Effective theories of QCD for nuclei at low energy

Thomas DUGUET

DPhN, CEA-Saclay, France IKS, KU Leuven, Belgium

Workshop on Deciphering nuclear phenomenology across energy scales

September 20-23 2022, ESNT, Saclay, France

Contents

© Introduction to low-energy nuclear physics

- Phenomenology
- Rationale from the theoretical viewpoint
© Strong inter-nucleon forces
- Basic phenomenology and modelling
© The ab initio nuclear many-body problem
- Pre-processing short-range correlations
- Expansion methods handling both «weak/strong» dynamical/static correlations
- Nuclear deformation from ab initio calculations
© Conclusions

Contents

© Introduction to low-energy nuclear physics

- Phenomenology
- Rationale from the theoretical viewpoint
© Strong inter-nucleon forces
- Basic phenomenology and modelling
© The ab initio nuclear many-body problem
- Pre-processing short-range correlations
- Expansion methods handling both « weak/strong» dynamical/static correlations
- Nuclear deformation from ab initio calculations
© Conclusions

Elementary facts and « big » questions about nuclei

- 252 stable isotopes, ~ 3100 synthesized in the lab

How many bound (w.r.t strong force) nuclei exist; 9000 ?
Less than 50% known ($>10^{-22}$ s) \rightarrow Discovery of ~ 15 per year in the years 2010 s \rightarrow Several 100s from next generation facilities

Oganesson ${ }_{118} \mathrm{Og}$ added to Mendeleïev table in 2016

- Heaviest synthesized element $Z=118$

Heaviest possible element?
Enhanced stability near $Z=120$? 126 ?

Updated in 2019 to $\mathrm{Z}=9$ (22 neutrons) and $\mathrm{Z}=10$ (24 neutrons)

- Neutron drip-line known up to $Z=8$ (16 noutrons)

Where is the neutron drip-line beyond $Z=10$?
$2 p$ decay beyond the proton drip line in ${ }^{45} \mathrm{Fe}$ in 2002

- Modes of instability ($\alpha, \mathrm{p}, \beta, \gamma$ decays, fission)
- Are there more exotic/rare decay modes?

Ex: v-less 2β decay $=$ test of standard model?

Gravitational wave + kilonova from neutron stars merger in 2017

- Elements up to Fe produced in stellar fusion How have heavier elements been produced? Exotic r-process nucleosynthesis ; but where?

Shown to disappear away from stability in 1975/1993

- Over-stable "magic" nuclei ($2,8,20,20,50,82, \ldots$) How other magic numbers evolve with $\mathrm{N}-\mathrm{Z}$?

The atomic nucleus as a 4-components quantum mesoscopic system An extremely rich and diverse phenomenology

Nucleus: bound (or resonant) state of Z protons and N neutrons

Ground state

Mass, size, superfluidity, e.m. moments...

Several scales at play:

p \& n momenta $\sim 10^{8} \mathrm{eV}$
Separation energies $\sim \mathbf{1 0}^{\mathbf{7}} \mathrm{eV}$
Vibrational excitations $\sim 1 \mathbf{1 0}^{6} \mathrm{eV}$
"Ab initio", i.e. Chiral-EFT in A-body sector, long-term endeavor
Can nuclear systems be described

1) Consistently (from a single theoretical rationale?)
2) Systematically (complete phenomenology?)
3) Accurately enough (relevant to experimental uncertainty?)
4) From inter-nucleon interactions (right balance between reductionism/emergence?)
5) Rooted in QCD (sound connection to underlying EFT?)

Spectroscopy

Excitation modes

Reaction processes

Fusion, transfer, knockout, ...

Contents

© Introduction to low-energy nuclear physics

- Phenomenology
- Rationale from the theoretical viewpoint
© Strong inter-nucleon forces
- Basic phenomenology and modelling
© The ab initio nuclear many-body problem
- Pre-processing short-range correlations
- Expansion methods handling both «weak/strong» dynamical/static correlations
- Nuclear deformation from ab initio calculations
© Conclusions

Ab initio (i.e. In medias res) quantum many-body problem

Ab initio nuclear many-body theory = Chiral Effective Field Theory (χ EFT) in A-nucleon sector

1) A structure-less nucleons as degrees of freedom at low energy
2) Interactions mediated by pions and contact operators based on, e.g., Weinberg, power counting
3) Solve A-body Schrödinger equation to relevant accuracy

A-body Schrödinger Equation

$$
H\left|\Psi_{k}^{\mathrm{A}}\right\rangle=E_{k}^{\mathrm{A}}\left|\Psi_{k}^{\mathrm{A}}\right\rangle
$$

Rapidly evolving field in the last 15 years

Contents

© Introduction to low-energy nuclear physics

- Phenomenology
- Rationale from the theoretical viewpoint

O Strong inter-nucleon forces

- Basic phenomenology and modelling
© The ab initio nuclear many-body problem
- Pre-processing short-range correlations
- Expansion methods handling both « weak/strong» dynamical/static correlations
- Nuclear deformation from ab initio calculations
© Conclusions

The nuclear Hamiltonian

Build H (and other operators) with χ EFT at various orders

© Non-trivial formal task whose difficulty increases with order (e.g. 3N at N2LO, 4N at N3LO...)
© Fit LECs of mode-2k tensors to experimental data (or lattice QCD) in A = k-body systems

Organization = power counting
Importance of interaction terms

Effective description $=A$-body operator in principle
$H=T+V^{2 \mathrm{~N}}+V^{3 \mathrm{~N}}+V^{4 \mathrm{~N}}+\ldots+V^{\mathrm{AN}}$

At least 3N necessary = major difficulty to solve SE next

Symmetries of the nuclear Hamiltonian

Nuclear systems are

© Translationally invariant: $\mathbf{T}(1)$
$\left[H, P_{i}\right]=0 \geqslant\left|\Phi_{{ }_{c m}}>\right| \Psi_{i m}>$
(2) Rotationally invariant: SU(2)

$$
\vec{P}=\sum_{i=1}^{\mathrm{A}} \vec{p}_{i}
$$

Total center-of-mass momentum
$\vec{J}=\vec{L}+\vec{S}=\sum_{i=1}^{\mathrm{A}} \vec{l}_{i}+\sum_{i=1}^{\mathrm{A}} \vec{s}_{i}$
Total (internal) angular momentum
$\left[\mathrm{H}, \mathrm{J}^{2}\right]=\left[\mathrm{H}, \mathrm{J}_{\mathrm{z}}\right]=0 \supseteq \mid \Psi^{\mathrm{JM}}>$
3 Carry fixed neutrons/protons numbers: $U(1)$

$$
[\mathrm{H}, \mathrm{~N}]=[\mathrm{H}, \mathrm{Z}]=0 \bigcirc\left|\Psi^{\mathrm{JMNZ}}\right\rangle
$$

4 + additional symmetries (time reversal, parity, ~isospin)

Symmetries

(1) Strongly constrain the mathematical form of H
(2) Dictates quantum numbers of its eigenstates
e.g. factorization of cm hard to ensure in practice

Phenomenology of inter-nucleon interactions

$$
\begin{aligned}
H & \equiv \sum_{i=1}^{A} \frac{\vec{p}_{i}^{2}}{2 m}+\frac{1}{2} \sum_{i \neq j}^{A} V^{2 \mathrm{~N}}(i, j)+\frac{1}{6} \sum_{i \neq j \neq k}^{A} V^{3 \mathrm{~N}}(i, j, k)+\ldots \quad \text { Interactions between effective 4-components point fermions } \\
& =\sum_{\alpha \beta} t_{\alpha \beta} a_{\alpha}^{\dagger} a_{\beta}+\left(\frac{1}{2!}\right)^{2} \sum_{\alpha \beta \gamma \delta} \bar{v}_{\alpha \beta \gamma \delta}^{2 \mathrm{~N}} a_{\alpha}^{\dagger} a_{\beta}^{\dagger} a_{\delta} a_{\gamma}+\left(\frac{1}{3!}\right)^{2} \sum_{\alpha \beta \gamma \delta \zeta \epsilon} \bar{v}_{\alpha \beta \gamma \delta \xi \epsilon}^{3 \mathrm{~N}} \epsilon_{\alpha}^{\dagger} a_{\beta}^{\dagger} a_{\gamma}^{\dagger} a_{\epsilon} a_{\zeta} a_{\delta}+\cdots
\end{aligned}
$$

1. Complex operator structure in $\mathrm{r} \otimes \sigma \otimes \tau$ spaces (constrained by symmetries)

\boxtimes AV18 model local but generally nuclear interactions are non-local in space

Phenomenology of inter-nucleon interactions

$$
\begin{aligned}
H & \equiv \sum_{i=1}^{A} \frac{\vec{p}_{i}^{2}}{2 m}+\frac{1}{2} \sum_{i \neq j}^{A} V^{2 \mathrm{~N}}(i, j)+\frac{1}{6} \sum_{i \neq j \neq k}^{A} V^{3 \mathrm{~N}}(i, j, k)+\ldots \quad \text { Interactions between effective 4-components point fermions } \\
& =\sum_{\alpha \beta} t_{\alpha \beta} a_{\alpha}^{\dagger} a_{\beta}+\left(\frac{1}{2!}\right)^{2} \sum_{\alpha \beta \gamma \delta} \bar{v}_{\alpha \beta \gamma \delta}^{2 N} a_{\alpha}^{\dagger} a_{\beta}^{\dagger} a_{\delta} a_{\gamma}+\left(\frac{1}{3!}\right)^{2} \sum_{\alpha \beta \gamma \delta \zeta \epsilon} \bar{v}_{\alpha \beta \gamma \delta \zeta \epsilon}^{3 \mathrm{~N}} \epsilon_{\alpha}^{\dagger} a_{\beta}^{\dagger} a_{\gamma}^{\dagger} a_{\epsilon} a_{\zeta} a_{\delta}+\cdots
\end{aligned}
$$

2. Dominant 2-nucleon + sub-leading (but mandatory) 3-nucleon and (minor?) 4-nucleon forces

« Integrating out» DOFs lead to multi-nucleon forces

Example 3N

Example of analytical expression

First contributions to 3 N interaction in chiral-EFT ($\mathrm{N}^{2} \mathrm{LO}$)

$$
\frac{\left\langle\vec{p}_{1}^{\prime} \vec{p}_{2}^{\prime} \vec{p}_{3}^{\prime}\right| V_{2 \pi \mathrm{~N}^{2} \mathrm{LO}}^{3 \mathrm{~N}}\left|\vec{p}_{1} \vec{p}_{2} \vec{p}_{3}\right\rangle}{}=\frac{g_{A}^{2}}{8 F_{\pi}^{4}} \frac{\begin{array}{l}
\text { Tensor operator } \\
\vec{\sigma}_{1} \cdot \vec{q}_{1} \vec{\sigma}_{3} \cdot \vec{q}_{3} \\
{\left[q_{1}^{2}+m_{\pi}^{2}\right]\left[q_{3}^{2}+m_{\pi}^{2}\right]}
\end{array}\left[\vec{\tau}_{1} \cdot \vec{\tau}_{3}\left(2 c_{3} \vec{h}_{1} \cdot \vec{q}_{3}-4 c_{1} l_{\pi}^{2}\right)\right.}{\text { Spin-orbit-like operator }}
$$

$$
\vec{q}_{i}=\vec{p}_{i}^{\prime}-\vec{p}_{i} \quad \vec{P}=\sum_{i=1}^{3} \vec{p}_{i}
$$

$c_{4} \overrightarrow{1}_{1} \times \vec{\tau}_{3} \cdot \vec{\tau}_{2} \vec{q}_{1} \times \vec{q}_{3} \cdot \vec{\sigma}_{2} \delta\left(\vec{P}^{\prime}-\vec{P}\right)$

+ all permutations of $(1,2,3)$

Low-Energy Constants (LECs)

Fixed on π-nucleon scatt. exp.

Modern constructive approach = effective field theory

1. Use separation of scales to define d.o.f \& expansion parameter [Weinberg, Gasser, Leutwyler, van Kolck, ..]

Typical momentum at play $\longleftarrow Q / \Lambda \longrightarrow$ High energy scale (physics beyond not included explicitly)
2. Parametrize physics beyond $\Lambda+$ write \# ∞ terms allowed by (broken) symmetries of underlying QCD
3. Order by size all possible terms \rightarrow systematic expansion ("power counting") \rightarrow theoretical error
4. Truncate at a given order and adjust low-energy constants (LECs) via underlying theory or data
5. Regularize UV divergences and (hopefully) achieve order-by-order renormalization of observables

Chiral EFT
\Rightarrow Expand around $Q \sim m_{\pi}$
High-energy via contact interactions
Keep pion dynamic explicit

Pionless EFT
\Rightarrow Expand around Q ~ 0

Integrate out pions too
\rightarrow only contact terms

Chiral effective field theory = Weinberg power counting

1) Interaction diagrams are made out of
a) nucleon and pion : propagators
b) pion-nucleon and (derivative) k-nucleon contact vertices

Goal of PC: estimate the power v of the law $\left(Q / \Lambda_{\chi}\right)^{\nu}$ with which each diagram scales
2) Naive Dimensional Analysis
a) nucleon propagator carries $Q^{-1} \frac{1}{m_{\omega}^{2}+Q^{2}} \approx \frac{1}{m_{\omega}^{2}} \underbrace{\left(1-\frac{Q^{2}}{m_{\omega}^{2}}+\frac{Q^{4}}{m_{\omega}^{4}}-+\ldots\right)}$, pion propagator carries Q^{-2}

Fits with PC in powers of $Q / m_{\omega} \approx Q / \Lambda_{\chi}$

Connected diagrams
b) derivative operator carries Q
c) loop integration brings Q^{4}

Weinberg PC for interaction potential
 Insert into dynamical, i.e. A-body Schroedinger, equation to access observables
3) Examples: diagrams in 2 -nucleon sector at Leading $\operatorname{Order}(\mathrm{LO})$ with $\sim Q^{0} \quad\left(v=0\right.$ from $\left.k=2, L=0, \Delta_{i}=0\right)$

$$
\left\{-\cdots V_{1 \pi}^{(0)}\left(\boldsymbol{p}^{\prime}, \boldsymbol{p}\right)=-\frac{g_{A}^{2}}{4 f_{\pi}^{2}} \boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2} \frac{\boldsymbol{\sigma}_{1} \cdot \boldsymbol{q} \boldsymbol{\sigma}_{2} \cdot \boldsymbol{q}}{q^{2}+m_{\pi}^{2}}\right.
$$

Tensor operator
 Pure contact term (CT)

$$
V_{\mathrm{ct}}^{(0)}\left(\boldsymbol{p}^{\prime}, \boldsymbol{p}\right)=C_{S}+C_{T} \boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2}
$$

Central operator (no q dependence)
4) Consistent construction of other operators (e.g. coupling to electroweak or WIMP probes)

Chiral effective field theory = interactions expansion

LO
$\left(Q / \Lambda_{\chi}\right)^{0}$

Chiral effective field theory = interactions expansion

Contents

© Introduction to low-energy nuclear physics

- Phenomenology
- Rationale from the theoretical viewpoint
© Strong inter-nucleon forces
- Basic phenomenology and modelling
© The ab initio nuclear many-body problem
- Pre-processing short-range correlations
- Expansion methods handling both «weak/strong» dynamical/static correlations
- Nuclear deformation from ab initio calculations
© Conclusions

Nuclear many-body problem

 2NF ~ 7GB $3 N F \sim 350 G B \quad$ More needed to reduce the load to go beyond A~100

A-body Schrödinger Equation © HO single-particle basis
(0) Second-quantized form

$$
H \equiv \frac{1}{(1!)^{2}} \sum_{p q} t_{p q} c_{p}^{\dagger} c_{q}
$$

Four-index tensor $\rightarrow+\frac{1}{(2!)^{2}} \sum_{\text {pqrs }} \bar{v}_{\text {pqrs }} c_{p}^{\dagger} c_{q}^{\dagger} c_{s} c_{r}$
Six-index tensor $\rightarrow+\frac{1}{(3!)^{2}} \sum_{\text {pqrstu }} \underline{\bar{w}_{p q r s t u}} c_{p}^{\dagger} c_{q}^{\dagger} c_{r}^{\dagger} c_{u} c_{t} c_{s}$

Contents

© Introduction to low-energy nuclear physics

- Phenomenology
- Rationale from the theoretical viewpoint
© Strong inter-nucleon forces
- Basic phenomenology and modelling
© The ab initio nuclear many-body problem
- Pre-processing short-range correlations
- Expansion methods handling both « weak/strong» dynamical/static correlations
- Nuclear deformation from ab initio calculations
© Conclusions

Pre-processing of short-range correlations

1) Short-r repulsion
2) Bound np/Virtual nn

3) Dynamic corr. in UV
4) Strong static corr. in IR

2a) Pairing in SOS
2b) Collect. Quad. in DOS

1) Taming down the short-range/coupling to UV in the Hamiltonian

$$
H(s) \equiv U(s) H U^{\dagger}(s)
$$

Unitary Similarity Renormalization Group (SRG) transformation $=T+V^{2 \mathrm{~N}}(s)+V^{3 \mathrm{~N}}(s)+\ldots$

- Paramaterize the change of the Hamiltonian $\frac{d H(s)}{d s}=[\eta(s), H(s)]$

$$
H \equiv H_{\mathrm{D}}+H_{\mathrm{OD}} \square \eta(s) \equiv\left[H_{\mathrm{D}}, H(s)\right] \square \begin{aligned}
& \text { Anti-hermitian generator } \eta(s)=\frac{d U(s)}{d s} U^{\dagger}(s) \text { specifies the transformation } \\
& \frac{d}{d s} H(s)=0 \text { when }\left[H_{\mathrm{D}}, H(s)\right]=0
\end{aligned}
$$

- To tame short-range choose $H_{\mathrm{D}} \equiv T=$ diagonal in momentum space basis
- Do not go all the way to fixed point because $[\eta(s), H(s)]$ induces multi-body operators in $\boldsymbol{H}(\boldsymbol{s})$

Pre-processing of short-range correlations

1) Short-r repulsion
2) Bound np/Virtual nn

3) Dynamic corr. in UV
4) Strong static corr. in IR

2a) Pairing in SOS
2b) Collect. Quad. in DOS

1) Taming down the short-range/coupling to UV in the Hamiltonian

Unitary Similarity Renormalization Group (SRG) transformation

$$
\begin{aligned}
\frac{d H(s)}{d s} & =[\eta(s), H(s)] \\
\eta(s) & \equiv[T, H(s)]
\end{aligned}
$$

[Roth, Reinhardt, Hergert 2008]

Drastically accelerated convergence More perturbative behavior in the UV

Pre-processed nuclear many-body problem

Rather strong coupling to UV
Ex: $H_{\mathrm{N}^{2} \mathrm{LO}}=T+V_{\mathrm{N}^{2} \mathrm{LO}}^{2 \mathrm{~N}}+V_{\mathrm{N}^{2} \mathrm{LO}}^{3 \mathrm{~N}}+\varnothing$ because of the truncation of chiral-EFT expansion of the operator

Pre-processed nuclear many-body problem

$$
\begin{aligned}
& \rho_{k}^{\mathrm{JMNZ}}\left(\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}, \vec{r}_{4}\right) \equiv\left\langle\Psi_{k}^{\mathrm{JMNZ}}\right| c^{\dagger}\left(\vec{r}_{1}\right) c^{\dagger}\left(\vec{r}_{2}\right) c\left(\vec{r}_{3}\right) c\left(\vec{r}_{4}\right)\left|\Psi_{k}^{\mathrm{JMNZ}}\right\rangle \quad \text { Two-body density matrix } \\
& =\left\langle\Psi_{k}^{\mathrm{JMNZ}}(s)\right| U(s) c^{\dagger}\left(\vec{r}_{1}\right) c^{\dagger}\left(\vec{r}_{2}\right) c\left(\vec{r}_{3}\right) c\left(\vec{r}_{4}\right) U^{\dagger}(s)\left|\Psi_{k}^{\mathrm{JMNZ}}(s)\right\rangle \\
& \neq\left\langle\Psi_{k}^{\mathrm{JMNZ}}(s)\right| c^{\dagger}\left(\vec{r}_{1}\right) c^{\dagger}\left(\vec{r}_{2}\right) c\left(\vec{r}_{3}\right) c\left(\vec{r}_{4}\right)\left|\Psi_{k}^{\mathrm{JMNZ}}(s)\right\rangle \\
& \text { Sum of up to A-body operator/density matrices } \\
& \text { - discussion AV18 vs } \chi \text { EFT on tuesday }
\end{aligned}
$$

A-body Schrödinger Equation
«Soft » Hamiltonian
=
reduced coupling to UV

$$
\left.\left.H_{\mathrm{N}^{2} \mathrm{LO}}(s) \Psi_{k}^{\mathrm{JMNZ}}(s)\right\rangle=E_{k}^{\mathrm{JNZ}} \Psi_{k}^{\mathrm{JMNZ}}(s)\right\rangle
$$

A-body observables independent of s

Ex: $H_{\mathrm{N}^{2} \mathrm{LO}}(s)=T+V_{\mathrm{N}^{2} \mathrm{LO}}^{2 \mathrm{~N}}(s)+V_{\mathrm{N}^{2} \mathrm{LO}}^{3 \mathrm{~N}}(s)+\square$ to be tractable $\Rightarrow \frac{d}{d s} E_{k}^{\mathrm{JNZ}} \neq 0 \quad$ violate unitarity
Induced k-body forces (k \leq A)

SRG transformation is a compromised between

$$
\frac{d}{d s} E_{k}^{\mathrm{JNZ}} \sim 0
$$

© Reduction of coupling to UV
O Size of induced k-body interactions that cannot be handled

Contents

© Introduction to low-energy nuclear physics

- Phenomenology
- Rationale from the theoretical viewpoint
© Strong inter-nucleon forces
- Basic phenomenology and modelling
© The ab initio nuclear many-body problem
- Pre-processing short-range correlations
- Expansion methods handling both « weak/strong » dynamical/static correlations
- Nuclear deformation from ab initio calculations
© Conclusions

Categories of nuclei vs correlations vs expansion method

Table: Based on nuclear shells from a Hartree-Fock calculation of ${ }^{16} \mathrm{O}$. Courtesy of B. Bally.

Categories of nuclei vs correlations vs expansion method

Even-even nuclei	Number estimated	Percentage estimated		
Total	2075	100\%	Nuclei	Number
Doubly closed-(sub)shell	181	8.7%	Odd-even	4050
Singly open-(sub)shell	838	40.4\%-91.3\%	odd-odd	2014
Doubly open-(sub)shell	1056	50.9% ¢		

Table: Based on nuclear shells from a Hartree-Fock calculation of ${ }^{16} \mathrm{O}$. Courtesy of B. Bally.

Categories of nuclei vs correlations vs expansion method

Consistently (no double counting)
Efficiently (at reasonal polynomial cost)

Evolution of ab initio nuclear chart vs type of method

Dynamical/static correlations

One-body Hilbert space
$\mathcal{H}(1)$
$\operatorname{dim} \mathcal{H}(1) \equiv n_{\operatorname{dim}}$
$\operatorname{dim} \mathcal{H}(\mathrm{A}) \equiv n_{\mathrm{dim}}^{\mathrm{A}}$
« The curse of dimensionality "
n $n_{\text {dim }}$ 2000 basis $\$$ tates needed in mid mass
. onlv ~200 states DCS\&SOS thanks to AMC Full-fledged method, e.g. diagonalization

Evolution of ab initio nuclear chart vs type of method

Expansion methods

Evolution of ab initio nuclear chart vs type of method

\(\left.H\left|\Psi_{n}^{A}\right\rangle=\mathrm{E}_{n}^{A}\left|\Psi_{n}^{A}\right\rangle \begin{array}{c}One-body Hilbert space

\mathcal{H}(1)

\operatorname{dim} \mathcal{H}(1) \equiv n_{\operatorname{dim}}\end{array}\right) \quad\)| A-body Hilbert space |
| :---: |
| $\mathcal{H}_{\mathrm{A}}=\mathcal{H}(1) \otimes \ldots \otimes \mathcal{H}(\mathrm{A})$ |
| $\operatorname{dim} \mathcal{H}(\mathrm{A}) \equiv n_{\operatorname{dim}}^{\mathrm{A}}$ | | «The curse of
 dimensionality " |
| :--- |

Evolution of ab initio nuclear chart vs type of method

Expansion many-body methods: general rationale

Closed-shell systems

Slater determinant reference state and normal ordering

Slater determinant unperturbed state

$\left.b_{\alpha} \equiv \sum_{l} U_{l \alpha}^{*}\right\rangle_{l}\left|\Phi^{\mathrm{A}}\right\rangle \equiv \prod_{i=1}^{\mathrm{A}} b_{i}^{\dagger}|0\rangle \begin{aligned} & \text { Particle states } \mathrm{a}, \mathrm{b}, \mathrm{c} \ldots \\ & \text { Hole states } \mathrm{i}, \mathrm{j}, \ldots\end{aligned}, \quad \underbrace{\delta \frac{\left\langle\Phi^{\mathrm{A}}\right| H\left|\Phi^{\mathrm{A}}\right\rangle}{\left\langle\Phi^{\mathrm{A}} \mid \Phi^{\mathrm{A}}\right\rangle}=0}_{\text {HF one-body eigenvalue problem }}$

Normal ordering via Wick's theorem with respect to $\left|\Phi^{\mathrm{A}}\right\rangle$

$$
\begin{array}{rlrl}
H & \equiv \Lambda^{00} \\
& +\frac{1}{1!1!} \sum_{l_{1} l_{2}} \Lambda_{l_{1} l_{2}}^{11}: b_{l_{1}}^{\dagger} b_{l_{2}}: & \text { Anti-symmetric fields } \Lambda^{\text {ij function of }} \\
& +\frac{1}{2!2!} \sum_{p q} \bar{v}_{p q r s} \bar{w}_{p q r s t u} U_{p k} \\
& \Lambda_{l_{1} l_{1} l_{2} l_{3} l_{4}}^{22}: b_{l_{1}}^{\dagger} b_{l_{2}}^{\dagger} b_{l_{4}} b_{l_{3}}: &
\end{array}
$$

Six-index tensor Too expensive to handle

NO2B approximation 1-3\% error in closed shell [R. Roth et al., PRL 109 (2012) 052501]

Effective 2-body operators Captures essential of 3-body Many-body method with 2-body

Spherical coupled cluster expansion method

Slater determinant reference state

$$
\left|\Phi^{\mathrm{A}}\right\rangle \equiv \prod_{i=1}^{\mathrm{A}} b_{i}^{\dagger}|0\rangle
$$

CC ansatz

CC wave operator Ω
$\left|\Psi_{0}^{\mathrm{A}}\right\rangle \equiv e^{T^{\mathrm{A}}}\left|\Phi^{\mathrm{A}}\right\rangle$ with

$$
\left[\begin{array}{l}
T^{\mathrm{A}} \equiv \sum_{n=1}^{\mathrm{A}} T_{n}^{\mathrm{A}} \begin{array}{l}
\text { eluster amplitudes } T_{1}^{\mathrm{A}}|\Phi\rangle \rightarrow \mid \\
T_{n}^{\mathrm{A}} \equiv \frac{1}{(n!)^{2}} \sum_{i j k \ldots, \ldots, a b c \ldots} T_{i j k \ldots}^{a b c \ldots} b_{a}^{\dagger} b_{b}^{\dagger} b_{c}^{\dagger} \ldots b_{k} b_{j} b_{i}
\end{array}
\end{array}\right.
$$

Pure excitation operators

Energy and amplitude equations
$H\left|\Psi_{0}^{\mathrm{A}}\right\rangle=E_{0}^{\mathrm{A}}\left|\Psi_{0}^{\mathrm{A}}\right\rangle \leadsto \begin{aligned} & E_{0}^{\mathrm{A}}=\left\langle\Phi^{\mathrm{A}}\right| H e^{T^{\mathrm{A}}} \mid \Phi^{\mathrm{A}} \circlearrowright C \\ & 0=\left\langle\Phi^{\mu}\right| H e^{T^{\mathrm{A}}}\left|\Phi^{\mathrm{A}}\right\rangle_{C} \begin{array}{l}\text { Truncate, e.g. } \mathrm{TA}^{\mathrm{A}}=\mathrm{T}_{1}+\mathrm{T}_{2} \text { (CCSD) } \\ \text { Solve for n=1,2 }\end{array}\end{aligned}$ Connected $=$ terminating exponential

Ex: for the energy Algebraic expression through Wick's theorem/diagrammatic rules
$\uparrow E[p ;|q|]$

Open-shell systems - 1

$$
\begin{gathered}
H \\
{[H, R(\theta)]=0}
\end{gathered}
$$

What to do?

-can one keep the simplicity of a single-reference method? -if so, is there a price to play?

Open-shell

$$
H=H_{0}+H_{1} \quad\left[H_{0}, R(\theta)\right]=0
$$

Symmetry-conserving single-reference expansion

- state misses crucial IR static correlations
$H_{0}\left|\Theta^{(0)}\right\rangle=E^{(0)}\left|\Theta^{(0)}\right\rangle \quad\left|\Theta^{(0)}\right\rangle \equiv|\Phi\rangle(\mathrm{sHF}) \quad=\quad=\quad\left|\Phi_{h_{1} \cdots}^{p_{1} \cdots}\right\rangle$

$|\Psi\rangle=\Omega\left|\Theta^{(0)}\right\rangle$
$\mathrm{Ex}: \Delta E_{\mathrm{MBPT}}^{(2)}=-\frac{1}{4} \sum_{i j a b} \frac{\left|h_{i j a b}^{(2)}\right|^{2}}{e_{a}+e_{b}-e_{i}-e_{j}}=0$

Open-shell systems - 2

Open-shell systems - 2

$H_{0}\left|\Theta^{(0)}\right\rangle=E^{(0)}\left|\Theta^{(0)}\right\rangle\left|\Theta^{(0)}\right\rangle \equiv|\Phi(q)\rangle(\mathrm{dHFB})$

Non-degenerate unperturbed Bogoliubov state

dBMBPT, dBCC, dGSCGF...

Bogoliubov reference state and normal ordering

Bogoliubov reference state

Normal ordering via Wick's theorem with respect to $|\Phi\rangle$ in quasi-particle basis

$$
\begin{aligned}
& H \equiv \sum_{n=0}^{3} \sum_{i+j=2 n} \frac{1}{i!j!} \sum_{l_{1} \ldots l_{i+j}} H_{l_{1} \ldots l_{i+j}}^{i j} \beta_{k_{1}}^{\dagger} \ldots \beta_{k_{i}}^{\dagger} \beta_{k_{i+j}} \ldots \beta_{k_{i+1}} \\
& \mathrm{H}^{\mathrm{ij}} \text { matrix elements function of } \\
& \equiv H^{00}+\left[H^{20}+H^{11}+H^{02}\right]+\left[H^{40}+H^{31}+H^{22}+H^{13}+H^{04}\right]+\sum_{i+j=6} H^{i j} \\
& \equiv \sum_{n=0}^{2} H^{[2 n]}+H^{[6]} \quad 6 \text {-qp operators }
\end{aligned}
$$

Deformed Bogoliubov coupled cluster expansion method

Bogoliubov reference state

$$
|\Phi\rangle \equiv C \prod_{k} \beta_{k}|0\rangle
$$

Bogoliubov CC ansatz

Quasi-particle excitations

$$
\left|\Phi^{\mu}\right\rangle \equiv\left|\Phi^{k_{1} \ldots k_{2 n}}\right\rangle \equiv \beta_{k_{1}}^{\dagger} \ldots \beta_{k_{2 n}}^{\dagger}|\Phi\rangle
$$

Orthonormal basis of Fock space
Reduces to npnh excit. in closed-shell

Energy and amplitude equations

Pure excitation operators

$$
H\left|\Psi_{0}^{\mathrm{A}}\right\rangle=E_{0}^{\mathrm{A}}\left|\Psi_{0}^{\mathrm{A}}\right\rangle
$$

$$
A\left|\Psi_{0}^{\mathrm{A}}\right\rangle=\mathrm{A}\left|\Psi_{0}^{\mathrm{A}}\right\rangle
$$

$$
\begin{array}{c|c}
\langle\Phi| & E_{0}^{\mathbb{X}}=\langle\Phi| H e^{T} \mid \Phi \\
0=\left\langle\Phi^{\mu}\right| H e^{T}|\Phi\rangle_{C} \\
\left\langle\Phi^{\mu}\right| & \mathbb{X}=\langle\Phi| A e^{T}|\Phi\rangle_{C}
\end{array}
$$

$$
\text { Truncate, e.g. } T=T_{1}+T_{2} \text { (BCCSD) }
$$

$$
\text { Solve for } n=1,2
$$

Constrained to be true in average

Connected $=$ terminating exponential
Ex: for the energy Alqebraic expression through Wick's theorem/diagrammatic rules
$E_{0}^{\mathrm{K}}=H^{00}-\frac{1}{2} \sum_{k_{1} k_{2}} H_{k_{1} k_{2}}^{02} T_{k_{1} k_{2}}^{20}+\frac{1}{8} \sum_{k_{1} k_{2} k_{3} k_{4}} H_{k_{1} k_{2} k_{3} k_{4}}^{04} T_{k_{1} k_{2}}^{20} T_{k_{3} k_{4}}^{20}+\frac{1}{4!} \sum_{k_{1} k_{2} k_{3} k_{4}} H_{k_{1} k_{2} k_{3} k_{4}}^{04} T_{k_{1} k_{2} k_{3} k_{4}}^{40}$

Open-shell systems - 2

$H_{0}\left|\Theta^{(0)}\right\rangle=E^{(0)}\left|\Theta^{(0)}\right\rangle\left|\Theta^{(0)}\right\rangle \equiv|\Phi(q)\rangle(\mathrm{dHFB})$

$|\Psi\rangle=\Omega\left|\Theta^{(0)}\right\rangle$

dBMBPT, dBCC, dGSCGF...

1) Break - partition
2) Expand

Open-shell systems - 3

Particle-number projected BCC formalism

Projection operator on good \mathbf{A}

$$
P^{\mathrm{A}} \equiv \frac{1}{2 \pi} \int_{0}^{2 \pi} d \varphi e^{-i \mathrm{~A} \varphi} R(\varphi) \equiv e^{i A \varphi}
$$

Rotation is gauge space
Projected BCC ansatz
$\left|\Psi_{\mathrm{PBCC}}^{(\mathrm{A}}\right\rangle \equiv P^{\mathrm{A}}\left|\Psi_{\mathrm{BCC}}^{\infty}\right\rangle \quad$ Always true!

Rotated state
Thouless operator
$\langle\Phi(\varphi)|=\langle\Phi| R(\varphi)=\langle\Phi(\varphi) \mid \Phi\rangle\langle\Phi| e(\underline{Z(\varphi)}$
Known from (U,V, φ)
with $Z(\varphi) \equiv \frac{1}{2} \sum_{k_{1} k_{2}} Z_{k_{1} k_{2}}^{02}(\varphi) \beta_{k_{2}} \beta_{k_{1}}$
Pure de-excitation operator
Similarity transformed operator
Projected BCC energy

$$
O_{Z}(\varphi) \equiv e^{Z(\varphi)} O e^{-Z(\varphi)}
$$

Not a pure excitation operator..

$$
\text { with } \left\lvert\, \begin{aligned}
& \mathcal{N}(\varphi) \equiv\langle\Phi(\varphi)| e^{U}|\Phi\rangle=\langle\Phi(\varphi) \mid \Phi\rangle\langle\Phi| e^{U_{Z}(\varphi)}|\Phi\rangle \\
& \mathcal{H}(\varphi) \equiv\langle\Phi(\varphi)| H e^{U}|\Phi\rangle=\langle\Phi(\varphi) \mid \Phi\rangle\langle\Phi| H_{Z}(\varphi) e^{U_{Z}(\varphi)}|\Phi\rangle
\end{aligned}\right.
$$

Particle-number projected BCC formalism

Disentangled cluster operators
Disantengling the algebra to extract pure excitation terms

$$
\left.e^{U_{Z}(\varphi)}|\Phi\rangle \equiv e^{W(\varphi)}|\Phi\rangle \begin{array}{l}
\text { 1) Pure excitation operator BUT contains a constant term } \\
\text { 2) Allows algebraic expressions of kernels later on following standard steps } \\
\text { 3) Explicit relation between } \mathrm{W}(\varphi) \text { and } \mathrm{U}_{Z}(\varphi) \text { too complicated (need other approach) }
\end{array}\right]
$$

$$
W(\varphi)=\sum_{n=0} W_{n}(\varphi) \equiv \frac{W_{0}(\varphi)}{\text { Constant }}+\frac{\mathcal{T}(\varphi)}{\text { Standard cluster operator form }} \quad \text { with } \quad W_{n}(\varphi) \equiv \frac{1}{2 n!} \sum_{k_{1} \ldots k_{2 n}} W_{k_{1} \ldots k_{2 n}}^{2 n 0}(\varphi) \beta_{k_{1}}^{\dagger} \ldots \beta_{k_{2 n}}^{\dagger}
$$

Connected kernels and PBCC energy

$$
\begin{aligned}
\mathcal{N}(\varphi) & \equiv e^{W_{0}(\varphi)}\langle\Phi(\varphi) \mid \Phi\rangle \\
h(\varphi) & \equiv \frac{\mathcal{H}(\varphi)}{\mathcal{N}(\varphi)}=\langle\Phi| H_{Z}(\varphi) e^{\mathcal{T}(\varphi)}|\Phi\rangle_{C}
\end{aligned}
$$

$$
E^{\mathrm{A}}=\frac{\int_{0}^{2 \pi} d \varphi e^{-i \mathrm{~A} \varphi} h(\varphi) \mathcal{N}(\varphi)}{\int_{0}^{2 \pi} d \varphi e^{-i \mathrm{~A} \varphi} \mathcal{N}(\varphi)}
$$

[Duguet, Signoracci JPG 2016] [Qiu et al. PRC 2019]

1) Reduction to BCC

But how to determine $\mathbf{W}(\varphi)$?

Norm kernel determined by $\mathrm{W}_{0}(\varphi)$
Connected part of energy kernel determined by $\mathcal{J}(\varphi)$ Same algebraic/terminating form as standard BCC kernel!

$$
\begin{gathered}
\varphi=0 \text { in } h(\varphi) \\
E^{\mathrm{A}}=\langle\Phi| H e^{U}|\Phi\rangle_{C}
\end{gathered}
$$

2) Reduction to PHFB

$W(\varphi)=0$
$\mathcal{N}^{\mathrm{PHFB}}(\varphi) \equiv\langle\Phi(\varphi) \mid \Phi\rangle$
$h^{\mathrm{PHFB}}(\varphi)=\langle\Phi| H_{Z}(\varphi)|\Phi\rangle_{C}$

Particle-number projected BCC formalism

Gauge-rotated cluster amplitudes $\mathrm{W}_{\mathrm{k}}(\varphi)$

$\frac{d}{d \varphi} \downarrow$
$\left\langle\Phi^{\mu}\right| \nabla$

Initial conditions

$$
e^{Z(\varphi)} e^{U}|\Phi\rangle=e^{W(\varphi)}|\Phi\rangle
$$

$$
\begin{aligned}
\frac{d}{d \varphi} W_{0}(\varphi) & =\frac{i}{2} \sum_{k_{1} k_{2}}^{A_{k_{1} k_{2}}^{02}(\varphi)} W_{k_{1} k_{2}}(\varphi) \\
\frac{d}{d \varphi} W_{k_{1} k_{2}}(\varphi) & =i \sum_{k_{3} k_{4}} A_{k_{3} k_{4}}^{02}(\varphi)\left[\frac{1}{2} W_{k_{3} k_{4} k_{1} k_{2}}(\varphi)\right.
\end{aligned}
$$

Coupled ordinary differential equations

Kernel of particle number operator $=$ generator of $U(1)$

$$
W_{0}(0)=0
$$

$$
\left.-W_{k_{1} k_{3}}(\varphi) W_{k_{2} k_{4}}(\varphi)\right]
$$

$$
W_{k}(0)=U_{k}
$$

Even when U truncated

Second truncation on $\mathrm{W}_{\mathrm{k}}(\varphi)$

$$
\begin{aligned}
& +W_{k_{1} k_{5}}(\varphi) W_{k_{6} k_{2} k_{3} k_{4}}(\varphi) \\
& +W_{k_{2} k_{5}}(\varphi) W_{k_{1} k_{6} k_{3} k_{4}}(\varphi) \\
& +W_{k_{3} k_{5}}(\varphi) W_{k_{1} k_{2} k_{6} k_{4}}(\varphi) \\
& \left.+W_{k_{4} k_{5}}(\varphi) W_{k_{1} k_{2} k_{3} k_{6}}(\varphi)\right]
\end{aligned}
$$

Open-shell systems - 3

Open-shell systems - 4

$$
\begin{gathered}
H \\
{[H, R(\theta)]=0} \\
H|\Psi\rangle=E|\Psi\rangle
\end{gathered}
$$

Open-shell

$H_{0}\left|\Theta^{(0)}\right\rangle=E^{(0)}\left|\Theta^{(0)}\right\rangle\left|\Theta^{(0)}\right\rangle \equiv \sum_{I \in \mathcal{P}} c_{I}\left|\Phi^{I}(0)\right\rangle(\mathrm{MC})$

MCPT

Final requirements for unperturbed state

- Handles degeneracy
- Preserves symmetry
- Low dimensionality

Open-shell systems - 4

Open-shell systems - 4

Selected references

Symmetry-breaking single-reference expansion methods

$\left.\begin{array}{ll}\text { GSCGF } & \text { [V. Somà, T. Duguet, C. Barbieri, PRC } 84 \text { (2011) 064317] } \\ & \text { [V. Somà, A. Cipollone, C. Barbieri, P. Navratil, T. Duguet, PRC } 89 \text { (2014) 061301] } \\ \text { [C. Barbieri, T. Duguet, V. Somà, PRC } 105 \text { (2022) 044330] }\end{array}\right\}$

Symmetry-breaking and restored single-reference expansion methods

PBMBPT [T. Duguet, JPG 42 (2015) 025107]
PBCC [T. Duguet, A. Signoracci, JPG 44 (2016) 015103]
[Y. Qiu, T. M. Henderson, J. Zhao, and G. E. Scuseria, JCP 147 (2017) 064111]
[Y. Qiu, T. M. Henderson, T. Duguet, G. E. Scuseria, PRC 99 (2019) 044301]
[G. Hagen, S. J. Novario, Z. H. Sun, T. Papenbrock, G. R. Jansen, J. G. Lietz, T. Duguet, A. Tichai, PRC 105 (2022) 064311]

Symmetry-conserving multi-reference expansion method

PGCM-PT [M. Frosini, T. Duguet, J.-P. Ebran, V. Somà, EPJA 58 (2022) 62]
[M. Frosini, T. Duguet, J.-P. Ebran, B. Bally, T. Mongelli, T. R. Rodriguez, R. Roth, V. Somà, EPJA 58 (2022) 63]
[M. Frosini, T. Duguet, J.-P. Ebran, B. Bally, H. Hergert, T. R. Rodriguez, R. Roth, J. M. Yao, V. Somà, EPJA 58 (2022) 64]

Contents

© Introduction to low-energy nuclear physics

- Phenomenology
- Rationale from the theoretical viewpoint
© Strong inter-nucleon forces
- Basic phenomenology and modelling
© The ab initio nuclear many-body problem
- Pre-processing short-range correlations
- Expansion methods handling both «weak/strong» dynamical/static correlations
- Nuclear deformation from ab initio calculations
© Conclusions

Rotational properties: from experiment to theory

I. The phenomenology

Absehr Noble patterns
Observable patterns

- Set of state-
- Strong E2 1

- Happens fc

II. The symmetry $S U(2) \equiv\left\{R(\Omega), \Omega \in D_{S U(2)}\right\}$

Symmetry
$[H, R(\Omega)]=0\left\{\begin{array}{l}H\left|\Psi_{n}^{J M}\right\rangle=E_{n}^{J}\left|\Psi_{n}^{J M}\right\rangle \\ \left\langle\Psi_{n}^{J M}\right| T_{\mu}^{\lambda}\left|\Psi_{n^{\prime}}^{J^{\prime} M^{\prime}}\right\rangle \equiv\left(J M \lambda \mu \mid J^{\prime} M^{\prime}\right)\langle J \\ \text { IRREP }\left\langle\Psi_{n}^{J M}\right| R(\Omega)\left|\Psi_{n^{\prime}}^{J^{\prime} M^{\prime}}\right\rangle \equiv \delta_{n n^{\prime}} \delta_{J J^{\prime}} D_{M M^{\prime}}^{J}(\Omega)\end{array}\right.$
Observable patterns dictated by SU(2) symmetry

Ab initio nuclear A-body problem viewpoint

Do rotational properties emerge from basic interactions between the nucleons?
III. The moo $>$ Non-trivial as B < energy scale for individual excitations $-2 N(+3 N)$ are adjusted on 2-body (+3-body) systems

Features $\quad E_{n}^{J}=E_{0}^{J}+B J(J+1) \quad$ with $\quad B \equiv^{2} / 2 I$
$Q(J)=\left[3 K^{2}-J(J+1)\right][(J+1)(2 J+3)]^{-} Q_{0}$
$B\left(E 2 ; J \rightarrow J^{\prime}\right)=5(16 \pi)^{-1}\left(J K 20 \mid J^{\prime} K\right)\left(e Q_{0}\right)^{2}$

Lessons

- Links a specific subset of states together
- Excellent account of idealized patterns
- Built in separation of rotational degrees of freedom
- Disturbed by coupling of rot. to vib. and ind. dynamics
s not fully realized
Similar for other symmetries of H Emerging lower ~Sp(3,R) symmetry

1) Spontaneous breaking of $\operatorname{SU}(2)$

GS has lower symmetry than H GS = wave packet mixing IRREPs Goldstone boson = rotations Higgs modes $=$ vibrations
|q
2) Finite system = breaking only emergent

- SU(2) symmetry actually satisfied Lower symmetry imprints excitations Rotational bands and transitions

Ab initio many-body methods: rotational properties

$$
H\left|\Psi_{n}^{J M}\right\rangle=E_{n}^{J}\left|\Psi_{n}^{J M}\right\rangle
$$

1) ${ }^{8} \mathrm{Be}[2015]$

- No-core shell model
- Symmetry conserving

No-core shell model calculation of ${ }^{8} \mathrm{Be}$ isotopes

[M.A. Caprio et al., JMPE 24 (2015) 1541002]

${ }^{8} \mathrm{Be}$ at $\mathrm{N}_{\text {max }}=10 \sim 2.10^{8}$ matrix dimension!
 Cl expansion over basis of symmetry conserving SD

$$
\left|\Psi_{0}^{N}\right\rangle=|\Phi\rangle+\sum_{a i}\left(C_{i}^{a}(0) \Phi_{i}^{a}\right\rangle+\left(\frac{1}{2!}\right)^{2} \sum_{a b i j}\left(C_{i j}^{a b}(0)\left|\Phi_{i j}^{a b}\right\rangle+\left(\frac{1}{3!}\right)^{2} \sum_{a b c i j k} C_{i j k}^{a b b}(0)\left|\Phi_{i j k}^{a b c}\right\rangle+\ldots\right.
$$

No-core shell model calculation of ${ }^{8} \mathrm{Be}$ isotopes

[M.A. Caprio et al., JMPE 24 (2015) 1541002]
Yrast positive parity band $\quad J_{\max }=4$ in pure p shell

No core shell model calculation of ${ }^{8} \mathrm{Be}$

Two-nucleon interactions

$>$ Chiral $2 \mathrm{~N}\left(\mathrm{~N}^{2} \mathrm{LO} ; \Lambda_{2 \mathrm{NF}}=500 \mathrm{MeV} / \mathrm{c}\right)$
[Ekstrom et al. , PRL 110 (2013) 192502]

Results

Rotational behavior emerge convincingly

- Energies, E2/M1 moments and transitions
- Converged quadrupole strength ratios (absolute moment unsettled)
- Null spin contribution to $\mu(\mathrm{J})$ consistent with α-clustering
- Similar for (un)natural parity/excited bands in ${ }^{7,9} \mathrm{Be}$ (not shown)

Robust against (modest) variation of 2N interaction (not shown)

Perpectives

> Check in non-ideal rotor nuclei
Add 3 N interaction + test at various NkLO orders

Ab initio many-body methods: rotational properties

$$
H\left|\Psi_{n}^{J M}\right\rangle=E_{n}^{J}\left|\Psi_{n}^{J M}\right\rangle
$$

Valence-space shell model calculation of ${ }^{20} \mathrm{Ne}$ and ${ }^{24} \mathrm{Mg}$

[S. R. Stroberg et al., PRC93 (2016) 051301]

Inter-nucleon interactions
$>$ Chiral 2N (${ }^{3} \mathrm{LO} ; \Lambda_{2 \mathrm{NF}}=500 \mathrm{MeV} / \mathrm{c}$)
[D.R. Entem, R. Machleidt, PRC 68, 041001 (2003)]
$>$ Chiral 3N ($\mathrm{N}^{2} \mathrm{LO}$; $\Lambda_{3 \mathrm{NF}}=400 \mathrm{MeV} / \mathrm{c}$)
[P. Navratil, FBS 41, 117 (2007)]
$>$ SRG evolved down to $\lambda=2.0 \mathrm{fm}^{-1}$

Perpectives

$>$ Check in non-ideal rotor nuclei
$>$ Various EFT orders and uncertainty propagation
$>$ Investigate E2/M1 moments and transitions

Yrast spectroscopy of ideal rotor nuclei

Results

$>$ Rotational bands emerge convincingly
> Quantitatively as good as empirical model
> Insensitive to 3N interaction at low spins
Unlike overall spectroscopy in sd shell

Similarly for CC-based valence-space shell model [G. Hagen et al., Phys. Scr. 91 (2016) 063006]

Ab initio many-body methods: rotational properties

$$
H\left|\Psi_{n}^{J M}\right\rangle=E_{n}^{J}\left|\Psi_{n}^{J M}\right\rangle
$$

1) ${ }^{8} \mathrm{Be}[2015]$

- No-core shell model
- Symmetry conserving

$\mathrm{SU}(2)$ broken \&restored CC calculation of ${ }^{20} \mathrm{Ne}$ and ${ }^{34} \mathrm{Mg}$

[T.Duguet. JPG 42 (2015) 025107]
[G. Hagen et al., PRC 105, 064311 (2022)]

Two-nucleon interactions
$>$ Chiral 2N ($\mathrm{N}^{2} \mathrm{LO}$; $\Lambda_{2 \mathrm{NF}}=500 \mathrm{MeV} / \mathrm{c}$)
[Ekstrom et al., PRL 110 (2013) 192502]

Results

Perpectives

$>$ Inclusion of 3N interaction (done)
$>$ Better "bra state" (done)
$>$ Check in non-ideal rotor nuclei
$>$ EFT orders and uncertainty propagation
$>$ E2/M1 moments and transitions

Low-lying rotational states consistently described

- vs NCSM benchmark and experiment
-vs LO=RRM (+uncertainty) of EFT for deformed nuclei
[T. Papenbrock, NPA 852, 36 (2011)]
Dynamical correlations
- strongly impact absolute energies
- only slightly increase moment of inertia in ${ }^{20} \mathrm{Ne}$
-impact ${ }^{34} \mathrm{Mg}$ more significantly

Ab initio many-body methods: rotational properties

$$
H\left|\Psi_{n}^{J M}\right\rangle=E_{n}^{J}\left|\Psi_{n}^{J M}\right\rangle
$$

1) ${ }^{8} \mathrm{Be}[2015]$

- No-core shell model
- Symmetry conserving

PGCM-PT calculation of ${ }^{20} \mathrm{Ne}$

Inter-nucleon interactions
$>$ Chiral $2 \mathrm{~N}\left(\mathrm{~N}^{3} \mathrm{LO}\right) \lambda_{\mathrm{SRG}}=1.8 \mathrm{fm}^{-1}$
$>$ Chiral 3N ($\mathrm{N}^{2} \mathrm{LO} ; \Lambda_{3 \mathrm{NF}}=2.0 \mathrm{fm}^{-1}$)
[K. Hebeler et al.. PRC 83, 031301 (2011)]

Results

Low-lying rotational states

- consistently emerge
- reproduce well experimental data Dynamical correlations
- strongly impact absolute energies
- do not impact moment of inertia in ${ }^{20} \mathrm{Ne}$

Long-term perspectives of ab initio methods

Emergence from nucleons and their interactions?

- Binding, size, limit of existence, collectivity, superfluidity...

Limits of such a description with A/in accuracy?

- Modified ab initio effective theory when A increases?
- More effective but explicitly connected approaches?

Detailed and systematic description of nuclei

Rotational properties

* Dominance of prolate over oblate?
* Superdeformation?
* Physics of transitional nuclei?
* Shape coexistence phenomenon?
* New features?

Contents

© Introduction to low-energy nuclear physics

- Phenomenology
- Rationale from the theoretical viewpoint
© Strong inter-nucleon forces
- Basic phenomenology and modelling
© The ab initio nuclear many-body problem
- Pre-processing short-range correlations
- Expansion methods handling both «weak/strong» dynamical/static correlations
- Nuclear deformation from ab initio calculations
© Conclusions

Conclusions

