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Explaining the title Interpolation and extrapolation

Interpolation and extrapolation

f (x) ≈
M0∑
i=0

ciχi (x)

χi (x) “appropriately” chosen, often x i ,

f (n)(x), n = 0, 1, . . . in some points xk , k = 0, 1, . . . determine the ci .

Nomenclature

Interpolation if x ∈ (min{x0, x1, . . . },max{x0, x1, . . . })
Extrapolation if x /∈ (min{x0, x1, . . . },max{x0, x1, . . . })

Subset of basis set expansion methods

Here, E is expanded in a basis, not Ψ.
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Explaining the title Interpolation and extrapolation

Variants of interpolation

Hermite interpolation

Lagrange interpolation

Taylor series and perturbation theory

Quadrature
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Explaining the title Interpolation and extrapolation

Variants of interpolation

Hermite interpolation
Known : f (n)(xk), n = 0, 1, ...; k = 0, 1, . . .

Lagrange interpolation
Known : n = 0

Quadrature
Known : f (x0), f

′(xk) : integrand

Taylor series and perturbation theory
Known : k = 0
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Explaining the title Interpolation and extrapolation

Practical considerations

How many points xk are needed?
If evaluation of f (xk) expensive, their number should be small.

How many derivatives are needed?
Computing f (n)(xk) may be cheaper than computing f (x ̸= xk); n = 1!

How are the points to be chosen?
Cost may differ for different x .

How to choose the basis functions?
With the correct basis function, χ(x) ∝ f (x), only one point is needed, but

providing a small number of good basis functions can be difficult.
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Explaining the title In quantum chemistry

In quantum chemistry

H Ψ = E Ψ

Notations

H = T + V +W ,

T = −1
2

∑N
i=1∇2

i ,

V =
∑N

i v(ri ),

W =
∑N

i<j
1

|ri−rj |

Remarks

H(α) = H + αA

Property (A): d E(α)
d α

∣∣∣
α=0

Emphasis on E
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Explaining the title In quantum chemistry

Beyond quantum chemistry?

As for eigenvector continuation ∗, the main idea is to bring in exploit
information from related systems.

In quantum chemistry, electron-electron interaction is the main
culprit.

The challenge is to reduce the computational effort. The path taken
here is to consider simplified Hamiltonians.

To obtain the physically significant results, some formally exact
information about the physical system is introduced. †

Not discussed

Valence Bend

Non-orthogonal Configuration Interaction

∗Frame, He, Ipsen, Lee, Lee, Rrapaj, PRL 121, 032501 (2018)
†“Perturbing the exact solution”
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Explaining the title In quantum chemistry

Models

We are interested in some system (“assumed reality”, “exact”), but only
some models (characterized by numbers µi are easily accessible
numerically.
Models are supposed to be solved with sufficient accuracy.
Correction to approximate the exact result by extrapolation.

Example: Complete Basis Set extrapolation (CBS)

Exact: “complete basis set”

Coulomb potential: in a calculation with the basis set truncated at an
angular quantum number L ≫ 0, the correlation energy error is dominated
by a term proportional to 1/L3

Kutzelnigg, Morgan J. Chem. Phys. 96, 4484 (1992)

E ≈ a+ b L−3: a, b obtained from calculations with different L.

Extension for “well-chosen” basis sets where xk = L is replaced by another
number.
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Explaining the title In quantum chemistry

Models in this presentation

H(λ, µ)Ψ(λ, µ) = E (λ, µ)Ψ(λ, µ)

Notations

H(λ, µ) = T + V +W (µ) + λW̄ (µ),

T ,V unchanged (risky?)

W =
∑N

i<j w(|ri − rj |, µ),

W̄ =
∑

i<j
1

|ri−rj | − w(|ri − rj |, µ),

µ defines a model, typically: w(r , µ = 0) = 0, w(r , µ = ∞) = 1/r ,

λ permits connection to exact system, λ = 1; alternatively through µ→ ∞.

λ as argument omitted: λ = 0 (model).

µ as argument omitted: λ = 1, or µ = ∞ (exact).
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Explaining the title In quantum chemistry

Choice of w(r , µ) and w̄(r , µ)

Evidently, not physical interaction. Range separation [59]:

1

r
=

erf(µr)

r︸ ︷︷ ︸
w(r ,µ)

+
erfc(µr)

r︸ ︷︷ ︸
w̄(r ,µ)

Limiting cases

non-interacting system: µ = 0

physical system: µ = ∞

Alternatives

For example, Yukawa interaction [52]

1

r
=

1− e−µr

r︸ ︷︷ ︸
w(r ,µ)

+
e−µr

r︸ ︷︷ ︸
w̄(r ,µ)
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Explaining the title In quantum chemistry

w(r , µ) = erf(µr)/r

1/μ
r

μ

w

1/r

erf(μ r)/r

µ: model chosen

w(r , µ): long ranged

w̄(r , µ) = 1/r − w(r , µ): short ranged

correlated wave function for µ > 0

models with small µ are supposed to be more easily accessible
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Explaining the title In quantum chemistry

Motivation for the choice of w(r , µ)

w(r , µ) = erf(µr)
r better for correlated calculations using common

basis sets.

Description with finite basis sets easier to achieve:

erf(µr)

r
= (2π)−3

∫
R3

d k
4π

k2
e
− k2

4µ2 e ik·r

e
− k2

4µ2 is a smooth cutoff; components of plane waves with large k projected

out; best when µ → 0.

Singularity not present in w(r , µ <∞)

Missing part (short-range interaction) “universal”, i.e.,
v(r)-independent

Physical argument: when |ri − rj | → 0, singularity becomes dominant,
v(r) does not matter
Mathematical argument: Kato cusp condition and generalizations
Experience: with density functional theory
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Explaining the title In quantum chemistry

Practical considerations

E ≈ E (µ) +
M∑

m=1

ckχm(µ)

to be solved [150].

How many points µk are needed for a good interpolation?
Evaluation of E(µk) is expensive: should be kept to a minimum.

How many derivatives are needed?
Computing E (1)(µk) = ⟨Ψ(µk)|W̄ |Ψ(µk)⟩ is cheaper than computing E(µ ̸= µk).

How are the points to be chosen?
Cost increases with µ.

How to choose the basis functions?
We know that for µ → ∞, E(µ) + cµ−2 → ∞. µ−k , k ≥ 2 basis, for large µ.
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Numerical examples

Numerical examples
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Numerical examples System: harmonium

System: harmonium

for N = 2 electrons (for numerical examples).

H = −1

2

(
∇2

1 +∇2
2

)
+

1

2
ω2

(
r21 + r22

)
+

1

|r1 − r2|
is separable with R = (r1 − r2)/2, r = r1 − r2:(

−1

4
∇2

R + ω2R2

)
ΨR = ERΨR(

−∇2
r +

1

4
ω2r2 +

1

r

)
Ψr = ErΨr

Ψr = ψ(r)Yℓm(Ω)

gives 1D differential equation,

is analytically solvable for certain values of ω

generalized to 1/r → w(r , µ) (erfonium, Karwowski).
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Numerical examples System: harmonium

Convergence w.r.t. basis set size: maximal L = 0, 1, 2, . . .
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Numerical examples Energy errors

How to read the plots (for energy errors)
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chemical accuracy

chemical accuracy
E(μ), model

〈ψ(μ)|H|ψ(μ)〉

approximation 1

approximation 2

approximation 3

approximation 4

Energy errors for several models with several corrections

Chemical accuracy = 1 kcal/mol Pople, Rev. Mod. Phys., 71, 1267 (1999)

For comparison, errors of E (µ) and of ⟨Ψ(µ)|H|Ψ(µ)⟩
Approximations constructed to be correct for large µ;
wall around µ ≈ 0.5
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Numerical examples Energy errors

Corrections using up to E (µ),E (1)(µ), . . . ,E (n)(µ) [150]

E ≈ E (µ) +
n+1∑
k=2

ckµ
−k

0 ≈ E (1)(µ) +
n+1∑
k=2

ck(−k)µ−k−1

0 ≈ E (2)(µ) +
n+1∑
k=2

ck(−k)(−k − 1)µ−k−2

. . .

Solved by ≈→=
k ≥ 2: exact result (dimensional)
Known: µ, E (µ),E (1)(µ), . . .
Unknown: E , ck ; only E needed.
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Numerical examples Energy errors

Corrections using up to E (µ),E (1)(µ), . . . ,E (n)(µ)
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〈ψ(μ)|H|ψ(μ)〉

E(μ),...,E (n)(μ), n=1

E(μ),...,E (n)(μ), n=2

E(μ),...,E (n)(μ), n=3

E(μ),...,E (n)(μ), n=4

Increase in n brings improvement for large µ, worsening starts around
µ = 1, wall around µ = 0.5.

n = 1 close to ⟨H⟩ (large µ): both first-order perturbation theory
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Numerical examples Energy errors

Origin of the wall. V independent of µ?
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E(μ),...,E (n)(μ), n=4

How to improve V ? DFT?
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Numerical examples Energy errors

Origin of the wall. µ−k as basis?

The basis functions χk(µ) = µ−k diverge at µ = 0

Many basis sets that don’t diverge at µ = 0 can be chosen, e.g.,

χk(µ) = 1− k µ(1 + k2µ2)−1/2

satisfy

χk(µ→ ∞) ∝ µ−2

χk(µ = 0) = 1

How to choose the best small set?
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Numerical examples Energy errors

Choosing basis sets functions from a large set using EIM

EIM: Empirical Interpolation Method (magic points)
Maday, Nguyen, Patera, Pau, Comm. Pure Appl. Analysis, 8, 383 (2009)

FLEIM: Forward Looking EIM Polack, Maday, AS [204] .

A greedy method to produce basis sets of increasing size without using the
knowledge of the function to interpolate.

Algorithm

1 Choose a large basis set, L = {χ1, χ2, . . . }.
2 Select a small subset of basis functions, S ⊂ L.

3 Produce approximants of the basis functions not in S by
interpolation; the “worst” is χj .

4 Enlarge S by including χj , S := S ∪ χj .

5 Iterate from 3.
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Numerical examples Energy errors

FLEIM

Lagrange interpolation variant, using points ≤ µ
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Polack, Maday, AS [204]

Accuracy increases with number of points; wall remains.
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Numerical examples Energy errors

Wall due to basis set expansion?
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E (µ) ∝ χ2(µ) for small µ, E (µ) ∝ χ3(µ) for large µ: not by
∑

m cmχm(µ).
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Numerical examples Energy errors

Eigenvector continuation

Frame, He, Ipsen, Lee, Lee, Rrapaj, PRL 121, 032501 (2018)

Related eigenfunctions are used

Ψ ≈ c1Ψ(µ1) + c2Ψ(µ2)

HC = SCE

H =

(
⟨Ψ(µ1)|H|Ψ(µ1)⟩ ⟨Ψ(µ1)|H|Ψ(µ2)⟩
⟨Ψ(µ2)|H|Ψ(µ1)⟩ ⟨Ψ(µ2)|H|Ψ(µ2)⟩

)
S =

(
⟨Ψ(µ1)|Ψ(µ1) ⟨Ψ(µ1)|Ψ(µ2)
⟨Ψ(µ2)|Ψ(µ1) ⟨Ψ(µ2)|Ψ(µ2)

)

Example (not used below): hydrogenic atoms as basis for H

Excited states of Z = 1 + ϵ as basis: error ∝ ϵ2

Eigenvector continuation, Z = 1 + ϵ and Z = 1 + a ϵ: error ∝ a2ϵ4
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Numerical examples Energy errors

Eigenvector continuation
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EC 2×2

E(μ)

〈ψ(μ)|H|ψ(μ)〉

using E(μ),E (1)(μ)

using E(μ),E (1)(μ),E (2)(μ)

using E(μ),E (1)(μ),E (2)(μ),E (3)(μ)

µ1 < µ2 = µ; µ1 optimized.

2 by 2 matrix; larger matrices did not significantly improve the range
of µ that give errors within chemical accuracy.

EC range is larger than that obtained using low derivatives.

EC is probably cheaper than using E (4), and is variational (much
better at µ = 0.

Extrapolation CEA-Saclay 2023 28 / 59



Numerical examples Reducing the number of model systems: GCC

Reducing the number of model systems: GCC

Why?

Computing E (µ) is expensive.
Cost of E (n)(µ) increases fast with n > 1.

How?

Adiabatic connection
Generalized coalescence conditions (GCC): behavior of the wave
function when electrons are at short distances
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Numerical examples Reducing the number of model systems: GCC

Adiabatic connection

f (b) = f (a) +

∫ b

a
dx f ′(x)

H(λ, µ) = H(λ = 0, µ) + λW̄ (µ)

E = E (λ = 0, µ) +

∫ 1

0
dλ ⟨Ψ(λ, µ)|W̄ |Ψ(λ, µ)⟩

Problem: knowledge of Ψ(λ > 0, µ)

Approach: W̄ is short-range; only short-range part of Ψ(λ, µ) is
needed.
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Numerical examples Reducing the number of model systems: GCC

Cusp conditions (behavior of Ψ for |ri − rj | → 0)

Singularity of the Coulomb interaction → cusp in the exact wave function
Kato, Commun. Pure Appl. Math., 10, 151 (1957).

Generalized Coalescence Conditions (GCC) from

HnΨ = EnΨ

Kurokawa, Nakashima, Nakatsuji, Adv. Quantum Chem., 73, 59 (2016).
. . .

Karwowski, AS [201]
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Numerical examples Reducing the number of model systems: GCC

Adiabatic connection using GCC for harmonium (1D)

ψℓ ≈ ψℓ,K (r , λ, µ) = r ℓ
K∑

k=0

ck
c0

rk

c1/c0 = λ/(2ℓ+ 2), . . .

Higher order terms explicit, dependent on ℓ,E , λ, µ known [201].

E ≈ E (λ = 0, µ) + |c0|2
∫ 1

0
dλ

∫ ∞

0
r2dr |ψℓ,K (r , λ, µ)|2 w̄(r , µ)

Remarks

rk in |ψℓ|2 gives leading term ∝ µ−k−2 for µ→ ∞; validity range.
Analogy to basis set expansion: coefficients fixed by GCC, not interpolation.

c0 needed (normalization, not short-range); obtained from

⟨Ψ(µ)|W̄ (µ)|Ψ(µ)⟩ ≈ |c0|2
∫ ∞

0
r2dr |ψℓ,K (r , λ = 0, µ)|2 w̄(r , µ)

[150]
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Numerical examples Reducing the number of model systems: GCC

Asymptotic behavior (µ→ ∞) for adiabatic connection

E ≈ E (µ) + α(µ)⟨Ψ(µ)|W̄ (µ)|Ψ(µ)⟩

where

α(µ) =

∫ 1
0 dλ

∫∞
0 r2dr |ψℓ,K (r , λ, µ)|2 w̄(r , µ)∫∞

0 r2dr |ψℓ,K (r , λ = 0, µ)|2 w̄(r , µ)

and ck/c0 are explicitely given in terms of ℓ, µ, λ,E . Good approximation
for E in the expression of ck/c0: ⟨Ψ(µ)|H|Ψ(µ)⟩ (self-consistency possible,
but not significant). AS, Karwowksi [205]

Computational effort for approximating E

comparable to that for ⟨Ψ(µ)|H|Ψ(µ)⟩.
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Numerical examples Reducing the number of model systems: GCC

Adiabatic connection for the GCC expansion, ψℓ,K
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Numerical examples Reducing the number of model systems: Perturbation theory

Reducing the number of model systems:
Perturbation theory

Gori-Giorgi, AS [118]

ψ(r , µ) ≈ ψ(r , µ), for large µ, except for small r .

0 1 2 3 4 5 6

0.00

0.02

0.04

0.06

0.08

r

ψ

0.0 0.1 0.2 0.3 0.4 0.5

0.070

0.075

0.080

Extrapolation CEA-Saclay 2023 35 / 59



Numerical examples Reducing the number of model systems: Perturbation theory

Asymptotic PT1

Derivation

First-order problem in 1/µ has analytical solution, ψℓ,asy (r , λ, µ),
integration constant fixed by merging into µ = ∞ solution.

Gori-Giorgi, AS [118]

Energy expression (as before)

E ≈ E (µ) + α(µ)⟨Ψ(µ)|W̄ (µ)|Ψ(µ)⟩

where

α(µ) =

∫ 1
0 dλ

∫∞
0 r2dr |ψℓ,asy (r , λ, µ)|2 w̄(r , µ)∫∞

0 r2dr |ψℓ,asy (r , λ = 0, µ)|2 w̄(r , µ)

Extrapolation CEA-Saclay 2023 36 / 59



Numerical examples Reducing the number of model systems: Perturbation theory

Asymptotic PT1 result
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Numerical examples Reducing the number of model systems: Perturbation theory

A hidden error compensation at larger r when integrals are
considered
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ω=0.5, μ=5.

λ=0, asympt.

λ=0, exact
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λ=1, exact
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Numerical examples Asymptotic EC

Asymptotic eigenvector continuation
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Numerical examples Asymptotic EC

Asymptotic EC: information from a single µ

Reduce 2× 2 EC to 1 point by using asymptotic PT1 form of ψℓ.
Tricks:

H = H(µ) + W̄ (µ)

∂µE (µ) = ⟨Ψ(µ)|∂µW (µ)|Ψ(µ)⟩; ∂µW (µ) is also short-ranged.

Decompose matrix elements into terms containing short range
operators, and terms depending on µ1 only. This can be done both
for H and the overlap.

Use exact results for µ1.

Use asymptotic formulas for terms containing µ2 and short range
operators.
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Numerical examples Asymptotic EC

Asymptotic EC result
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Numerical examples Asymptotic EC

Effect of ∆µ = µ2 − µ1 on EC

Eigenvector continuation Asymptotic approximation to EC
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Remarks:

EC curves start at µ2, as Ψ(µ2 > µ1) needed

Asymptotic EC curves start at ∞, as only Ψ(µ1) is needed.

Asymptotic EC curve for ∆µ = ∞ = asymptotic PT1.

EC curve for ∆µ = ∞ starts at µ2 = ∞.
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Numerical examples Improving small µ results

Improving small µ results
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Numerical examples Improving small µ results

Taylor’s method with integral remainder

f (x) = f
K∑

k=0

1

k!
(x − a)k f (k)(x) +

∫ x

a
dt

1

K !
(x − t)K f (K+1)(t)

Proof: integration by parts

E (λ = 1) = E (λ = 0) +
K∑

k=0

1

k!
E (k)(0) +

∫ 1

0
dt

1

K !
(1− t)KE (K+1)(t)

Extrapolation CEA-Saclay 2023 44 / 59



Numerical examples Improving small µ results

Taylor’s method with integral remainder: special cases

Perturbation theory

E (λ = 1) = E (λ = 0) +
K∑

k=1

1

k!
E (k)(λ = 0)︸ ︷︷ ︸

Perturbation theory to orderK

+

∫ 1

0

dt
1

K !
(1− t)KE (K+1)(t)

Adiabatic connection in DFT: K = 0

E (λ = 1) = E (λ = 0)︸ ︷︷ ︸
model

+

∫ 1

0
dt E (1)(t)︸ ︷︷ ︸

correction to model

Adiabatic connection to order K?

E (λ = 1) = E (λ = 0) +
K∑

k=0

1

k!
E (k)(0)︸ ︷︷ ︸

Perturbation theory to order K

+

∫ 1

0

dt
1

K !
(1− t)KE (K+1)(t)︸ ︷︷ ︸

correction to model
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Numerical examples Improving small µ results

Working formula

In perturbation theory to order K , replace E (K) by α(K)(µ)E (K)

α(K)(µ) =

∫ 1
0 dλ 1

(K−1)!(1− λ)K−1
∫∞
0 dr r2 ∂K−1

λ |ψℓ,asy (r , λ, µ)|2w̄(r , µ)∫∞
0 dr r2

(
∂K−1
λ |ψℓ,asy (r , λ, µ)|2

)
λ=0

w̄(r , µ)

α(K)(µ): analytic expression, no empirical parameters.
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Numerical examples Improving small µ results

Results for harmonium, ω = 1/2
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Numerical examples Improving small µ results

Results for harmonium, ω = 1/2, zoomed in.
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Summary

Summary

Knowledge of behavior of models with long-range interaction can be
effectively corrected by different techniques: interpolation, adiabatic
connection, eigenvector continuation.

Up to now corrections to the non-nteracting model were not possible
with the same accuracy. One can get closer starting from low-order
perturbation theory.

No restriction to ground state.

Asymptotic error estimates.
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Appendix

Appendix
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Appendix

Generalized Coalescence Conditions

For r = |r1 − r2| → 0,

W =
∑
i

v(ri ) +
∑
i<j

w(|ri − rj |)

W(r , . . . ) =
∞∑

k=−1

wk(. . . )r
k

Ψ(r1, r2, ...) =
∞∑
k=0

rkck(. . . )

T (r1, r2, . . . ) = −∂2r + T (. . . )

−2c1 + w−1c0 = 0

−6c2 + w−1c1 +
(
T̂ (. . . ) + w0 − E

)
c0 = 0

. . .
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Appendix

Taylor series

Using x(µ) such that x monotonously approaches 0 as µ→ ∞, e.g.,
x(µ) = µ−2 ‡,

E (x = 0) = E (x)− x E (1)(x) +
1

2
x2E (2)(x) + . . .
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E(μ)

‡Derived from the exact analytical behavior of E(µ → ∞)
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Appendix

Taylor series

Using x(µ) such that x monotonously approaches 0 as µ→ ∞, e.g.,
x(µ) = µ−2 + κµ−3 §,

E (x = 0) = E (x)− x E (1)(x) +
1

2
x2E (2)(x) + . . .
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to (1), x=μ-2

to (2), x=μ-2

to (2), x=μ-2+κ μ-3

to (1), x=μ-2+κ μ-3

E(μ)

§Derived from the exact analytical behavior of E(µ → ∞) including the knowledge of
the Kato cusp condition, Gori-Giorgi, AS [118]
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Appendix

µ-LDA and µ-PBE errors for harmonium ω = 1/2
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Appendix

Ground state and excited states with GCC

AS, Karwowski[205]
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Appendix

Effect of changing the system using GCC

AS, Karwowski[205]

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.003

-0.002

-0.001

0.000

0.001

0.002

0.003

μ(bohr
-1)

Δ
E
(h

a
rt

re
e
)

n=1, ℓ=0

ω=1/4

E

〈H〉1

2

3

4

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.003

-0.002

-0.001

0.000

0.001

0.002

0.003

μ(bohr
-1)

Δ
E
(h

a
rt

re
e
)

n =1, ℓ=0

ω=1
〈H〉12

34

Extrapolation CEA-Saclay 2023 56 / 59



Appendix

Effect of changing the potential

[205]
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Appendix

Constructing H

I (µ1, µ2, µ3) =

∫ ∞

0

r2dr ψℓ(r , λ = 0, µ1) w̄(r , µ2)ψℓ(r , λ = 0, µ3)

ζ(µ1) = ⟨Ψ(µ1)|W̄ (µ1)|Ψ(µ2)⟩/I (µ1, µ1, µ1)

E (µ2) = E (µ1) +

∫ µ2

µ1

dµ ⟨Ψ(µ)|∂µW (µ)|Ψ(µ)⟩

≈ E (µ1) + ζ(µ1)

∫ µ2

µ1

dµ

∫ ∞

0

r2dr |ψℓ(r , λ = 0, µ)|2 ∂µw(r , µ)

⟨Ψ(µ1)|H|Ψ(µ2)⟩ = ⟨Ψ(µ1)|H(µ1) + W̄ (µ1)|Ψ(µ2)⟩
≈ E (µ1) + ζ(µ1)I (µ1, µ1, µ2)

⟨Ψ(µ2)|H|Ψ(µ2)⟩ = ⟨Ψ(µ1)|H(µ2) + W̄ (µ1)|Ψ(µ2)⟩
≈ E (µ2) + ζ(µ1)I (µ2, µ2, µ2)
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Appendix

Constructing S

⟨Ψ(µ1)|H(µ1) + W̄ (µ1)|Ψ(µ2)⟩ = ⟨Ψ(µ1)|H(µ2) + W̄ (µ2)|Ψ(µ2)⟩

(E (µ1)− E (µ2)) ⟨Ψ(µ1)|Ψ(µ2)⟩ = ⟨Ψ(µ1)|W̄ (µ2)− W̄ (µ1)|Ψ(µ2)⟩
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