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Explaining the title Interpolation and extrapolation

Interpolation and extrapolation
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Explaining the title Interpolation and extrapolation

Interpolation and extrapolation

Mo
F(x)~ Y axi(x)
i=0

e xi(x) “appropriately” chosen, often x',

o f(N(x), n=0,1,... in some points x, k = 0,1,... determine the ¢;.

Nomenclature
e Interpolation if x € (min{xg, x1, ...}, max{xp, x1,...})

e Extrapolation if x ¢ (min{xop, x1, ...}, max{xo, x1,...})

Subset of basis set expansion methods

Here, E is expanded in a basis, not V.
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Explaining the title Interpolation and extrapolation

Variants of interpolation

Hermite interpolation
Lagrange interpolation
Taylor series and perturbation theory

Quadrature
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Explaining the title Interpolation and extrapolation

Variants of interpolation

@ Hermite interpolation
Known : f(M(x), n=0,1,..;k=0,1,...
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Explaining the title Interpolation and extrapolation

Variants of interpolation

@ Hermite interpolation

Known : f(M(x), n=0,1,..;k=0,1,...
@ Lagrange interpolation

Known : n =10
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Explaining the title Interpolation and extrapolation

Variants of interpolation

@ Hermite interpolation

Known : f(M(x), n=0,1,..;k=0,1,...
@ Lagrange interpolation

Known : n =10

@ Quadrature
Known : f(xo), f'(xk) : integrand
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Explaining the title Interpolation and extrapolation

Variants of interpolation

Hermite interpolation

Known : f(M(x), n=0,1,..;k=0,1,...
Lagrange interpolation

Known : n =10

Quadrature
Known : f(xo), f'(xk) : integrand

Taylor series and perturbation theory
Known : k=0
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Explaining the title Interpolation and extrapolation

Practical considerations

@ How many points x; are needed?
If evaluation of f(xx) expensive, their number should be small.

@ How many derivatives are needed?

Computing (" (x,) may be cheaper than computing f(x # x¢); n = 1!
@ How are the points to be chosen?

Cost may differ for different x.

@ How to choose the basis functions?
With the correct basis function, x(x) o f(x), only one point is needed, but
providing a small number of good basis functions can be difficult.
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Explaining the title In quantum chemistry

In quantum chemistry
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Explaining the title In quantum chemistry

In quantum chemistry

HV =EV

Notations

e H=T+V+W,

°oT=-3 Y, V2,

o V=3Ny(r),

o W= Z:{V<j ﬁ )
Remarks

H(@)=H+aA

Property (A); 2£() .
Emphasis on E

v
™r v — = = e
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In quantum chemistry
Beyond quantum chemistry?

@ As for eigenvector continuation *, the main idea is to bring in exploit
information from related systems.

@ In quantum chemistry, electron-electron interaction is the main
culprit.

@ The challenge is to reduce the computational effort. The path taken
here is to consider simplified Hamiltonians.

@ To obtain the physically significant results, some formally exact
information about the physical system is introduced.

Not discussed
@ Valence Bend

@ Non-orthogonal Configuration Interaction

*Frame, He, Ipsen, Lee, Lee, Rrapaj, PRL 121, 032501 (2018)
t“Perturbing the exact solution”
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In quantum chemistry
Models

We are interested in some system (“assumed reality”, “exact”), but only
some models (characterized by numbers p; are easily accessible
numerically.

Models are supposed to be solved with sufficient accuracy.

Correction to approximate the exact result by extrapolation.

Example: Complete Basis Set extrapolation (CBS)
@ Exact: “complete basis set”

@ Coulomb potential: in a calculation with the basis set truncated at an
angular quantum number L > 0, the correlation energy error is dominated
by a term proportional to 1/L3

Kutzelnigg, Morgan J. Chem. Phys. 96, 4484 (1992)

@ E~a+ bL73: a, b obtained from calculations with different L.

@ Extension for “well-chosen” basis sets where xx = L is replaced by another
number.
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Explaining the title In quantum chemistry

Models in this presentation

HA, )W (A, ) = E(A, )V (A, 1)

Notations
H\p) =T+ V+ W(p) +AW(u),
@ T,V unchanged (risky?)

N
o W=>3"" w(lri —rj,p),
oW=3%_, ﬁ —w(|r; —rjl, p),
® 1 defines a model, typically: w(r,u=0)=0, w(r,u=00)=1/r,

@ ) permits connection to exact system, A = 1; alternatively through u — oc.
@ )\ as argument omitted: A = 0 (model).

@ (i as argument omitted: A =1, or u = oo (exact).

v,
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In quanum chemistry
Choice of w(r, ) and w(r, u)

Evidently, not physical interaction. Range separation [59]:

1 erf(ur) n erfc(ur)

r r r
—_——
w(r,p) w(r,p)

Limiting cases
@ non-interacting system: u =0

@ physical system: pu = o0

Alternatives

For example, Yukawa interaction [52]

1 1—e #r  e™H
= +

r r r
—— N~
w(r,p) w(r,p)
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Explaining the title In quantum chemistry

w(r, p) = erf(ur)/r

erf(u r)ir

1/p

@ 4: model chosen
@ w(r,u): long ranged

@ w(r,u)=1/r— w(r,u): short ranged
@ correlated wave function for u > 0

@ models with small i are supposed to be more easily accessible

Extrapolation

CEA-Saclay 2023 13 /59



Explaining the title In quantum chemistry

Motivation for the choice of w(r, )

o w(r,u)= M better for correlated calculations using common

basis sets.
o Description with finite basis sets easier to achieve:

2
erf(pr) = (2m)3 dkﬂ;e—fﬁeik.r
r R3
_ K2
e “? is a smooth cutoff; components of plane waves with large k projected
out; best when p — 0.
o Singularity not present in w(r, u < 00)
@ Missing part (short-range interaction) “universal”, i.e.,
v(r)-independent
o Physical argument: when |r; — rj| — 0, singularity becomes dominant,
v(r) does not matter
o Mathematical argument: Kato cusp condition and generalizations
o Experience: with density functional theory
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Explaining the title In quantum chemistry

Practical considerations

M
Er~E(w)+ Y coxm(n)
m=1

to be solved [150].
@ How many points p, are needed for a good interpolation?
Evaluation of E(ju«) is expensive: should be kept to a minimum.
@ How many derivatives are needed?
Computing EW (1) = (W(k)|W|W(1r)) is cheaper than computing E(u # ).
@ How are the points to be chosen?
Cost increases with (.

@ How to choose the basis functions?
We know that for p — oo, E(p) + cu™2 — co. p~ % k > 2 basis, for large .

. Extrapolation EERCTEET Ty



Numerical examples

Numerical examples
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NI RVET T System: harmonium

System: harmonium

for N = 2 electrons (for numerical examples).

1

[r1 — 1o

l\)\l—l

2

—(Vi+V3)+ L2 (i +13) +
(1 —r2)/2,r=r1 —ry

is separable with R =
1

<V2R +w2R2> Vg = ErVR

( V2+4wr + >\IJ = EV,

Y, =(r)Yim(Q2)

o gives 1D differential equation,
@ is analytically solvable for certain values of w
o generalized to 1/r — w(r, ) (erfonium, Karwowski).
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NI RVET T System: harmonium

Convergence w.r.t. basis set size: maximal L =0,1,2,...

Harmonium w=1/2

T T T
0.01F -0.01
=
S —— l,l:'l
4
0.001 |- -0.001 @ =0
—e
0.0001 -0.0001
| | | | |
0 2 4 6 8
CPU time (s)
CEA-Saclay 2023 18 /59



Energy errors
How to read the plots (for energy errors)

0.003|
0.002| ]
. T N s S — E(u), model
@ 0.001F chemical accuracy ]
5 — (W) HlW)
Y 0000 — approximation 1
S 1 N i S chemical accuracy |~ @pproximation 2
-0.002} —— approximation 3
-0.003 | ; ; ; ; i —— approximation 4
0.0 0.5 1.0 15 2.0 25 3.0
u (bohr™")
@ Energy errors for several models with several corrections
@ Chemical accuracy = 1 kcal/mol Pople, Rev. Mod. Phys., 71, 1267 (1999)
e For comparison, errors of E(u) and of (W(u)|H|W(u))
@ Approximations constructed to be correct for large u;

wall around p ~ 0.5
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Energy errors
Corrections using up to E(u), E®(u), ..., EM(u) [150]

n+1
IR
k=2

n+1
0~ EM () + ) cu(—k)p

n+1

E®)( +ch —Kk)(—k — 1) k2

@ Solved by ~—=

@ k > 2: exact result (dimensional)
o Known: g, E(p), E®(p), ...

@ Unknown: E| ck; only E needed.
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Energy error
Corrections using up to E(u), ED(p), ..., EM(p)

0.003 f ' ' ' ' '
ooozf ff NN — E)
3 0.001 — (W) Hlp(u))
5 o000 — E(),....E™ (), n=1
4 ~0.001} — E(u),....E™(u), n=2
—0.002f || | — E(W),....E™(u), n=3
_0.003F — E(W),....E"™(y), n=4
0.0 05 1.0 15 2.0 25 3.0

u (bohr™)

@ Increase in n brings improvement for large p, worsening starts around
w =1, wall around p = 0.5.

@ n=1 close to (H) (large 1): both first-order perturbation theory
_ Extrapolation CEA-Saclay 2023 21/59



Eekies
Origin of the wall. V independent of 7

— E(u)

— (W(W)IHlp(u))

— E(u),....E™(), n=1
1 — E(),...E™ ), n=2
1 — E(),....E™(u), n=3

. ; . : . 1 — E),..E™(u), n=4
0.0 0.5 1.0 1.5 2.0 2.5 3.0

AE (hartree)

u (bohr™)

How to improve V? DFT?
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Eekies
Origin of the wall. =% as basis?

o The basis functions k(1) = u~* diverge at =0

@ Many basis sets that don't diverge at © = 0 can be chosen, e.g.,

Xi(p) = 1= kp(1+ Kp?) 2

satisfy

o Xk(p — 00) o p~
o xk(p=0)=1
@ How to choose the best small set?

2
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Numerical examples Energy errors

Choosing basis sets functions from a large set using EIM

EIM: Empirical Interpolation Method (magic points)
Maday, Nguyen, Patera, Pau, Comm. Pure Appl. Analysis, 8, 383 (2009)
FLEIM: Forward Looking EIM Polack, Maday, AS [204] .

A greedy method to produce basis sets of increasing size without using the
knowledge of the function to interpolate.

Algorithm
1 Choose a large basis set, L = {x1,x2,--- }

2 Select a small subset of basis functions, S C L.

3 Produce approximants of the basis functions not in S by
interpolation; the “worst” is x;.

4 Enlarge S by including x;, S := S U ;.

5 lterate from 3.
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FLEIM

Lagrange interpolation variant, using points < p
Harmonium (w = 1/2) FLEIM

0.003 F ]

0.002 F ]

0.001 F ]

0.000 f

-0.001 [

AFE (hartree)
N

-0.002 |

-0.003 |

L I
0.0 0.5 1.0 1.5 2.0 25 3.0

p (bohr™1)
Polack, Maday, AS [204]
Accuracy increases with number of points; wall remains.
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Numerical examples Energy errors

Wall due to basis set expansion?

—_

- © 00 N O o » W N

u
E(p) o< x2(pe) for small p1, E(p) ox x3(p) for large p: not by > cmXm(p).
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Numerical examples Energy errors

Eigenvector continuation

Frame, He, Ipsen, Lee, Lee, Rrapaj, PRL 121, 032501 (2018)
Related eigenfunctions are used

Ve caWV(u)+ V()
HC = SCE

(V(p1)|HW(p1))
o= << V(i) HW ()
(

w(

t

Example (not used below): hydrogenic atoms as basis for H
2

S=

Ml)\H|W(M2)>)
p2)[H|W(p2))

)
)
p1)| W (p1)
)

u1)\‘“(#2)>
p2) W (1

(W(
(W(p2) W (p2)

@ Excited states of Z = 1 + € as basis: error o< ¢
e Eigenvector continuation, Z=14¢ and Z =1+ ae: error x a’e*

— = = SR
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Numerical examples Energy errors

Eigenvector continuation

0.003
0002f [ f N NN g EG 2x2

,g 0.001 E([J)

£ oom —— WEHIWE)

3 oo} 1 — using Eu).EV()
e using E(u),EM(u),E@ (1)
~0.003F . . . . i 4 ——— using E(u),EM(u),E®(u),E® (1)

0.0 0.5 1.0 1.5 2.0 25 3.0

u (bohr™")

w1 < po = p; w1 optimized.

2 by 2 matrix; larger matrices did not significantly improve the range
of u that give errors within chemical accuracy.

EC range is larger than that obtained using low derivatives.

EC is probably cheaper than using E®), and is variational (much
better at u = 0.
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Reducing the number of model systems: GCC
Reducing the number of model systems: GCC

o Why?

o Computing E(pu) is expensive.

o Cost of E(") (1) increases fast with n > 1.
e How?

o Adiabatic connection
o Generalized coalescence conditions (GCC): behavior of the wave
function when electrons are at short distances

. Extrapolation CEA-Saclay 2023
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Numerical examples Reducing the number of model systems: GCC

Adiabatic connection

F(b) = £(a) + / e F1(3)
H(\ 1) = H(A = 0, 1) + AW(p)

1
E=E0=0.0+ [ A WO W)

@ Problem: knowledge of W(\ > 0, 1)

o Approach: W is short-range; only short-range part of W(\, i) is
needed.
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Reducing the number of model systems: GCC
Cusp conditions (behavior of W for |r; —r;| — 0)

Singularity of the Coulomb interaction — cusp in the exact wave function
Kato, Commun. Pure Appl. Math., 10, 151 (1957).
Generalized Coalescence Conditions (GCC) from

H'V = E"V
Kurokawa, Nakashima, Nakatsuji, Adv. Quantum Chem., 73, 59 (2016).

Karwowski, AS [201]
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Reducing the number of model systems: GCC
Adiabatic connection using GCC for harmonium (1D)

Ve~ ok (r, A 1) —fgzck :

C1/C0 = )\/(2£—|—2),...
Higher order terms explicit, dependent on £, E, A\, u known [201].

1 o)
E~E0 =0 +laf [ ) [ Parivulr i w0
0 0

Remarks
o rkin |1)y|? gives leading term oc u=%=2 for ;1 — oo; validity range.
Analogy to basis set expansion: coefficients fixed by GCC, not interpolation.
@ ¢y needed (normalization, not short-range); obtained from

(W)W ()| ¥ () ~ |col? /Ooo r2dr [t i (r, A = 0, )2 W(r, )

[150]
. Extrapolation Ry



Numerical examples Reducing the number of model systems: GCC

Asymptotic behavior (1 — o0) for adiabatic connection

E =~ E(u) + a(u)(W()|W (1) ¥(w)
where
S AN [ ek (oA @) P w(r, )
C Jo rRdr ek (r, A =0, )2 w(r, )
and ck/cp are explicitely given in terms of ¢, u, A\, E. Good approximation

for E in the expression of ¢x/co: (W(u)|H|W(u)) (self-consistency possible,
but not significant). AS, Karwowksi [205]

a(p)

Computational effort for approximating E

comparable to that for (W(u)|H|W(w)). J

. Extrapolation CEA-Saclay 2023
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Numerical examples Reducing the number of model systems: GCC

Adiabatic connection for the GCC expansion, 9y

=0, H\ p) o
0.002 - — 2
= 0.001 — 3
&)
Z 4
éﬁ/ 0.000 - 5
> —
<1 -0.001F 6
_____ | —7
-0.002 - : :
1 L 1 | - 1 1 / — AE(IJ)
0.0 0.5 1.0 15 2.0 25 3.0
— (M)

Wall not eliminated
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Numerical examples Reducing the number of model systems: Perturbation theory

Reducing the number of model systems:
Perturbation theory

Gori-Giorgi, AS [118]

W(r,p) = (r, ), for large p, except for small r.

0.06

0.04

0.02

0.00 - B
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Reducing the number of model systems: Perturbation theory
Asymptotic PT1

@ Derivation

o First-order problem in 1/ has analytical solution, ¥y a5, (r, A, 1),
e integration constant fixed by merging into u = oo solution.
Gori-Giorgi, AS [118]

@ Energy expression (as before)

E ~ E(n) + au)(W() W (1) W (u))

where .
Oé(,d) = fO d)\fo ridr |w£»35}’(r7)‘7:u’)|2 V_V(rvﬂ)
fooo r2dr W&aSy(r, A= 0,,&)|2 VT/(I’,,LL)
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Numerical examples Reducing the number of model systems: Perturbation theory

Asymptotic PT1 result

0.003
0.002

0.001

----- EC2 2x2

0.000

AE(hartree)

-0.001 ——— Asymp. pert.

-0.002

-0.003
0.0 0.5 1.0 1.5 2.0 25 3.0
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Numerical examples Reducing the number of model systems: Perturbation theory

A hidden error compensation at larger r when integrals are
considered

0.100
0.095
_0.090 A=0, asympt.
3
\;i 0.085F it 2RI ] aaeaa A=0, exact
0.080 A=1, asympt.
0078 4 A=1, exact
0.070
0.0 0.2 0.4 06 0.8 10
r(a.u.)
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WITGIEIRET Sl Asymptotic EC

Asymptotic eigenvector continuation
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Numerical examples Asymptotic EC

Asymptotic EC: information from a single

Reduce 2 x 2 EC to 1 point by using asymptotic PT1 form of .
Tricks:

o H=H(u)+ W)
° 0,E(pn) = (V(u)|0 W (1)|W(p)); 0, W(p) is also short-ranged.

@ Decompose matrix elements into terms containing short range
operators, and terms depending on 1 only. This can be done both
for H and the overlap.

@ Use exact results for ;.

@ Use asymptotic formulas for terms containing p2 and short range
operators.
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T
Asymptotic EC result

0.003F .
0.002 K, : b

0.001
[ cad mme-- EC2 2x2

0.000
..... - EC2 2x2, asymp.

AE(hartree)

-0.001
—————————————————————————————— —— Asymp. pert.

-0.002

-0.003
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T
Effect of Ay = pp — p7 on EC

Remarks:

Eigenvector continuation
-‘.

0.003]

Asymptotic approximation to EC

EC22x2, Ap=0.01
EC22x2, Ap=0.04
EC2 2x2, Ap=0.64

DE(hartree)

-0001

-0002

0003

0.003]

0.002]

0001

00

05 10 5 20 25 a0

b (oohr™)

@ EC curves start at pup, as W(up > u1) needed
only W(u1) is needed.

Asymptotic EC curves start at oo, as

o
@ Asymptotic EC curve for Ap
o

= 0o = asymptotic PT1.

EC curve for Ay = oo starts at pp = oo.

Extrapolation

EC2 2x2 asymp., Ap=0.01
----- EC2 2x2 asymp., Au=0.04
rrrrr EG2 2x2 asymp, Au=0.64
—— EC22x2, asymp., Api=co

CEA-Saclay 2023 42 /59



Numerical examples Improving small p results

Improving small p results
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Numerical examples Improving small p results

Taylor's method with integral remainder

K X
f(x) = fz l(x _ a)kf(k)(x) + dt %(X _ t)Kf(K+1)(t)

Proof: integration by parts

EA=1)=E\=0)+ XK: L Ew0) + /1 dt (1 - t)KEKRHD ()
I Y o K!
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Numerical examples Improving small p results

Taylor's method with integral remainder: special cases

@ Perturbation theory

EQ=1)=EX=0)+) —EXNN=0)+ /.1 dt — (1 — t)KEFHD(¢)
J0

Perturbation theory to order K

@ Adiabatic connection in DFT: K =0

EA=1)=E\=0)+ /01 dt EQ(t)

model
correction to model

@ Adiabatic connection to order K7

EN=1)=EX\=0)+ EK: L w o) +/1 dt (1 - )KERH ()
L o K!

. i |
Perturbation theory to order K correction to mode

. Extrapolation EECET Ty



Improving small . resuls
Working formula

In perturbation theory to order K, replace E() by oK) (1) E(O

o Dt (L= N5 dr 2 0l sy (r A )P (r, 1)

(K)(
o\ ()
fo drr? (85 1’¢Z,asy(r7)‘au)’2)/\ OV_V(U,U)

o) (11): analytic expression, no empirical parameters.

. Extrapolation T



Numerical examples Improving small p results

Results for harmonium, w = 1/2

0.0 fmmts s

-0} : E(k)
3
e 4 T N S S (e PT1
s -02f 1
£
J — 1

-0.3 - ] oe---- PT2

-0.4 ] 2

0.0 0.5 1.0 1.5 2.0 25 3.0
u (bohr’1)
CEA-Saclay 2023 47 /59



Numerical examples Improving small p results

Results for harmonium, w

= 1/2, zoomed in.

0.005 - 3 .
A
-~
5~

e S B
e -
£ 0.000
=
S N

-0.005

0.0 0.5 1.0 15
u (bohr™)

Extrapolation CEA-Saclay 2023
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Summary
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Summary

@ Knowledge of behavior of models with long-range interaction can be
effectively corrected by different techniques: interpolation, adiabatic
connection, eigenvector continuation.

@ Up to now corrections to the non-nteracting model were not possible
with the same accuracy. One can get closer starting from low-order
perturbation theory.

@ No restriction to ground state.

@ Asymptotic error estimates.
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Appendix
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Appendix

Generalized Coalescence Conditions

For r=|r1 —ry| =0,

W= Z r,+z (lri =

i<j

W(r,...)= > wi(...)r*
k=-1
U(ry,r,.)=> rfa(...)
k=0
T(r,r2,...)=—024+7(..)
—2c +w_1¢g =0

—6C2—|—W,1C1—1—('?(...)+W0—E) o =0

. Extrapolation CEA-Saclay 2023
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Appendix

Taylor series

Using x(u) such that x monotonously approaches 0 as y — oo, e.g.,
x(p)=p21,

E(x = 0) = E(x) — x ED(x) + %%E@)(x) b

Taylor series

— = - toO(1), x=p2
1 ----to0@), x=p?

10 0(2), x=p2+k u

to O(1), x=p 24k p~°
E(u)

Derived from the exact analytical behavior of E(u — o)

e Extrapolation Ry



Appendix

Taylor series

Using x(u) such that x monotonously approaches 0 as y — oo, e.g.,
x(u)=p2+rp s,

Taylor series

— — - t00(1), x=p2
1 ---- t00@), x=p?

t00(2), x=p2+k p®

to O(1), x=p2+k
— EWw

blau)

$Derived from the exact analytical behavior of E(pn — o00) including the knowledge of
the Kato cusp condition, Gori-Giorgi, AS [118]
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_ Aerendi
1~-LDA and p-PBE errors for harmonium w = 1/2

0.025}

0.0030

0.020 - 0.0025 ]
0.0020 £
0.015L 0.0015 £ h

0.0010
0.0005 £

0.0000 B
00 05 1.0 15 20 25 3.0 -

0.010

AE (hartree)

0.005 - - .
p~LDA [i-PBE
0-000 T T T f T T
0.0 05 1.0 15 2.0 25 3.0

-1
u(bohr™")
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Appendix

Ground state and excited states with GCC

AE (hartree)

AE (hartree)

n=1, /=0

0.003

0.002

0.001

0.000

-0.001

-0.002

-0.003
0.0 0.5 1.0 15

u(bohr™")
n=1, /=1

20 25 3.0

0.003
0.002

0.001

0.000

-0.001

-0.002

-0.003
0.0
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Appendix

Effect of changing the system using GCC

AS, Karwowski[205]
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Effect of changing the potential
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Constructing H

jut, i, ) = / Pdr (r, A = 0, 1) W(r, i) e(r, A = 0, 1)

C(pa) = (W(pa)|W ()W (pa2)) /1 (s pas 1)
E(uz) = E(u) + [ " (W (12)[0, W) W (1))

N M2 o8] ) B 5
~ En) ) [ e [ (e = 0.0 0,w(r.p)
M1

(W (1) [ HIV (p2)) = (W(pa)[H(pa) + W (pa) |V (p2))
~ E(p1) + C(pa) ! (pas o1, p2)

(W(p2) |HW (p2)) (1) H(p2) + W (1) W (112))

= (v
~ E(p2) + ()l (p2, p2, p12)

. Extrapolation EERCTEET



Constructing S

(W(pa) | H(pa) + W () [V (p12)) = (W (pa) | H(p2) + W (p2) ¥ (12))
(E(Ml) - E(M2)) (‘U(Hl)W(Mz)) = <‘|’(M1)|V_V(M2) - W(m)l\"(m»

. Extrapolation EERCTEET
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