

The State University of New York

The isobar collisions at RHIC : a tool for precision studies

Jiangyong Jia

BROOKHAVEN

Office of Science | U.S. Department of Energy

Brookhaven National Laboratory

9/21/2022 ESNT

High-energy heavy ion collision

provides competitive constraints on nuclear shape and radial profile?

From nuclear structure to Quark Gluon Plasma

Shape-flow transmutation via pressure-gradient force:

From nuclear structure to Quark Gluon Plasma

Linear corr. between initial & final state

nice correlation at very high energy breaks down at low energy

5

Long-range collective structure of nuclei ⁶

How deformation influence HI initial state

How deformation influence HI initial state

8

• $\mathbf{\mathcal{E}}_{\mathsf{n}}$ has the form $\epsilon_n = \epsilon_{n;0} + \sum_{m=2}^{4} \underbrace{p_{n;m}(\Omega_1, \Omega_2)}_{\text{phase factor}} \beta_m + \mathcal{O}(\beta^2)$ undeformed $\mathcal{E}_n = \epsilon_n e^{in\Phi} \propto \langle \mathbf{r}^2 Y_{n,n} \rangle$

•
$$R_{\perp}^2 = \langle x^2 \rangle + \langle y^2 \rangle$$
 has the form $\delta d_{\perp}/d_{\perp} = \delta_d + \sum_{m=2}^4 p_{0;m}(\Omega_1, \Omega_2)\beta_m + \mathcal{O}(\beta^2)$
 $d_{\perp} \equiv 1/R_{\perp}$ $R_{\perp}^2 \propto \langle r^2 Y_{2,0} \rangle$

• Two particle correlation (two-body distribution)

$$\langle \varepsilon_n^2 \rangle \approx \langle \varepsilon_{n;0}^2 \rangle + \sum_m \langle \boldsymbol{p}_{n;m} \boldsymbol{p}_{n;m}^* \rangle \beta_m^2 \qquad \left\langle \left(\frac{\delta d_\perp}{d_\perp} \right)^2 \right\rangle \approx \langle \delta_d^2 \rangle + \sum_m \langle p_{0;m}^2 \rangle \beta_m^2$$

• In reality for medium size nucleus and ignore β_4 .

$$\left\langle \varepsilon_{2}^{2} \right\rangle = a_{2}' + b_{2}' \beta_{2}^{2} + b_{2,3}' \beta_{3}^{2} \quad \left\langle \varepsilon_{3}^{2} \right\rangle = a_{3}' + b_{3}' \beta_{3}^{2}$$
$$\left| \left(\delta d_{\perp} / d_{\perp} \right)^{2} \right\rangle = a_{0}' + b_{0}' \beta_{2}^{2} + b_{0,3}' \beta_{3}^{2}$$

Glauber simulation

See 2106.08768

9

Application in ¹⁹⁷Au+¹⁹⁷Au vs ²³⁸U+²³⁸U 10 arXiv:2105.01638 Ultra-central Collisions at $\begin{cases} v_{2,\mathrm{Au}}^2 = a_{\mathrm{Au}} + b\beta_{2,\mathrm{Au}}^2 \\ v_{2,\mathrm{II}}^2 = a_{\mathrm{U}} + b\beta_{2,\mathrm{II}}^2 \end{cases}$ b~0.014 Need to correct for slightly different size: $a \propto 1/A$, $r_a = \frac{a_{Au}}{a_{II}} = \frac{238}{197} = 1.21$ A linear relation for β_{2U} and β_{2Au} : $\beta_U^2 = \frac{r_{v_2^2}r_a - 1}{b/a_{TT}} + r_{v_2^2}\beta_{Au}^2$ $r_{v_2^2} = \frac{v_{2,U}^2}{v_{2,Au}^2}$ 10 $\beta_{\rm U}^2$ $\langle v_2^2 \rangle$ 0.08 β₁=0.29 nuclear structure 0.06 **STAR** Preliminary 0-1% centrality - Au+Au 200 GeV 0.04 10^{-3} ו_{Au}=0.14 Hydro expectation Total uncertainty 0.02 0.2<p₇<2 GeV, 0.1<-η_a,η_c> 0.03 0.04 β_{2Au}=0.18 0.02 0.01 β^2_{Au} 0 20 60

Suggests $|\beta_2|_{Au} \sim 0.18 + 0.02$, larger than NS model of 0.13+-0.02

Centrality [%]

But how to achieve precision?

Isobar collisions at RHIC: context

- Designed to search for the chiral magnetic effect: strong P & CP violation in the presence of EM field. Experimental signature is a spontaneous separation of + and - hadrons along EM direction, vertical to *E*₂
- Turns out the CME signal is small, and isobar-differences are dominated by the nuclear structure differences.
- and turns out to be a precision tool for both NS physics & HI initial condition

Isobar collisions at RHIC/STAR

RHIC Running

• Switch isobar species each time beam is inserted into RHIC

From J Drachenberg

- Stable luminosity (matched between species) with long (~20 hour) beam circulation time
- Adjust and level luminosity to optimize data collection rate while minimizing backgrounds and systematics
- Restrict species-related information to those necessary for successful data-taking
- Calibration experts (recused from CME analyses) evaluate data quality "in real time"

STAR Data Acquisition Rates

<0.4% precision is achieved in ratio of many observables between ${}^{96}Ru + {}^{96}Ru$ and ${}^{96}Zr + {}^{96}Zr$ systems \rightarrow precision imaging tool

Isobar collisions as a precision tool

• A key question for any HI observable **O**:

$$egin{aligned} rac{O_{96}{
m Ru}+^{96}{
m Ru}}{O_{96}{
m Zr}+^{96}{
m Zr}} \stackrel{?}{=} 1 \end{aligned}$$

Deviation from 1 must has origin in the nuclear structure, which impacts the initial state and then survives to the final state.

Expectation

$ ho(r, heta,\phi) \propto$	1
	$1 + e^{[r - R_0 (1 + \beta_2 Y_2^0(\theta, \phi) + \beta_3 Y_3^0(\theta, \phi))]/a_0}$

$$\mathcal{O} \approx b_0 + b_1 \beta_2^2 + b_2 \beta_3^2 + b_3 (R_0 - R_{0,\text{ref}}) + b_4 (a - a_{\text{ref}})$$

$$R_{\mathcal{O}} \equiv \frac{\mathcal{O}_{\mathrm{Ru}}}{\mathcal{O}_{\mathrm{Zr}}} \approx 1 + c_1 \Delta \beta_2^2 + c_2 \Delta \beta_3^2 + c_3 \Delta R_0 + c_4 \Delta a$$

Species	β_2	eta_3	a_0	R_0
Ru	0.162	0	$0.46~\mathrm{fm}$	$5.09~\mathrm{fm}$
Zr	0.06	0.20	$0.52~\mathrm{fm}$	5.02 fm
difference	$\Delta \beta_2^2$	$\Delta \beta_3^2$	Δa_0	ΔR_0
unicicnee	0.0226	-0.04	-0.06 fm	0.07 fm

Only probes isobar differences

2109.00131

Structure influences everywhere

 $\mathcal{O}_{\mathrm{Ru}}$

 $R_{\mathcal{O}} \equiv$

Separating shape and size effects

Separating shape and size effects

22

Nuclear structure via $p(N_{ch})$, <pT>-ratio²³

Relating to neutron skin: $\Delta r_{np} = \langle r_n \rangle^{1/2} - \langle r_p \rangle^{1/2}$

$$\Delta r_{np}pprox rac{\left\langle r^2
ight
angle - \left\langle r_p^2
ight
angle}{\sqrt{\left\langle r^2
ight
angle}(\delta+1)}$$
 arXiv:2111.15559 δ = $(N-Z)/A$

Neutron skin Δ_{np} expressed by R_0 and a_0 for nucleons and protons:

$$R_{\mathcal{O}} \equiv \frac{\mathcal{O}_{\mathrm{Ru}}}{\mathcal{O}_{\mathrm{Zr}}} \approx 1 + c_1 \Delta \beta_2^2 + c_2 \Delta \beta_3^2 + c_3 \Delta R_0 + c_4 \Delta a$$

For Woods-Saxon:

$$egin{aligned} &\left\langle r^2
ight
angle &pprox \left(rac{3}{5}R_0^2+rac{7}{5}\pi^2a^2
ight) \ &\left\langle r_p^2
ight
angle &pprox \left(rac{3}{5}R_{0,p}^2+rac{7}{5}\pi^2a_p^2
ight) \end{aligned}$$

Relating to neutron skin: $\Delta r_{np} = \langle r_n \rangle^{1/2} - \langle r_p \rangle^{1/2}$ ²⁵

$$\Delta r_{np}pprox rac{\left\langle r^2
ight
angle - \left\langle r_p^2
ight
angle}{\sqrt{\left\langle r^2
ight
angle}(\delta+1)}$$
 arXiv:2111.15559 δ = $(N-Z)/A$

Neutron skin Δ_{np} expressed by R_0 and a_0 for nucleons and protons:

$$egin{aligned} &\left\langle r^2
ight
angle &pprox \left(rac{3}{5}R_0^2+rac{7}{5}\pi^2a^2
ight) \ &\left\langle r_p^2
ight
angle &pprox \left(rac{3}{5}R_{0,p}^2+rac{7}{5}\pi^2a_p^2
ight) \end{aligned}$$

$$R_{\mathcal{O}} \equiv \frac{\mathcal{O}_{\mathrm{Ru}}}{\mathcal{O}_{\mathrm{Zr}}} \approx 1 + c_1 \Delta \beta_2^2 + c_2 \Delta \beta_3^2 + c_3 \Delta R_0 + c_4 \Delta a$$

Isobar collision measure "difference of neutron skin" from $\Delta R_0 \Delta a$ for nucleons, and known $\Delta R_0 \Delta a$ for protons:

$$\Delta(\Delta r_{np}) = \Delta r_{np,1} - \Delta r_{np,2} \approx \frac{\Delta Y - \frac{7\pi^2}{3} \frac{\bar{a}^2}{\bar{R}_0^2} \left(\frac{\Delta Y}{2} + \bar{Y}\left(\frac{\Delta a}{\bar{a}} - \frac{\Delta R_0}{\bar{R}_0}\right)\right)}{\sqrt{15}\bar{R}_0 \left(1 + \bar{\delta}\right)}$$

$$\Delta x = x_1 - x_2 \qquad V = 2\left(D^2 - D^2\right) \cdot 7 - 2\left(-2 - 2\right)$$

$$\frac{\Delta x - x_1 - x_2}{\bar{x} = (x_1 + x_2)/2} \quad Y \equiv 3(R_0^2 - R_{0,p}^2) + 7\pi^2 (a^2 - a_p^2)$$

Directly peeling off the skin matter

Similar to low energy fragmentation reaction

 Spectator neutrons in ultra-central isobar collisions is enhanced by neutron skin
 N.Kozyrev, I. Pshenichnov 2204.07189

L. Liu, J. Xu et.al 2203.09924

Complete separation between participant and spectator matter

26

Isobar ratios not affected by final state ²⁷

- Vary the shear viscosity via partonic cross-section
 - Flow signal change by 30-50%, the v_n ratio unchanged.

initial state!

Initial condition

Nucleus

0.03

(b)

(a)

Isobar to constrain initial condition

Use nuclear structure as extra lever-arm for initial condition

Low-energy vs high-energy HI method

• Shape from B(En), radial profile from e+A or ion-A scattering

Shape frozen in crossing time (<10⁻²⁴s), probe entire mass distribution via multi-point correlations.

Collective flow response to nuclear structure

$$S(\mathbf{s}_1, \mathbf{s}_2) \equiv \langle \delta \rho(\mathbf{s}_1) \delta \rho(\mathbf{s}_2) \rangle \\ = \langle \rho(\mathbf{s}_1) \rho(\mathbf{s}_2) \rangle - \langle \rho(\mathbf{s}_1) \rangle \langle \rho(\mathbf{s}_2) \rangle.$$

higher-order correlations

In principle, can measure any moments of $p(1/R, \varepsilon_2, \varepsilon_3...)$

- Mean $\langle d_{\perp} \rangle$ • Variances: $\langle \varepsilon_n^2 \rangle$, $\langle (\delta d_\perp/d_\perp)^2 \rangle$ $d_\perp \equiv 1/R_\perp$ • Skewness $\langle \varepsilon_n^2 \delta d_\perp/d_\perp \rangle$, $\langle (\delta d_\perp/d_\perp)^3 \rangle$ $\langle v_n^2 \delta p_T/p_T \rangle$, $\langle (\delta p_T/p_T)^2 \rangle$
- Kurtosis $\langle \varepsilon_n^4 \rangle 2 \langle \varepsilon_n^2 \rangle^2, \langle (\delta d_\perp/d_\perp)^4 \rangle 3 \langle (\delta d_\perp/d_\perp)^2 \rangle^2 \langle v_n^4 \rangle 2 \langle v_n^2 \rangle^2, \langle (\delta p_{\rm T}/p_{\rm T})^4 \rangle 3 \langle (\delta p_{\rm T}/p_{\rm T})^2 \rangle^2$. . .
- All with rather simple expressions, for example:

Skewness

$$egin{aligned} &\left\langle arepsilon_2^2 \delta d_\perp / d_\perp
ight
angle &\sim a_1 - b_1 \cos(3\gamma) eta_2^3 \ &\left\langle \left(\delta d_\perp / d_\perp
ight)^3
ight
angle &\sim a_2 + b_2 \cos(3\gamma) eta_2^3 \end{aligned}$$

Kurtosis

$$\left\langle \varepsilon_{2}^{4} \right\rangle - 2 \left\langle \varepsilon_{2}^{2} \right\rangle^{2} \sim a_{3} - b_{3}\beta_{2}^{4}$$
$$\left\langle \left(\delta d_{\perp}/d_{\perp} \right)^{4} \right\rangle - 3 \left\langle \left(\delta d_{\perp}/d_{\perp} \right)^{2} \right\rangle^{2} \sim a_{4} - b_{4}\beta_{2}^{4}$$

Liquid-drop model estimate in head-on collisions

1811.03959, 2109.00604

Estimate with liquid drop model \rightarrow Nucleus with a sharp surface: $\rho(r, \theta, \phi) = \begin{cases} 1 & r < R(\theta, \phi) \\ 0 & r > R(\theta, \phi) \end{cases}$ UCC collisions and ignoring nucleon fluctuations \rightarrow $\frac{\delta d_{\perp}}{d_{\perp}} = \sqrt{\frac{5}{16\pi}\beta_2} \left(\cos\gamma D_{0,0}^2 + \frac{\sin\gamma}{\sqrt{2}} \left[D_{0,2}^2 + D_{0,-2}^2\right]\right), \ \epsilon_2 = -\sqrt{\frac{15}{2\pi}\beta_2} \left(\cos\gamma D_{2,0}^2 + \frac{\sin\gamma}{\sqrt{2}} \left[D_{2,2}^2 + D_{2,-2}^2\right]\right)$ $\left\langle \varepsilon_{2}^{2} \right\rangle = \frac{3}{4\pi} \beta_{2}^{2}$ $\left< \left(\delta d_\perp / d_\perp
ight)^2 \right> = rac{1}{32\pi} eta_2^2$ $\left|\left\langle \varepsilon_{2}^{2}(\delta d_{\perp}/d_{\perp})^{2}
ight
angle -\left\langle \varepsilon_{2}^{2}
ight
angle \left\langle (\delta d_{\perp}/d_{\perp})^{2}
ight
angle$ $\langle (\delta d_{\perp}/d_{\perp})^3 \rangle$ $\langle \varepsilon_2^2(\delta d_\perp/d_\perp) \rangle$ $\frac{\sqrt{5}}{896\pi^{3/2}}\cos(3\gamma)\beta_2^3$ $-\frac{3\sqrt{5}}{112\pi^{3/2}}\cos(3\gamma)\beta_2^3$ $-\frac{3}{896\pi^2}\beta_2^4$

 $\frac{\left\langle \left(\delta d_{\perp}/d_{\perp}\right)^{4}\right\rangle - 3\left\langle \left(\delta d_{\perp}/d_{\perp}\right)^{2}\right\rangle^{2}}{-\frac{3}{7168\pi^{2}}\beta_{2}^{4}} \qquad \left\langle \varepsilon_{2}^{4}\right\rangle - 2\left\langle \varepsilon_{2}^{2}\right\rangle^{2} \qquad \left(\left\langle \varepsilon_{2}^{6}\right\rangle - 9\left\langle \varepsilon_{2}^{4}\right\rangle \left\langle \varepsilon_{2}^{2}\right\rangle + 12\left\langle \varepsilon_{2}^{2}\right\rangle^{3}\right)/4}{\frac{27(373 - 25\cos(6\gamma))}{32 \times 8008\pi^{3}}\beta_{2}^{6}}$

Prolate

$$\beta_{2} = 0.25, \cos(3\gamma) = 1$$

$$ip-tip$$

$$body-body$$

$$F(\theta, \phi) = R_{0} \left(1 + \beta_{2} \left[\cos \gamma Y_{2,0} + \sin \gamma Y_{2,2}\right] + \sin \gamma Y_{2,2} \right]$$

$$f(\theta, \phi) = R_{0} \left(1 + \beta_{2} \left[\cos \gamma Y_{2,0} + \sin \gamma Y_{2,2}\right] + \sin \gamma Y_{2,2} \right]$$

$$f(\theta, \phi) = R_{0} \left(1 + \beta_{2} \left[\cos \gamma Y_{2,0} + \sin \gamma Y_{2,2}\right] + \sin \gamma Y_{2,2} \right]$$

$$f(\theta, \phi) = R_{0} \left(1 + \beta_{2} \left[\cos \gamma Y_{2,0} + \sin \gamma Y_{2,2}\right] + \sin \gamma Y_{2,2} \right]$$

$$f(\theta, \phi) = R_{0} \left(1 + \beta_{2} \left[\cos \gamma Y_{2,0} + \sin \gamma Y_{2,2}\right] + \sin \gamma Y_{2,2} \right]$$

$$f(\theta, \phi) = R_{0} \left(1 + \beta_{2} \left[\cos \gamma Y_{2,0} + \sin \gamma Y_{2,2}\right] + \sin \gamma Y_{2,2} \right]$$

$$f(\theta, \phi) = R_{0} \left(1 + \beta_{2} \left[\cos \gamma Y_{2,0} + \sin \gamma Y_{2,2}\right] + \sin \gamma Y_{2,2} \right]$$

$$f(\theta, \phi) = R_{0} \left(1 + \beta_{2} \left[\cos \gamma Y_{2,0} + \sin \gamma Y_{2,2}\right] + \sin \gamma Y_{2,2} \right]$$

$$f(\theta, \phi) = R_{0} \left(1 + \beta_{2} \left[\cos \gamma Y_{2,0} + \sin \gamma Y_{2,2}\right] + \sin \gamma Y_{2,2} \right]$$

$$f(\theta, \phi) = R_{0} \left(1 + \beta_{2} \left[\cos \gamma Y_{2,0} + \sin \gamma Y_{2,2}\right] + \sin \gamma Y_{2,2} \right]$$

$$f(\theta, \phi) = R_{0} \left(1 + \beta_{2} \left[\cos \gamma Y_{2,0} + \sin \gamma Y_{2,2}\right] + \sin \gamma Y_{2,2} \right]$$

$$f(\theta, \phi) = R_{0} \left(1 + \beta_{2} \left[\cos \gamma Y_{2,0} + \sin \gamma Y_{2,2}\right] + \sin \gamma Y_{2,2} \right]$$

$$f(\theta, \phi) = R_{0} \left(1 + \beta_{2} \left[\cos \gamma Y_{2,0} + \sin \gamma Y_{2,2}\right] + \sin \gamma Y_{2,2} \right]$$

$$f(\theta, \phi) = R_{0} \left(1 + \beta_{2} \left[\cos \gamma Y_{2,0} + \sin \gamma Y_{2,2}\right] + \sin \gamma Y_{2,2} \right]$$

$$f(\theta, \phi) = R_{0} \left(1 + \beta_{2} \left[\cos \gamma Y_{2,0} + \sin \gamma Y_{2,2}\right] + \sin \gamma Y_{2,2} \right]$$

$$f(\theta, \phi) = R_{0} \left(1 + \beta_{2} \left[\cos \gamma Y_{2,0} + \sin \gamma Y_{2,2}\right] + \sin \gamma Y_{2,2} \right]$$

$$f(\theta, \phi) = R_{0} \left(1 + \beta_{2} \left[\cos \gamma Y_{2,0} + \sin \gamma Y_{2,2}\right] + \sin \gamma Y_{2,2} \right]$$

$$f(\theta, \phi) = R_{0} \left(1 + \beta_{2} \left[\cos \gamma Y_{2,0} + \sin \gamma Y_{2,2}\right] + \sin \gamma Y_{2,2} \right]$$

$$f(\theta, \phi) = R_{0} \left(1 + \beta_{2} \left[\cos \gamma Y_{2,0} + \sin \gamma Y_{2,2}\right] + \sin \gamma Y_{2,2} \right]$$

Need 3-point correlators to probe the 3 axes

 $\left< v_2^2 \delta p_{\mathrm{T}} \right> \sim - eta_2^3 \cos(3\gamma) \qquad \left< (\delta p_{\mathrm{T}})^3 \right> \sim eta_2^3 \cos(3\gamma) \quad 2109.00604$

Triaxial $\beta_2 = 0.25, \cos(3\gamma) = 0$

$\begin{array}{l} \textbf{Oblate}\\ \beta_2=0.25,\cos(3\gamma)=-1 \end{array}$

Prolate

$$\beta_{2} = 0.25, \cos(3\gamma) = 1$$

$$ip + ip$$

$$p + ip$$

$$p$$

Influence of triaxiality: Glauber model

Skewness super sensitive

Described by

$$\left\langle arepsilon_2^2 rac{\delta d_\perp}{d_\perp}
ight
angle \propto \left\langle v_2^2 \delta p_{
m T}
ight
angle \propto a + b \cos(3\gamma) eta_2^3$$

variances insensitive to y

$$\left< arepsilon_2^2 \right> \propto \left< v_2^2 \right> \propto a + b eta_2^2$$

Use variance to constrain β_2 , use skewness to constrain γ

(β_2, γ) diagram in heavy-ion collisions

35

The (β_2, γ) dependence in 0-1% $\langle \varepsilon_2^2 \rangle \approx [0.02 + \beta_2^2] \times 0.235$ $\rho = \frac{\langle \varepsilon_2^2 \delta d_\perp \rangle}{\langle \varepsilon_2^2 \rangle \sqrt{\langle (\delta d_\perp)^2 \rangle}}$ u+U Glauber model can be $\langle (\delta d_\perp/d_\perp)^2 \rangle \approx [0.035 + \beta_2^2] \times 0.0093$ $\langle \varepsilon_2^2 \rangle \sqrt{\langle (\delta d_\perp)^2 \rangle}$ approximated by: $\langle \varepsilon_2^2 \delta d_\perp/d_\perp \rangle \approx [0.0005 - (0.07 + 1.36\cos(3\gamma))\beta_2^3] \times 10^{-2}$

 $d_{\perp} \propto 1/R_{\perp}$

Collision system scan to map out this trajectory: calibrate coefficients with species with known β , γ , then predict for species of interest.

What future collisions can bring?

Future well-motivated system-scan to use heavy-ion collisions into a precision tool for both nuclear structure and initial condition, and ultimately improve the study of QGP.

More than 250 stable (long-lived nuclei), about 140 of them in isobar pairs or triplets

A	isobars	A	isobars	A	isobars	A	isobars	A	isobars	A	isobars
36	Ar, S	80	Se, Kr	106	Pd, Cd	124	Sn, Te, Xe	148	Nd, Sm	174	Yb, Hf
40	Ca, Ar	84	Kr, Sr, Mo	108	Pd, Cd	126	Te, Xe	150	Nd, Sm	176	Yb, Lu, Hf
46	Ca, Ti	86	Kr, Sr	110	Pd, Cd	128	Te, Xe	152	Sm,Gd	180	Hf, W
48	Ca, Ti	87	Rb, Sr	112	Cd, Sn	130	Te, Xe, Ba	154	Sm,Gd	184	W, Os
50	Ti, V, Cr	92	Zr, Nb, Mo	113	Cd, In	132	Xe, Ba	156	$_{\mathrm{Gd,Dy}}$	186	W, Os
54	Cr, Fe	94	Zr, Mo	114	Cd, Sn	134	Xe, Ba	158	$_{\mathrm{Gd,Dy}}$	187	Re, Os
64	Ni, Zn	96	Zr, Mo, Ru	115	In, Sn	136	Xe, Ba, Ce	160	$_{\mathrm{Gd,Dy}}$	190	Os, Pt
70	Zn, Ge	98	Mo, Ru	116	Cd, Sn	138	Ba, La, Ce	162	Dy,Er	192	Os, Pt
74	Ge, Se	100	Mo, Ru	120	Sn, Te	142	Ce, Nd	164	Dy,Er	196	Pt, Hg
76	Ge, Se	102	Ru, Pd	122	Sn, Te	144	Nd, Sm	168	$_{\rm Er,Yb}$	198	Pt, Hg
78	Se, Kr	104	Ru, Pd	123	Sb, Te	146	Nd, Sm	170	Er,Yb	204	Hg, Pb

What future collisions can bring?

Future well-motivated system-scan to use heavy-ion collisions into a precision tool for both nuclear structure and initial condition, and ultimately improve the study of QGP. Representative cases were identified in a dedicated EMMI taskforce among HI and structure experts.

https://indico.gsi.de/event/14430/contributions/64193/

The discussion lead to the identification of three science cases that may readily lead to breakthrough observations via relativistic collision experiments. They involve nuclides belonging, respectively, to the mass regions $A \sim 20$, $A \sim 40$, and $A \sim 150$.

Stress test small system collectivity with extreme deformability Inferring the neutron skin by comparing ⁴⁰Ca and ⁴⁸Ca Cross-calibrate the initial condition of Pb+Pb and Au+Au collisions

Stress-testing small system collectivity with 20Ne

20Ne with 5 alpha has the most extreme ground state shape: $\beta_2 \sim 0.7$, $\beta_3 \sim 0.5$. Use O+O and Ne+Ne to observe "strong" purely-geometric effects at dN/dy~100.

Imaging strong shape evolution of ^{144–154}Sm isotopic chain

Transition from nearly-spherical to well-deformed nuclei when size increase by less than 7%. Using HI to access the multi-nucleon correlations leading to such shape evolution, as well as dynamical β_3 and β_4 shape fluctuations.

b', b are ~ independent of system

Systems with similar A fall on the same curve. Fix a and b with two isobar systems with known β_2 , then make predictions for the third one

Neutron skin in high-energy collisions

The famous PREX and CREX has tension with theory and previous exp. Indicate a larger L value.

$$\Delta r_{
m np,Pb} = 0.28 \pm 0.07 {
m fm} \ \Delta r_{
m np,Ca} = 0.14 \pm 0.03 {
m fm}$$

40

• Access the difference of neutron skin by comparing 40Ca+40Ca and 48Ca+48Ca

$$\Delta_{
m np}ig(^{48}{
m Ca}ig) - \Delta_{
m np}ig(^{40}{
m Ca}ig) \simeq \Delta_{
m np}ig(^{48}{
m Ca}ig)$$

Neutron skin for 208Pb

• Extract skin of 208Pb in UPC or by comparing with 197Au

reaction-plane elliptic flow

Shape-fluctution or shape-mixing

- Further explore connections between NS and HI, more observables
 - More case studies with Ru/Zr, Au/U, Pb/Xe. cancel most final state effect
 - Shape fluctuations and shape coexistence

Summary

- Precision QGP initial condition via constraints from both NS input and HI observables
 Improve the extraction of QGP properties.
- Understanding how initial condition respond to NS in turn allow us to probe novel nuclear structure properties and compliment low-energy experiments
- Identify interesting isobar species across nuclear chart to map out initial condition from small to larger system (250 stable isotopes, 141 isobar pairs or triplets)

arXiv:2102.08158

A	isobars	A	isobars	A	isobars
36	Ar, S	106	Pd, Cd	148	Nd, Sm
40	Ca, Ar	108	Pd, Cd	150	Nd, Sm
46	Ca, Ti	110	Pd, Cd	152	Sm, Gd
48	Ca, Ti	112	Cd, Sn	154	Sm, Gd
50	Ti, V, Cr	113	Cd, In	156	Gd, Dy
54	Cr, Fe	114	Cd, Sn	158	Gd, Dy
64	Ni, Zn	115	In, Sn	160	Gd, Dy
70	Zn, Ge	116	Cd, Sn	162	Dy, Er
74	Ge, Se	120	Sn, Te	164	Dy, Er
76	Ge, Se	122	Sn, Te	168	Er, Yb
78	Se, Kr	123	Sb, Te	170	Er, Yb
80	Se, Kr	124	Sn, Te, Xe	174	Yb, Hf
84	Kr, Sr, Mo	126	Te, Xe	176	Yb, Lu, Hf
86	Kr, Sr	128	Te, Xe	180	Hf, W
87	Rb, Sr	130	Te, Xe, Ba	184	W, Os
92	Zr, Nb, Mo	132	Xe, Ba	186	W, Os
94	Zr, Mo	134	Xe, Ba	187	Re, Os
96	Zr, Mo, Ru	136	Xe, Ba, Ce	190	Os, Pt
98	Mo, Ru	138	Ba, La, Ce	192	Os, Pt
100	Mo, Ru	142	Ce, Nd	198	Pt, Hg
102	Ru, Pd	144	Nd, Sm	204	Hg, Pb
104	Ru, Pd	146	Nd, Sm		

Test scaling in AMPT

Verifies the relation: $1 + c_1 \Delta \beta_2^2 + c_2 \Delta \beta_3^2 + c_3 \Delta a + c_4 \Delta R$