ESNT WORKSHOP

Fast emulation of large-scale ab-initio description of collective excitations

Rationale of the approach and (very) preliminary results

A. Roux

T. Duguet, J-P. Ebran, V. Somà, M. Frosini

01/06/2023

Outline

Introduction

Projected Generator Coordinate Method

Examples of recent PGCM computations

PGCM-EC emulator project and goals

PGCM-EC Algorithm

Brief review of PGCM

General idea of a PGCM-EC emulator

Presentation of simplified preliminary algorithm

Model specifications

Results

Low-lying collective spectroscopy

♦ PGCM ²⁰Ne

- Excellent account of exp. data
 - ---- Chiral order uncertainty $\simeq 100 \text{ KeV}$
- Good agreement of ground-state band with IM-NCSM
 - → Many-body uncertainty $\simeq 100 \text{ KeV}$

Low-lying collective spectroscopy

Giant resonances

 ²⁸Si monopole strength distribution vs exp. data

A. Porro, Saclay, thesis under writing (2023)

Low-lying collective spectroscopy

Low-lying collective spectroscopy

 Giant resonances & multi-phonon ¹⁶O, $\rho_m(x, y, z)$ ²⁰Ne, $\rho_m(x, y, z)$ Neutrinoless double-beta decay 6 (fm) Clustering 0 -3 Ground-state intrinsic density distribution \rightarrow ¹⁶O : tetrahedral clustering \rightarrow ²⁰Ne : ¹⁶O clustering + alpha -36 3 3 - Most advanced PGCM computation ever done $\overline{3}$ y (fm) (fra) -6-6

B. Bally et al., in preparation (2023)

6

0

-3

(fm)

 $z \, ({
m fm})$

• Low-lying collective spectroscopy

• Giant resonances & multi-phonon

Neutrinoless double-beta decay

Clustering

PGCM-EC project

Combine all these aspects with EC

Numerical implementations of the collaboration

TAURUS

B. Bally, A. Sanchez-Fernandez & T. Rodriguez

 $\label{eq:Advanced multidimensional PGCM} \left\{ \begin{array}{l} \bullet \text{HFB states} \longrightarrow \text{Break } N, Z, J^2, \Pi \ \& \ \text{time reversal} \\ \longrightarrow \text{Constraints on } Y_1^m, Y_2^m, Y_3^m, r^2 \ \& \ \Delta \\ \bullet \ \text{Symmetry restoration } N, Z, J^2, \Pi \end{array} \right.$

- Hamiltonian \longrightarrow Chiral Hamiltonian
 - → Gogny effective interaction
 - \rightarrow Shell-model valence interaction

PGCM-EC emulator project

Goals

- Sensitivity analysis & error propagation for ab initio calculations of collective excitations
- Easy inclusion of collective excitations within fit of future chiral EFT interactions
- Large scale database of ab initio prediction of collective excitations with statistical analysis

Preliminary tests

- One-dimensional GCM on $\beta_{20} \leftrightarrow Y_2^0$
- No U(1) symmetry breaking = HF
- No J^2 projection
- Brink & Boecker soft interaction (4 + 2 parameters)

Necessary for full-fledged project

- Access to (SRG-evolved) splitted chiral Hamiltonian
- Access to state-of-the-art post-processing statistical tools

PGCM-EC Algorithm review of PGCM

PGCM-EC Algorithm review of PGCM

PGCM-EC Algorithm EC extrapolation

Goal • $N_{\text{sim.}} \gg 1$ PGCM computations on H^{μ} for $\mu \in \{\mu_1, \cdots, \mu_{N_{\text{sim.}}}\} \subset \mathbb{R}^{n_p}$

Emulator • Apply EC on H^{μ} for training set $\{|\Psi_{a}^{\lambda_{i}}\rangle\}_{\substack{0 \leq i < n_{t} \\ 0 \leq a < n_{a}}} \longrightarrow n_{t} \ll N_{\text{sim.}}$

$$\longrightarrow |\Psi^{\mu}_{c}\rangle_{\rm EC} = \sum_{ia} g^{\lambda_{i}\mu}_{ac} |\Psi^{\lambda_{i}}_{a}\rangle$$

with
$$g_{ac}^{\lambda_{i}\mu}$$
 solution of $\sum_{ia} \left[\langle \Psi_{b}^{\lambda_{j}} | H^{\nu} | \Psi_{a}^{\lambda_{i}} \rangle - E_{c}^{\mu} \langle \Psi_{b}^{\lambda_{j}} | \Psi_{a}^{\lambda_{i}} \rangle \right] g_{ac}^{\lambda_{i}\mu} = 0$ HWG-type equation
Additional hypothesis • Linear dependence of H^{μ} on μ
 $\Psi_{b}^{\lambda_{j}} | H^{\mu} | \Psi_{a}^{\lambda_{i}} \rangle = \sum_{k=1}^{n_{p}} \mu^{k} \langle \Psi_{b}^{\lambda_{j}} | H_{k} | \Psi_{a}^{\lambda_{i}} \rangle$
 $\Psi_{b}^{\lambda_{j}} | H^{\mu} | \Psi_{a}^{\lambda_{i}} \rangle = \sum_{k=1}^{n_{p}} \mu^{k} \langle \Psi_{b}^{\lambda_{j}} | H_{k} | \Psi_{a}^{\lambda_{i}} \rangle$
 $Precompute$
 $\langle \Psi_{a}^{\lambda_{i}} | \Psi_{b}^{\lambda_{j}} \rangle$
 $\langle \Psi_{a}^{\lambda_{i}} | \Psi_{b}^{\lambda_{j}} \rangle$

Removes μ dependence complexity

Low dimensionality diagonalisation $n_t n_a \simeq n_q \simeq \text{PGCM cost}$

PGCM-EC Algorithm elementary kernels computation

Express μ -independent kernels in terms of off-diagonal elementary kernels

 $\lambda_{i,i}, a, b$ dependent

 $\lambda_{i,j}$ dependent a, b independent

$$\begin{array}{ll} \langle \Psi_{a}^{\lambda_{i}} | H_{k} | \Psi_{b}^{\lambda_{j}} \rangle &= \sum_{qq' \Theta} f_{a}^{\lambda_{i}*}(q) f_{b}^{\lambda_{j}}(q') D_{MM}^{\sigma*}(\Theta) \langle \Phi^{\lambda_{i}}(q) | H_{k} U(\Theta) | \Phi^{\lambda_{j}}(q') \rangle \\ \langle \Psi_{a}^{\lambda_{i}} | \Psi_{b}^{\lambda_{j}} \rangle & \longrightarrow \text{ Costly part of the computation} \end{array}$$

$$\rightarrow n_q^2 n_\Theta \times n_t^2 n_p \times n_{
m nuclei} n_{
m interactions}$$

	λ_0	λ_1	λ_2
λ_0	$\langle \Phi_q^{\lambda_0} H_k U_\Theta \Phi_{q'}^{\lambda_0} angle$	$\langle \Phi_q^{\lambda_0} H_k U_\Theta \Phi_{q'}^{\lambda_1} angle$	$\langle \Phi_q^{\lambda_0} H_k U_\Theta \Phi_{q'}^{\lambda_2} \rangle$
λ_1	$\langle \Phi_q^{\lambda_1} H_k U_\Theta \Phi_{q'}^{\lambda_0} \rangle$	$\langle \Phi_q^{\lambda_1} H_k U_\Theta \Phi_{q'}^{\lambda_1} angle$	$\langle \Phi_q^{\lambda_1} H_k U_\Theta \Phi_{q'}^{\lambda_2} \rangle$
λ_2	$\langle \Phi_q^{\lambda_2} H_k U_\Theta \Phi_{q'}^{\lambda_0} angle$	$\langle \Phi_q^{\lambda_2} H_k U_{\Theta} \Phi_{q'}^{\lambda_1} angle$	$\langle \Phi_q^{\lambda_2} H_k U_\Theta \Phi_{q'}^{\lambda_2} \rangle$

1

- \rightarrow massive computation of kernels
- \rightarrow do this for all nuclei

 \rightarrow Ab initio, Gogny, Skyrme

► HPC challenge

- $\rightarrow n_t$ training PGCM calculations
- \rightarrow Computable with available technology
- \rightarrow Training on excited states without additional cost

PGCM-EC Algorithm preliminary simplification

Costly part of the computation $\longrightarrow \langle \Phi^{\lambda_i}(q) | H_k \ U(\Theta) | \Phi^{\lambda_j}(q') \rangle$ • First step $|\Phi^{\chi}(q)\rangle | \frac{\text{for all } \lambda}{\lambda_0 \text{ nominal param.}} | \Phi^{\lambda_0}(q) \rangle$

(Too ?) drastic complexity reduction

 $\langle \Phi^{\lambda_i}(q) | H_k U(\Theta) | \Phi^{\lambda_j}(q') \rangle \longrightarrow \langle \Phi^{\lambda_0}(q) | H_k U(\Theta) | \Phi^{\lambda_0}(q') \rangle$

• Only $f_a^{\lambda}(q)$ carry training parameters dependence

Error computations

- Absolute energies
- Excitation energies
- Radii

States distance — To be implemented soon

Preliminary computation model definition

Nominal GCM computation Convergence

- Convergence of GCM energies & radii vs GCM truncation
 - → Nominal parametrization (B1)
 - → Energy cut on HF set
 - \longrightarrow Energies converged for E_0 + vibrational excitations $E_1 \& E_2$
 - ---- Radii converged for R0 & R1
 - Evaluation of GCM truncation error
 - $\diamond E_{n+1} E_n \qquad \diamond R_{n+1} R_n$

 ΔE (MeV)

Nominal GCM computation Effective dimension

Norm matrix spectrum

 \rightarrow cutoff = 10^{-12}

- → Number of eigenvalues above cutoff
 - Effective dimension of V^{λ_0}

	Size	Dimension
GCM set	53	15

1 parameter GCM-EC Ground-state training

- One-dimensional emulator (w₀)
- \rightarrow Ground-state training $TS_0^{ex.} = \{0\}$
- ---- Training set of parameters

$$TS_{1}^{par.} = \{-80.21\}$$

$$TS_{2}^{par.} = \{-80.21, -78.21\}$$

$$TS_{3}^{par.} = \{-80.21, -78.21, -76.21\}$$

$$TS_{4}^{par.} = \{-80.21, -78.21, -76.21, -74.21\}$$

$$TS_{5}^{par.} = \{-80.21, -78.21, -76.21, -74.21, -72.21\}$$

Excellent (good) interpolation (extrapolation) of ground-state radii

	Size	Dimension
GCM set	53	15
$\mathrm{TS}_{1}^{\mathrm{par.}}$	1	1
$TS_2^{par.}$	2	2
$TS_3^{par.}$	3	3
$\mathrm{TS}_4^{\mathrm{par.}}$	4	4
$TS_5^{par.}$	5	5

1 parameter GCM-EC Ground-state training

- One-dimensional emulator (w₀)
- \rightarrow Ground-state training $TS_0^{ex.} = \{0\}$
- ---- Training set of parameters

$$\begin{split} \mathrm{TS}_{1}^{\mathrm{par.}} &= \{-80.21\} \\ \mathrm{TS}_{2}^{\mathrm{par.}} &= \{-80.21, -78.21\} \\ \mathrm{TS}_{3}^{\mathrm{par.}} &= \{-80.21, -78.21, -76.21\} \\ \mathrm{TS}_{4}^{\mathrm{par.}} &= \{-80.21, -78.21, -76.21, -74.21\} \\ \mathrm{TS}_{5}^{\mathrm{par.}} &= \{-80.21, -78.21, -76.21, -74.21, -72.21\} \end{split}$$

 R_0 error, E_0 training 10-2 10^{-4} 10-6 ΔR_0 (fm) 10^{-8} 10^{-10} GCM truncation error training set 1 10-12 training set 2 training set 3 10^{-14} training set 4 training set 5 -80.0 -77.5 -75.0 -72.5 -70.0 -67.5 -65.0 -62.5 -82.5 W_0 (MeV)

	Size	Dimension
GCM set	53	15
$\mathrm{TS}_1^{\mathrm{par.}}$	1	1
$\mathrm{TS}_2^{\mathrm{par.}}$	2	2
$TS_3^{par.}$	3	3
$TS_4^{par.}$	4	4
$\mathrm{TS}_5^{\mathrm{par.}}$	5	5

- -> Excellent (good) interpolation (extrapolation) of ground-state energy
- Excellent (good) interpolation (extrapolation) of ground-state radii

1 parameter GCM-EC Separate training for excited states

Excellent (good) interpolation (extrapolation) of excitation energies

	Size	Dimension
GCM set	53	15
$TS_1^{ex.}$	5	5
$TS_2^{ex.}$	5	5
$TS_3^{ex.}$	5	5

1 parameter GCM-EC Ground-state training for excited states

• Training on ground state

 $\mathrm{TS}_0^{\mathrm{ex.}} = \{0\}$

 $\mathrm{TS}_5^{\mathrm{par.}}$

Cannot reproduce excited states

	Size	Dimension
GCM set	53	15
$TS_0^{ex.}$	5	5

1 parameter GCM-EC Excited-state training for excited states

• Adding first excited state to training

 $TS_{01}^{ex.} = \{0, 1\}$

 $\mathrm{TS}_5^{\mathrm{par.}}$

First excitation energy immediately ok

	Size	Dimension
GCM set	53	15
$TS_{01}^{ex.}$	10	10

1 parameter GCM-EC Excited-state training for excited states

Adding second excited state to training

 $TS_{012}^{ex.} = \{0, 1, 2\}$

 $\mathrm{TS}_5^{\mathrm{par.}}$

- First excitation energy ok
- Second excitation energy now also ok

	Size	Dimension
GCM set	53	15
$TS_{012}^{ex.}$	15	14

1 parameter GCM-EC Excited-state training for excited states

Adding third excited state to training

 $TS_{0123}^{ex.} = \{0, 1, 2, 3\}$ $TS_5^{par.}$

- First three excitation energies ok
- Training set span full GCM space

	Size	Dimension
GCM set	53	15
$TS_{0123}^{ex.}$	20	15

4 parameter GCM-EC random parameter training

- Repeat N = 100 times
 - Mean RMS, deviation
- Emulator trained on ground state $TS_0^{ex.} = \{0\}$

Good overall reproduction of ground state

Not true for excited states

4 parameter GCM-EC random parameter training

Repeat N = 100 times

Mean RMS, deviation

Good overall reproduction of ground state

And first excited state

• Emulator trained on ground state + excited state 1 $TS_{01}^{ex.} = \{0, 1\}$

4 parameter GCM-EC random parameter training

- → Mean RMS, deviation
- Emulator trained on ground state + excited state 1 $TS_{01}^{ex.} = \{0, 1\}$
- Good overall reproduction of ground state

And first excited state

Taking into account effective dimension

Conclusion & perspectives

Encouraging preliminary result

Absolute energies

----- Excitation energies

----→ Radii

• Quick generalisation to less trivial model

→ Ab initio

→ More observables

• Time complexity reduction

→ EC game-changing

→ Application to sensitivity analysis and interaction fits in nuclear theory