCC

Effect of changing the system using GCC

Effect of changing the potential

$\langle H\rangle, \omega=1 / 2$
$\langle H\rangle, \omega_{\text {opt }}$
$\langle\mathrm{H}\rangle+\frac{1}{3} \mu \partial_{\mu}\langle\mathrm{H}\rangle, \omega=1 / 2$
$\langle\mathrm{H}\rangle+\frac{1}{3} \mu \partial_{\mu}\langle\mathrm{H}\rangle, \omega_{\text {opt }}$

Constructing \mathbb{H}

$$
\begin{gathered}
I\left(\mu_{1}, \mu_{2}, \mu_{3}\right)=\int_{0}^{\infty} r^{2} d r \psi_{\ell}\left(r, \lambda=0, \mu_{1}\right) \bar{w}\left(r, \mu_{2}\right) \psi_{\ell}\left(r, \lambda=0, \mu_{3}\right) \\
\zeta\left(\mu_{1}\right)=\left\langle\Psi\left(\mu_{1}\right)\right| \bar{W}\left(\mu_{1}\right)\left|\Psi\left(\mu_{2}\right)\right\rangle / I\left(\mu_{1}, \mu_{1}, \mu_{1}\right) \\
E\left(\mu_{2}\right)=E\left(\mu_{1}\right)+\int_{\mu_{1}}^{\mu_{2}} d \mu\langle\Psi(\mu)| \partial_{\mu} W(\mu)|\Psi(\mu)\rangle \\
\approx E\left(\mu_{1}\right)+\zeta\left(\mu_{1}\right) \int_{\mu_{1}}^{\mu_{2}} d \mu \int_{0}^{\infty} r^{2} d r\left|\psi_{\ell}(r, \lambda=0, \mu)\right|^{2} \partial_{\mu} w(r, \mu) \\
\left\langle\Psi\left(\mu_{1}\right)\right| H\left|\Psi\left(\mu_{2}\right)\right\rangle \\
=\left\langle\Psi\left(\mu_{1}\right)\right| H\left(\mu_{1}\right)+\bar{W}\left(\mu_{1}\right)\left|\Psi\left(\mu_{2}\right)\right\rangle \\
\\
\approx E\left(\mu_{1}\right)+\zeta\left(\mu_{1}\right) I\left(\mu_{1}, \mu_{1}, \mu_{2}\right) \\
\left\langle\Psi\left(\mu_{2}\right)\right| H\left|\Psi\left(\mu_{2}\right)\right\rangle \\
=\left\langle\Psi\left(\mu_{1}\right)\right| H\left(\mu_{2}\right)+\bar{W}\left(\mu_{1}\right)\left|\Psi\left(\mu_{2}\right)\right\rangle \\
\\
\approx E\left(\mu_{2}\right)+\zeta\left(\mu_{1}\right) I\left(\mu_{2}, \mu_{2}, \mu_{2}\right)
\end{gathered}
$$

Constructing \mathbb{S}

$$
\begin{aligned}
\left\langle\Psi\left(\mu_{1}\right)\right| H\left(\mu_{1}\right)+\bar{W}\left(\mu_{1}\right)\left|\Psi\left(\mu_{2}\right)\right\rangle & =\left\langle\Psi\left(\mu_{1}\right)\right| H\left(\mu_{2}\right)+\bar{W}\left(\mu_{2}\right)\left|\Psi\left(\mu_{2}\right)\right\rangle \\
\left(E\left(\mu_{1}\right)-E\left(\mu_{2}\right)\right)\left\langle\Psi\left(\mu_{1}\right) \mid \Psi\left(\mu_{2}\right)\right\rangle & =\left\langle\Psi\left(\mu_{1}\right)\right| \bar{W}\left(\mu_{2}\right)-\bar{W}\left(\mu_{1}\right)\left|\Psi\left(\mu_{2}\right)\right\rangle
\end{aligned}
$$

[^0]: *Frame, He, Ipsen, Lee, Lee, Rrapaj, PRL 121, 032501 (2018)
 \dagger "Perturbing the exact solution"

[^1]: ${ }^{\S}$ Derived from the exact analytical behavior of $E(\mu \rightarrow \infty)$ including the knowledge of the Kato cusp condition, Gori-Giorgi, AS [118]

