The importance of nuclear deformation in

 low-energy nuclear phenomenology and models
Benjamin Bally

ESNT workshop - Saclay - 20/09/2022

Outline of the presentation

(1) Nuclear deformation and phenomenology
(2) Simple models
(3) Symmety-breaking reference states
(4) Symmetry-projected correlated states
(5) Conclusions

Outline of the presentation

(1) Nuclear deformation and phenomenology
(2) Simple models
(3) Symmety-breaking reference states
(4) Symmetry-projected correlated states
(3) Conclusions

Symmetries of the nuclear Hamiltonian H

Definition

Let $G \equiv\{g\}$ be a group with a unitary representation $R(g)$

$$
\text { If } \forall g \in G, R(g) H R^{-1}(g)=H \quad \Rightarrow G \text { is a symmetry group of } H
$$

Symmetries of the nuclear Hamiltonian H

Definition

Let $G \equiv\{g\}$ be a group with a unitary representation $R(g)$

$$
\text { If } \forall g \in G, R(g) H R^{-1}(g)=H \quad \Rightarrow G \text { is a symmetry group of } H
$$

Physical symmetry	Group	Quant. numb.
Particle-number inv.	$U(1)_{Z} \times U(1)_{N}$	N, Z
Rotational inv.	$S U(2)_{A}$	J, M_{J}
Parity inv.	$Z_{2 A}$	π
Translational inv.	T_{A}^{3}	\vec{P}
Exchange of particles	$S_{Z} \times S_{N}$	$-1,-1$
Isospin	$S U(2)_{A}$	T, M_{T}

Symmetries of the nuclear Hamiltonian H

Definition

Let $G \equiv\{g\}$ be a group with a unitary representation $R(g)$

$$
\text { If } \forall g \in G, R(g) H R^{-1}(g)=H \quad \Rightarrow G \text { is a symmetry group of } H
$$

Physical symmetry	Group	Quant. numb.
Particle-number inv.	$U(1)_{Z} \times U(1)_{N}$	N, Z
Rotational inv.	$S U(2)_{A}$	J, M_{J}
Parity inv.	$Z_{2 A}$	π
Translational inv.	T_{A}^{3}	\vec{P}
Exchange of particles	$S_{Z} \times S_{N}$	$-1,-1$
Isospin	$S U(2)_{A}$	T, M_{T}

- Nuclear eigenstates have good quantum numbers: $\left|\Psi_{\epsilon}^{J M_{j} \pi}\right\rangle$

Properties of the eigenstates

- Transformation under rotation (Euler angles $\equiv \alpha, \beta, \gamma$)

$$
R(\alpha, \beta, \gamma)\left|\Psi_{\epsilon}^{J M \pi}\right\rangle=\sum_{K=-J}^{J} D_{K M}^{J}(\alpha, \beta, \gamma)\left|\Psi_{\epsilon}^{J K \pi}\right\rangle
$$

Properties of the eigenstates

- Transformation under rotation (Euler angles $\equiv \alpha, \beta, \gamma$)

$$
R(\alpha, \beta, \gamma)\left|\Psi_{\epsilon}^{J M \pi}\right\rangle=\sum_{K=-J}^{J} D_{K M}^{J}(\alpha, \beta, \gamma)\left|\Psi_{\epsilon}^{J K \pi}\right\rangle
$$

- Expectation value for $Q_{\lambda \mu} \equiv r^{\lambda} Y_{\lambda \mu}(\theta, \phi)$ with $\lambda \in \mathbb{N}$ and $\mu \in \llbracket-\lambda, \lambda \rrbracket$

$$
\left\langle\Psi_{\epsilon}^{J M \pi}\right| Q_{\lambda \mu}\left|\Psi_{\epsilon}^{J M \pi}\right\rangle \neq 0 \Leftrightarrow\left\{\begin{array}{l}
J \in \llbracket|J-\lambda|, J+\lambda \rrbracket \\
\mu=0 \\
(-1)^{\lambda}=1
\end{array}\right.
$$

Properties of the eigenstates

- Transformation under rotation (Euler angles $\equiv \alpha, \beta, \gamma$)

$$
R(\alpha, \beta, \gamma)\left|\Psi_{\epsilon}^{J M \pi}\right\rangle=\sum_{K=-J}^{J} D_{K M}^{J}(\alpha, \beta, \gamma)\left|\Psi_{\epsilon}^{J K \pi}\right\rangle
$$

- Expectation value for $Q_{\lambda \mu} \equiv r^{\lambda} Y_{\lambda \mu}(\theta, \phi)$ with $\lambda \in \mathbb{N}$ and $\mu \in \llbracket-\lambda, \lambda \rrbracket$

$$
\left\langle\Psi_{\epsilon}^{J M \pi}\right| Q_{\lambda \mu}\left|\Psi_{\epsilon}^{J M \pi}\right\rangle \neq 0 \Leftrightarrow\left\{\begin{array}{l}
J \in \llbracket|J-\lambda|, J+\lambda \rrbracket \\
\mu=0 \\
(-1)^{\lambda}=1
\end{array}\right.
$$

- Example of $J=0$ states
$\diamond \forall(\alpha, \beta, \gamma), R(\alpha, \beta, \gamma)\left|\Psi_{\epsilon}^{J=0 M=0 \pi}\right\rangle=\left|\Psi_{\epsilon}^{J=0 M=0 \pi}\right\rangle$
\diamond If $\lambda, \mu \neq 0,\left\langle\Psi_{\epsilon}^{J=0 M=0 \pi}\right| Q_{\lambda \mu}\left|\Psi_{\epsilon}^{J=0 M=0 \pi}\right\rangle=0$
\diamond Ground states of all even-even nuclei have $J=0$

Intrinsic deformations

- Nuclear models often rely on the picture of intrinsic shapes

Intrinsic deformations: parametrization

- Parametrization of the nuclear radius (surface)

$$
R(\theta, \phi)=R_{0}\left\{1+\sum_{\lambda} \sum_{\mu=-\lambda}^{\lambda} a_{\lambda \mu} Y_{\lambda \mu}(\theta, \phi)\right\}
$$

Intrinsic deformations: parametrization

- Parametrization of the nuclear radius (surface)

$$
R(\theta, \phi)=R_{0}\left\{1+\sum_{\lambda} \sum_{\mu=-\lambda}^{\lambda} a_{\lambda \mu} Y_{\lambda \mu}(\theta, \phi)\right\}
$$

- Small values of λ are the most important!

Ring and Schuck, The Nuclear Many-Body Problem (1980)

Intrinsic deformations: quadrupole

- Quadrupole $(\lambda=2)$ is the most important!

$$
R(\theta, \phi)=R_{0}\left\{1+\beta_{S} \cos \left(\gamma_{S}\right) Y_{20}(\theta, \phi)+\sqrt{2} \beta_{S} \sin \left(\gamma_{S}\right) \mathfrak{R}\left[Y_{22}(\theta, \phi)\right]\right\}
$$

deformed nucleus $(\beta>0)$

- Usual parametrization with β_{S} and γ_{S}

$$
\begin{aligned}
& a_{\lambda-\mu}=(-1)^{\lambda} a_{\lambda \mu} \\
& a_{2-1}=a_{21}=0 \\
& \beta_{S}=\frac{4 \pi}{3 R_{0}^{2} A} \sqrt{a_{20}^{2}+2 a_{22}^{2}} \\
& \gamma_{S}=\arctan \left(\frac{\sqrt{2} a_{22}}{a_{20}}\right)
\end{aligned}
$$

Phenomenology

- Explanation of many phenonmenon makes use of intrinsic deformations
\diamond Excitation spectra (e.g. rotational bands)
\diamond Values of electromagnetic moments and transitions
\diamond Trends of observables with $A / N / Z$ (e.g. binding energes or charge radii)
\diamond Presence of competing states with same J^{π} but different structure (shape coexistence)
\diamond Dynamic of nuclear fission

Rotational bands

- Sequence of levels can be grouped into rotational bands

$$
E(J)=\frac{J(J+1)}{2 I}
$$

Rotational bands

- Sequence of levels can be grouped into rotational bands

$$
E(J)=\frac{J(J+1)}{2 \mathcal{I}}
$$

- Semi-classical picture: deformed nucleus rotating

- Rigid rotor limit: $R_{42}=\frac{E(4)}{E(2)}=3.33$

For ${ }^{238} \mathrm{U}: R_{42}=3.30$

Rotational bands

- Sequence of levels can be grouped into rotational bands

$$
E(J)=\frac{J(J+1)}{2 \mathcal{I}}
$$

- Semi-classical picture: deformed nucleus rotating

- Rigid rotor limit: $R_{42}=\frac{E(4)}{E(2)}=3.33$

For ${ }^{238} \mathrm{U}: R_{42}=3.30$

- Very collective electromagnetic transitions

Evolution of $E\left(2_{1}^{+}\right)$and $B(E 2)$

- Trends to identify the evolution with $A / Z / N$
- For example: $E\left(2_{1}^{+}\right)$and $B\left(E 2: 2_{1}^{+} \rightarrow 0_{1}^{+}\right)=\frac{1}{5} B\left(E 2: 0_{1}^{+} \rightarrow 2_{1}^{+}\right)$

Pritychenko et al., Nucl. Phys. A 962, 73 (2017)
Paul et al., Phys. Rev. Lett. 118, 032501 (2017)

Electric quadrupole moment

- Electric quadrupole moment

$$
Q_{s}=\left\langle\Psi_{\epsilon}^{J \pi}\right| E_{20}\left|\Psi_{\epsilon}^{J \pi}\right\rangle \equiv\left\langle\Psi_{\epsilon}^{J \pi}\right| q r^{2} Y_{20}(\theta, \phi)\left|\Psi_{\epsilon}^{J \pi}\right\rangle
$$

Electric quadrupole moment

- Electric quadrupole moment

$$
Q_{s}=\left\langle\Psi_{\epsilon}^{J \pi}\right| E_{20}\left|\Psi_{\epsilon}^{J \pi}\right\rangle \equiv\left\langle\Psi_{\epsilon}^{J \pi}\right| q r^{2} Y_{20}(\theta, \phi)\left|\Psi_{\epsilon}^{J \pi}\right\rangle
$$

- Measures the moment only of protons $\left(q_{p}=e, q_{n}=0\right)$

Electric quadrupole moment

- Electric quadrupole moment

$$
Q_{s}=\left\langle\Psi_{\epsilon}^{J \pi}\right| E_{20}\left|\Psi_{\epsilon}^{J \pi}\right\rangle \equiv\left\langle\Psi_{\epsilon}^{J \pi}\right| q r^{2} Y_{20}(\theta, \phi)\left|\Psi_{\epsilon}^{J \pi}\right\rangle
$$

- Measures the moment only of protons $\left(q_{p}=e, q_{n}=0\right)$
- $Q_{s}=0$ for $J=0$ and $1 / 2$ states
\rightarrow all the ground states of even-even nuclei have $J=0$

Outline of the presentation

(1) Nuclear deformation and phenomenology
(2) Simple models
(3) Symmety-breaking reference states
(4) Symmetry-projected correlated states
(2) Conclusions

Axial rigid-rotor: assignement of β

- Semi-classical picture: deformed nucleus rotating

- Intrinsic deformation β_{r} assigned from intra-band E2 transitions

$$
\beta_{r}\left(0_{1}^{+}\right)=\frac{4 \pi \sqrt{5}}{3 Z R_{0}^{2}} \sqrt{B\left(E 2: 2_{1}^{+} \rightarrow 0_{1}^{+}\right)}=\frac{4 \pi}{3 Z R_{0}^{2}}\left|\left\langle 0_{1}^{+}\left\|E_{2}\right\| 2_{1}^{+}\right\rangle\right|
$$

Axial rigid-rotor: assignement of β

- Semi-classical picture: deformed nucleus rotating

- Intrinsic deformation β_{r} assigned from intra-band E2 transitions

$$
\beta_{r}\left(0_{1}^{+}\right)=\frac{4 \pi \sqrt{5}}{3 Z R_{0}^{2}} \sqrt{B\left(E 2: 2_{1}^{+} \rightarrow 0_{1}^{+}\right)}=\frac{4 \pi}{3 Z R_{0}^{2}}\left|\left\langle 0_{1}^{+}\left\|E_{2}\right\| 2_{1}^{+}\right\rangle\right|
$$

- For ${ }^{238} U: \beta_{r}\left(0_{1}^{+}\right)=0.289$

Asymmetric rigid-rotor: assignement of γ

- Davydov's model

Davydov and Filippov, Nucl. Phys. A 8, 237 (1958)

- Intrinsic deformation γ_{d} assigned from ratio of energies

$$
\frac{E\left(2_{2}^{+}\right)}{E\left(2_{1}^{+}\right)}=\frac{1+\sqrt{1-\frac{8}{9} \sin ^{2}\left(3 \gamma_{d}\right)}}{1-\sqrt{1-\frac{8}{9} \sin ^{2}\left(3 \gamma_{d}\right)}}
$$

- Equality: $E\left(2_{1}^{+}\right)+E\left(2_{2}^{+}\right)=E\left(3_{1}^{+}\right)$

Asymmetric rigid-rotor: assignement of γ

- Davydov's model

Davydov and Filippov, Nucl. Phys. A 8, 237 (1958)

- Intrinsic deformation γ_{d} assigned from ratio of energies

$$
\frac{E\left(2_{2}^{+}\right)}{E\left(2_{1}^{+}\right)}=\frac{1+\sqrt{1-\frac{8}{9} \sin ^{2}\left(3 \gamma_{d}\right)}}{1-\sqrt{1-\frac{8}{9} \sin ^{2}\left(3 \gamma_{d}\right)}}
$$

- Equality: $E\left(2_{1}^{+}\right)+E\left(2_{2}^{+}\right)=E\left(3_{1}^{+}\right)$
- For ${ }^{238} U: \gamma_{d}\left(0_{1}^{+}\right)=8.6^{\circ}$

$$
\left.E\left(2_{1}^{+}\right)+E\left(2_{2}^{+}\right)=1011 \mathrm{keV} \approx E\left(3_{1}^{+}\right)=1059 \text { (or } 1106\right) \mathrm{keV}
$$

Kumar quadrupole parameters

- Determine parameters of equivalent ellipsoid from E2 matrix elements (tensor operator E_{2} with components $E_{2 \mu}=q r^{2} Y_{2 \mu}$)

Kumar, Phys. Rev. 28, 249 (1972)

Kumar quadrupole parameters

- Determine parameters of equivalent ellipsoid from E2 matrix elements (tensor operator E_{2} with components $E_{2 \mu}=q r^{2} Y_{2 \mu}$)

Kumar, Phys. Rev. 28, 249 (1972)

- Under certain assumpations, we identify

$$
\begin{array}{r}
\beta_{k}\left(0_{1}^{0^{+}}\right) \approx\left(\frac{4 \pi}{3 R_{0}^{2} A}\right)\left[\sqrt{5}\left\langle\psi_{1}^{0^{+}}\right|\left[E_{2} \times E_{2}\right]_{0}\left|\psi_{1}^{0^{+}}\right\rangle\right]^{1 / 2} \\
\cos \left[3 \gamma_{k}\left(0_{1}^{+}\right)\right] \approx-\sqrt{\frac{35}{2}} \frac{\left\langle\frac{\psi_{1}^{+}}{}\right|\left[\left[\left[E_{2} \times E_{2}\right]_{2} \times E_{2}\right]_{0}\left|\psi_{1}^{0^{+}}\right\rangle\right.}{\left[\sqrt{5}\left\langle\Psi_{1}^{+0}\right|\left[E_{2} \times E_{2}\right]_{0}\left|\Psi_{1}^{0^{+}}\right\rangle\right]^{3 / 2}}
\end{array}
$$

Kumar quadrupole parameters

- Determine parameters of equivalent ellipsoid from E2 matrix elements (tensor operator E_{2} with components $E_{2 \mu}=q r^{2} Y_{2 \mu}$)

Kumar, Phys. Rev. 28, 249 (1972)

- Under certain assumpations, we identify

$$
\begin{aligned}
\beta_{k}\left(0_{1}^{+}\right) & \approx\left(\frac{4 \pi}{3 R_{0}^{2} A}\right)\left[\sqrt{5}\left\langle\Psi_{1}^{0^{+}}\right|\left[E_{2} \times E_{2}\right]_{0}\left|\Psi_{1}^{0^{+}}\right\rangle\right]^{1 / 2} \\
\cos \left[3 \gamma_{k}\left(0_{1}^{+}\right)\right] & \approx-\sqrt{\frac{35}{2}} \frac{\left\langle\Psi_{1}^{0^{+}}\right|\left[\left[E_{2} \times E_{2}\right]_{2} \times E_{2}\right]_{0}\left|\Psi_{1}^{0^{+}}\right\rangle}{\left[\sqrt{5}\left\langle\Psi_{1}^{0^{+}}\right|\left[E_{2} \times E_{2}\right]_{0}\left|\Psi_{1}^{0^{+}}\right\rangle\right]^{3 / 2}}
\end{aligned}
$$

- The right hand side matrix elements can be written

$$
\begin{aligned}
\left\langle\Psi_{1}^{0^{+}}\right|\left[E_{2} \times E_{2}\right]_{0}\left|\Psi_{1}^{0^{+}}\right\rangle & =\frac{1}{\sqrt{5}} \sum_{\epsilon_{1}}\left\langle\Psi_{1}^{0^{+}}\left\|E_{2}\right\| \Psi_{\epsilon_{1}}^{2^{+}}\right\rangle\left\langle\Psi_{\epsilon_{1}}^{2^{+}}\left\|E_{2}\right\| \Psi_{1}^{0^{+}}\right\rangle \\
\left\langle\Psi_{1}^{0^{+}}\right|\left[\left[E_{2} \times E_{2}\right]_{2} \times E_{2}\right]_{0}\left|\Psi_{1}^{0^{+}}\right\rangle & =\frac{1}{5} \sum_{\epsilon_{1} \epsilon_{2}}\left\langle\Psi_{1}^{0^{+}}\left\|E_{2}\right\| \Psi_{\epsilon_{1}}^{2^{+}}\right\rangle\left\langle\Psi_{\epsilon_{1}}^{2^{+}}\left\|E_{2}\right\| \Psi_{\epsilon_{2}}^{2^{+}}\right\rangle\left\langle\Psi_{\epsilon_{2}}^{2^{+}}\left\|E_{2}\right\| \Psi_{1}^{0^{+}}\right\rangle
\end{aligned}
$$

Outline of the presentation

(1) Nuclear deformation and phenomenology
(2) Simple models
(3) Symmety-breaking reference states
(4) Symmetry-projected correlated states
(5) Conclusions

- Variational principle: $\delta\langle\Phi| H|\Phi\rangle=0$

Mean-field (MF) and symmetry-unrestricted calc.

- Variational principle: $\delta\langle\Phi| H|\Phi\rangle=0$
$|\Phi\rangle \equiv$ Product states (Slater determinants or Bogoliubov quasi-particle states)
\rightarrow entirely defined by their one-body densities

Mean-field (MF) and symmetry-unrestricted calc.

- Variational principle: $\delta\langle\Phi| H|\Phi\rangle=0$
$|\Phi\rangle \equiv$ Product states (Slater determinants or Bogoliubov quasi-particle states)
\rightarrow entirely defined by their one-body densities
- Allow $|\Phi\rangle$ to deform $\rightarrow\langle\Phi| Q_{\lambda \mu}|\Phi\rangle \equiv\langle\Phi| r^{\lambda} Y_{\lambda \mu}(\theta, \phi)|\Phi\rangle \neq 0$

Mean-field (MF) and symmetry-unrestricted calc.

- Variational principle: $\delta\langle\Phi| H|\Phi\rangle=0$
$|\Phi\rangle \equiv$ Product states (Slater determinants or Bogoliubov quasi-particle states)
\rightarrow entirely defined by their one-body densities
- Allow $|\Phi\rangle$ to deform $\rightarrow\langle\Phi| Q_{\lambda \mu}|\Phi\rangle \equiv\langle\Phi| r^{\lambda} Y_{\lambda \mu}(\theta, \phi)|\Phi\rangle \neq 0$
- Symmetry-unrestricted calculations favor deformed solutions
- Variational principle: $\delta\langle\Phi| H|\Phi\rangle=0$
$|\Phi\rangle \equiv$ Product states (Slater determinants or Bogoliubov quasi-particle states)
\rightarrow entirely defined by their one-body densities
- Allow $|\Phi\rangle$ to deform $\rightarrow\langle\Phi| Q_{\lambda \mu}|\Phi\rangle \equiv\langle\Phi| r^{\lambda} Y_{\lambda \mu}(\theta, \phi)|\Phi\rangle \neq 0$
- Symmetry-unrestricted calculations favor deformed solutions
- Capture strong collective correlations keeping the simple one-body picture

Deformation is (almost) ubiquitous

Data taken from:
S. Hilaire and M. Girod, EPJA 33, 237 (2007)

Constrained calculations

- Variation: $\delta\langle\Phi| H-\sum_{\lambda \mu} \eta_{\lambda \mu} Q_{\lambda \mu}|\Phi\rangle=0$ with $\langle\Phi| Q_{\lambda \mu}|\Phi\rangle=q_{\lambda \mu}$

Constrained calculations

- Variation: $\delta\langle\Phi| H-\sum_{\lambda \mu} \eta_{\lambda \mu} Q_{\lambda \mu}|\Phi\rangle=0$ with $\langle\Phi| Q_{\lambda \mu}|\Phi\rangle=q_{\lambda \mu}$
- Build a set: $\left\{\left|\Phi\left(q_{i}\right)\right\rangle, \boldsymbol{q}_{i} \equiv\left\{\boldsymbol{q}_{i, \lambda \mu}\right\}\right\}$

Constrained calculations

- Variation: $\delta\langle\Phi| H-\sum_{\lambda \mu} \eta_{\lambda \mu} Q_{\lambda \mu}|\Phi\rangle=0$ with $\langle\Phi| Q_{\lambda \mu}|\Phi\rangle=q_{\lambda \mu}$
- Build a set: $\left\{\left|\Phi\left(q_{i}\right)\right\rangle, \boldsymbol{q}_{i} \equiv\left\{\boldsymbol{q}_{i, \lambda \mu}\right\}\right\}$

Volume versus surface deformation

- Small values of $\lambda(=2,3,4)$ are the most important!

Volume versus surface deformation

- Small values of $\lambda(=2,3,4)$ are the most important!
- In particular for quadrupole deformations

$$
\begin{aligned}
& \beta_{v}=\frac{4 \pi}{3 R_{0}^{2} A} \sqrt{\left\langle Q_{20}\right\rangle^{2}+2\left\langle Q_{22}\right\rangle^{2}} \\
& \gamma_{v}=\arctan \left(\frac{\sqrt{2}\left\langle Q_{22}\right\rangle}{\left\langle Q_{20}\right\rangle}\right)
\end{aligned}
$$

Volume versus surface deformation

- Small values of $\lambda(=2,3,4)$ are the most important!
- In particular for quadrupole deformations

$$
\begin{aligned}
& \beta_{v}=\frac{4 \pi}{3 R_{0}^{2} A} \sqrt{\left\langle Q_{20}\right\rangle^{2}+2\left\langle Q_{22}\right\rangle^{2}} \\
& \gamma_{v}=\arctan \left(\frac{\sqrt{2}\left\langle Q_{22}\right\rangle}{\left\langle Q_{20}\right\rangle}\right)
\end{aligned}
$$

- $\beta_{v}, \gamma_{v} \neq \beta_{s}, \gamma_{s}$ obtained from $R(\theta, \phi)$

Volume versus surface deformation

- Small values of $\lambda(=2,3,4)$ are the most important!
- In particular for quadrupole deformations

$$
\begin{aligned}
& \beta_{v}=\frac{4 \pi}{3 R_{0}^{2} A} \sqrt{\left\langle Q_{20}\right\rangle^{2}+2\left\langle Q_{22}\right\rangle^{2}} \\
& \gamma_{v}=\arctan \left(\frac{\sqrt{2}\left\langle Q_{22}\right\rangle}{\left\langle Q_{20}\right\rangle}\right)
\end{aligned}
$$

- $\beta_{v}, \gamma_{v} \neq \beta_{s}, \gamma_{s}$ obtained from $R(\theta, \phi)$
- Same for other values of λ, μ

Energy Density Functional (EDF)

- The energy is represented as a functional of one-body densities

$$
\langle\Phi| H|\Phi\rangle \equiv E\left[\rho, \kappa, \kappa^{*}\right] \text { with }\left\{\begin{array}{l}
\rho_{i j}=\langle\Phi| a_{j}^{\dagger} a_{i}|\Phi\rangle \\
\kappa_{i j}=\langle\Phi| a_{j} a_{i}|\Phi\rangle \\
\kappa_{i j}^{*}=\langle\Phi| a_{i}^{\dagger} a_{j}^{\dagger}|\Phi\rangle
\end{array}\right.
$$

Energy Density Functional (EDF)

- The energy is represented as a functional of one-body densities

$$
\langle\Phi| H|\Phi\rangle \equiv E\left[\rho, \kappa, \kappa^{*}\right] \text { with }\left\{\begin{array}{l}
\rho_{i j}=\langle\Phi| a_{j}^{\dagger} a_{i}|\Phi\rangle \\
\kappa_{i j}=\langle\Phi| a_{j} a_{i}|\Phi\rangle \\
\kappa_{i j}^{*}=\langle\Phi| a_{i}^{\dagger} a_{j}^{\dagger}|\Phi\rangle
\end{array}\right.
$$

- Trivial consequence of Wick Theorem if $|\Phi\rangle$ is a product state

Energy Density Functional (EDF)

- The energy is represented as a functional of one-body densities

$$
\langle\Phi| H|\Phi\rangle \equiv E\left[\rho, \kappa, \kappa^{*}\right] \text { with }\left\{\begin{array}{l}
\rho_{i j}=\langle\Phi| a_{j}^{\dagger} a_{i}|\Phi\rangle \\
\kappa_{i j}=\langle\Phi| a_{j} a_{i}|\Phi\rangle \\
\kappa_{i j}^{*}=\langle\Phi| a_{i}^{\dagger} a_{j}^{\dagger}|\Phi\rangle
\end{array}\right.
$$

- Trivial consequence of Wick Theorem if $|\Phi\rangle$ is a product state
- But EDF philosophy goes further
\diamond Form of $E\left[\rho, \kappa, \kappa^{*}\right]$ is general (e.g. ρ^{α} with $\alpha \notin \mathbb{N}$)
\diamond Parameters of $E\left[\rho, \kappa, \kappa^{*}\right]$ fitted to experimental data

Energy Density Functional (EDF)

- Several popular families
\diamond Skyrme EDFs
\diamond Gogny EDFs
\diamond Fayans EDFs
\diamond Relativistic EDFs (with subfamilies)

Energy Density Functional (EDF)

- Several popular families
\diamond Skyrme EDFs
\diamond Gogny EDFs
\diamond Fayans EDFs
\diamond Relativistic EDFs (with subfamilies)
- Pros and cons
\diamond Computationally cheap \Rightarrow access entire* nuclear chart
* but the lighest nuclei

Energy Density Functional (EDF)

- Several popular families
\diamond Skyrme EDFs
\diamond Gogny EDFs
\diamond Fayans EDFs
\diamond Relativistic EDFs (with subfamilies)
- Pros and cons
\diamond Computationally cheap \Rightarrow access entire* nuclear chart
* but the lighest nuclei
\diamond Good global description of data

Energy Density Functional (EDF)

- Several popular families
\diamond Skyrme EDFs
\diamond Gogny EDFs
\diamond Fayans EDFs
\diamond Relativistic EDFs (with subfamilies)
- Pros and cons
\diamond Computationally cheap \Rightarrow access entire* nuclear chart
* but the lighest nuclei
\diamond Good global description of data
\diamond Phenomenological \Rightarrow no clear way to improve

Energy Density Functional (EDF)

- Several popular families
\diamond Skyrme EDFs
\diamond Gogny EDFs
\diamond Fayans EDFs
\diamond Relativistic EDFs (with subfamilies)
- Pros and cons
\diamond Computationally cheap \Rightarrow access entire* nuclear chart
* but the lighest nuclei
\diamond Good global description of data
\diamond Phenomenological \Rightarrow no clear way to improve
\diamond Mathematical problems when going beyond the mean field (BMF)

Energy Density Functional (EDF)

- Several popular families
\diamond Skyrme EDFs
\diamond Gogny EDFs
\diamond Fayans EDFs
\diamond Relativistic EDFs (with subfamilies)
- Pros and cons
\diamond Computationally cheap \Rightarrow access entire* nuclear chart
* but the lighest nuclei
\diamond Good global description of data
\diamond Phenomenological \Rightarrow no clear way to improve
\diamond Mathematical problems when going beyond the mean field (BMF)
\diamond Research field is stagnant

Influence of deformation: binding energies

Bender et al., Phys. Rev. C 73, 034322 (2006)

Influence of deformation: binding energies

Bender et al., Phys. Rev. C 73, 034322 (2006)

Influence of deformation: radii

Bender et al., Phys. Rev. C 73, 034322 (2006)

Shape coexistence of ${ }^{188} \mathrm{~Pb}$

Bender et al., Phys. Rev. C 69, 064303 (2004)

Symmetry-breaking and quantum numbers

- Deformed solutions break the symmetries of H

$$
\left|\Phi\left(q_{i}\right)\right\rangle=\sum_{J M \pi} \sum_{\epsilon} c_{\epsilon}^{J M \pi}\left(q_{i}\right)\left|\Theta_{\epsilon}^{J M \pi}\left(q_{i}\right)\right\rangle \quad \Rightarrow \text { unphysical in nuclei }
$$

Symmetry-breaking and quantum numbers

- Deformed solutions break the symmetries of H

$$
\left|\Phi\left(q_{i}\right)\right\rangle=\sum_{J M \pi} \sum_{\epsilon} c_{\epsilon}^{J M \pi}\left(q_{i}\right)\left|\Theta_{\epsilon}^{J M \pi}\left(q_{i}\right)\right\rangle \quad \Rightarrow \text { unphysical in nuclei }
$$

- Is it a problem?

Symmetry-breaking and quantum numbers

- Deformed solutions break the symmetries of H

$$
\left|\Phi\left(q_{i}\right)\right\rangle=\sum_{J M \pi} \sum_{\epsilon} c_{\epsilon}^{J M \pi}\left(q_{i}\right)\left|\Theta_{\epsilon}^{J M \pi}\left(q_{i}\right)\right\rangle \quad \Rightarrow \text { unphysical in nuclei }
$$

- Is it a problem?
- Not really, in nuclear physics we prefer to
\diamond Break symmetries at MF level \Rightarrow explore larger variational space
\diamond Restore symmetries at BMF level \Rightarrow get good quantum numbers

Symmetry-breaking and quantum numbers

- Deformed solutions break the symmetries of H

$$
\left|\Phi\left(q_{i}\right)\right\rangle=\sum_{J M \pi} \sum_{\epsilon} c_{\epsilon}^{J M \pi}\left(q_{i}\right)\left|\Theta_{\epsilon}^{J M \pi}\left(q_{i}\right)\right\rangle \quad \Rightarrow \text { unphysical in nuclei }
$$

- Is it a problem?
- Not really, in nuclear physics we prefer to
\diamond Break symmetries at MF level \Rightarrow explore larger variational space
\diamond Restore symmetries at BMF level \Rightarrow get good quantum numbers
\diamond Symmetry-breaking MF $\xrightarrow{\text { reference states }}$ Symmetry-restored BMF

Outline of the presentation

(1) Nuclear deformation and phenomenology
(2) Simple models
(3) Symmety-breaking reference states
(4) Symmetry-projected correlated states
(3) Conclusions

Symmetry projection: method

- Projection operators

$$
\begin{aligned}
P_{M K}^{J} & =\frac{2 J+1}{16 \pi^{2}} \int_{0}^{2 \pi} d \alpha \int_{0}^{\pi} d \beta \sin (\beta) \int_{0}^{4 \pi} d \gamma D_{M K}^{J}{ }^{*}(\alpha, \beta, \gamma) R(\alpha, \beta, \gamma) \\
P^{\pi} & =\frac{1}{2}(1+\pi \Pi)
\end{aligned}
$$

Symmetry projection: method

- Projection operators

$$
\begin{aligned}
P_{M K}^{J} & =\frac{2 J+1}{16 \pi^{2}} \int_{0}^{2 \pi} d \alpha \int_{0}^{\pi} d \beta \sin (\beta) \int_{0}^{4 \pi} d \gamma D_{M K}^{J}{ }^{*}(\alpha, \beta, \gamma) R(\alpha, \beta, \gamma) \\
P^{\pi} & =\frac{1}{2}(1+\pi \Pi)
\end{aligned}
$$

- Extraction of the components
$\underbrace{P_{M K}^{J} P^{\pi}}\left|\Phi\left(q_{i}\right)\right\rangle \xrightarrow{\text { prjects }}\left\{\sum_{\varepsilon} c^{J K \pi}\left(q_{i}\right)\left|\Theta_{\varepsilon}^{J M \pi}\left(q_{i}\right)\right\rangle, K\right\} \xrightarrow{\text { diag. H }}\left\{\left|\Theta_{\varepsilon}^{J M \pi}\left(q_{i}\right)\right\rangle, \varepsilon\right\}$
projection operators

Symmetry projection: method

- Projection operators

$$
\begin{aligned}
P_{M K}^{J} & =\frac{2 J+1}{16 \pi^{2}} \int_{0}^{2 \pi} d \alpha \int_{0}^{\pi} d \beta \sin (\beta) \int_{0}^{4 \pi} d \gamma D_{M K}^{J}{ }^{*}(\alpha, \beta, \gamma) R(\alpha, \beta, \gamma) \\
P^{\pi} & =\frac{1}{2}(1+\pi \Pi)
\end{aligned}
$$

- Extraction of the components
$\underbrace{P_{M K}^{J} P^{\pi}}\left|\Phi\left(q_{i}\right)\right\rangle \xrightarrow{\text { projects }}\left\{\sum_{\varepsilon} c^{J K \pi}\left(q_{i}\right)\left|\Theta_{\varepsilon}^{J M \pi}\left(q_{i}\right)\right\rangle, K\right\} \xrightarrow{\text { diag. } H}\left\{\left|\Theta_{\varepsilon}^{J M \pi}\left(q_{i}\right)\right\rangle, \varepsilon\right\}$
projection
operators
- Projected states

$$
\left|\Theta_{\varepsilon}^{J M \pi}\left(q_{i}\right)\right\rangle=\sum_{K} f_{\varepsilon K}^{J M \pi}\left(q_{i}\right) P_{M K}^{J} P^{\pi}\left|\Phi\left(q_{i}\right)\right\rangle
$$

Symmetry projection: illustration

- Projection operator (angular momentum)

$$
P_{M K}^{J}=\frac{2 J+1}{16 \pi^{2}} \int_{0}^{2 \pi} d \alpha \int_{0}^{\pi} d \beta \sin (\beta) \int_{0}^{4 \pi} d \gamma D_{M K}^{J}{ }^{*}(\alpha, \beta, \gamma) R(\alpha, \beta, \gamma)
$$

Symmetry projection: example with ${ }^{38} \mathrm{Mg}$

Symmetry projection: example with ${ }^{38} \mathrm{Mg}$

Generator Coordinate Method (GCM): definition

- Trial wave function depends on continuous variables q

$$
|\Theta\rangle=\int d q f(q)|\Phi(q)\rangle
$$

Generator Coordinate Method (GCM): definition

- Trial wave function depends on continuous variables q

$$
|\Theta\rangle=\int d q f(q)|\Phi(q)\rangle
$$

- The weights $f(q)$ are determined minimizing the energy of $|\Theta\rangle$

$$
\frac{\delta}{\delta f^{*}(q)}\left(\frac{\langle\Theta| H|\Theta\rangle}{\langle\Theta \mid \Theta\rangle}\right)=0
$$

Generator Coordinate Method (GCM): definition

- Trial wave function depends on continuous variables q

$$
|\Theta\rangle=\int d q f(q)|\Phi(q)\rangle
$$

- The weights $f(q)$ are determined minimizing the energy of $|\Theta\rangle$

$$
\frac{\delta}{\delta f^{*}(q)}\left(\frac{\langle\Theta| H|\Theta\rangle}{\langle\Theta \mid \Theta\rangle}\right)=0
$$

- In practice, the integral is discretized $q \in\left\{q_{1}, \ldots, q_{n}\right\}$, i.e.

$$
\left|\Theta_{\epsilon}\right\rangle=\sum_{i=1}^{n} f_{\epsilon}\left(q_{i}\right)\left|\Phi\left(q_{i}\right)\right\rangle
$$

Generator Coordinate Method (GCM): definition

- Trial wave function depends on continuous variables q

$$
|\Theta\rangle=\int d q f(q)|\Phi(q)\rangle
$$

- The weights $f(q)$ are determined minimizing the energy of $|\Theta\rangle$

$$
\frac{\delta}{\delta f^{*}(q)}\left(\frac{\langle\Theta| H|\Theta\rangle}{\langle\Theta \mid \Theta\rangle}\right)=0
$$

- In practice, the integral is discretized $q \in\left\{q_{1}, \ldots, q_{n}\right\}$, i.e.

$$
\left|\Theta_{\epsilon}\right\rangle=\sum_{i=1}^{n} f_{\epsilon}\left(q_{i}\right)\left|\Phi\left(q_{i}\right)\right\rangle
$$

- It translates into solving the generalized eigenvalue problem (GEP)

$$
H f=E N f \quad \text { with } \quad \begin{aligned}
& H_{i j}=\left\langle\Phi\left(q_{i}\right)\right| H\left|\Phi\left(q_{j}\right)\right\rangle \\
& N_{i j}=\left\langle\Phi\left(q_{i}\right) \mid \Phi\left(q_{j}\right)\right\rangle
\end{aligned}
$$

GCM: illustration

GCM: collective wave function

- Non-orthogonal set of wave functions: $N_{i j}=\left\langle\Phi\left(q_{i}\right) \mid \Phi\left(q_{j}\right)\right\rangle \neq \delta_{i j}$

GCM: collective wave function

- Non-orthogonal set of wave functions: $N_{i j}=\left\langle\Phi\left(q_{i}\right) \mid \Phi\left(q_{j}\right)\right\rangle \neq \delta_{i j}$
- Therefore $f_{\epsilon}\left(q_{j}\right)^{2}$ is not the probability to find $\left|\Phi\left(q_{i}\right)\right\rangle$ in the correlated wave function

$$
\left\langle\Phi\left(q_{i}\right) \mid \Theta_{\epsilon}\right\rangle=\sum_{j=1}^{n} N_{i j} f_{\epsilon}\left(q_{j}\right)
$$

GCM: collective wave function

- Non-orthogonal set of wave functions: $N_{i j}=\left\langle\Phi\left(q_{i}\right) \mid \Phi\left(q_{j}\right)\right\rangle \neq \delta_{i j}$
- Therefore $f_{\epsilon}\left(q_{j}\right)^{2}$ is not the probability to find $\left|\Phi\left(q_{i}\right)\right\rangle$ in the correlated wave function

$$
\left\langle\Phi\left(q_{i}\right) \mid \Theta_{\epsilon}\right\rangle=\sum_{j=1}^{n} N_{i j} f_{\epsilon}\left(q_{j}\right)
$$

- The closest we have are the so-called collective wave functions

$$
H f=E N f \Leftrightarrow \underbrace{N^{-1 / 2} H N^{-1 / 2}}_{\tilde{H}} \underbrace{N^{+1 / 2} f}_{g}=E N^{+1 / 2} f \Leftrightarrow \tilde{H} g=E g
$$

GCM: collective wave function

- Non-orthogonal set of wave functions: $N_{i j}=\left\langle\Phi\left(q_{i}\right) \mid \Phi\left(q_{j}\right)\right\rangle \neq \delta_{i j}$
- Therefore $f_{\epsilon}\left(q_{j}\right)^{2}$ is not the probability to find $\left|\Phi\left(q_{i}\right)\right\rangle$ in the correlated wave function

$$
\left\langle\Phi\left(q_{i}\right) \mid \Theta_{\epsilon}\right\rangle=\sum_{j=1}^{n} N_{i j} f_{\epsilon}\left(q_{j}\right)
$$

- The closest we have are the so-called collective wave functions

$$
\begin{gathered}
H f=E N f \Leftrightarrow \underbrace{N^{-1 / 2} H N^{-1 / 2}}_{\tilde{H}} \underbrace{N^{+1 / 2} f}_{g}=E N^{+1 / 2} f \Leftrightarrow \tilde{H} g=E g \\
g_{\epsilon}\left(q_{i}\right)=\sum_{j} N_{i j}^{1 / 2} f_{\epsilon}\left(q_{j}\right) \text { with } \sum_{i} g_{\epsilon}\left(q_{i}\right) g_{\epsilon^{\prime}}\left(q_{i}\right)=\delta_{\epsilon \epsilon^{\prime}}
\end{gathered}
$$

GCM: collective wave function

- Non-orthogonal set of wave functions: $N_{i j}=\left\langle\Phi\left(q_{i}\right) \mid \Phi\left(q_{j}\right)\right\rangle \neq \delta_{i j}$
- Therefore $f_{\epsilon}\left(q_{j}\right)^{2}$ is not the probability to find $\left|\Phi\left(q_{i}\right)\right\rangle$ in the correlated wave function

$$
\left\langle\Phi\left(q_{i}\right) \mid \Theta_{\epsilon}\right\rangle=\sum_{j=1}^{n} N_{i j} f_{\epsilon}\left(q_{j}\right)
$$

- The closest we have are the so-called collective wave functions

$$
\begin{gathered}
H f=E N f \Leftrightarrow \underbrace{N^{-1 / 2} H N^{-1 / 2}}_{\tilde{H}} \underbrace{N^{+1 / 2} f}_{g}=E N^{+1 / 2} f \Leftrightarrow \tilde{H} g=E g \\
g_{\epsilon}\left(q_{i}\right)=\sum_{j} N_{i j}^{1 / 2} f_{\epsilon}\left(q_{j}\right) \text { with } \sum_{i} g_{\epsilon}\left(q_{i}\right) g_{\epsilon^{\prime}}\left(q_{i}\right)=\delta_{\epsilon \epsilon^{\prime}} \\
\operatorname{But}\left\langle\Phi\left(q_{i}\right) \mid \Theta_{\epsilon}\right\rangle=\sum_{j=1}^{n} N_{i j}^{1 / 2} g_{\epsilon}\left(q_{j}\right)
\end{gathered}
$$

- Order parameter: $q=|q| e^{\operatorname{iarg}(q)}$

Projected GCM: unified picture

- Order parameter: $q=|q| e^{\operatorname{iarg}(q)}$
- Example: quadrupole deformations $|q| \equiv$ average def. $\langle\Phi(|q|)| Q_{2 \mu}|\Phi(|q|)\rangle$ $\arg (q) \equiv$ Euler angles (α, β, γ)

Projected GCM: unified picture

- Order parameter: $q=|q| e^{i \arg (q)}$
- Example: quadrupole deformations $|q| \equiv$ average def. $\langle\Phi(|q|)| Q_{2 \mu}|\Phi(|q|)\rangle$ $\arg (q) \equiv$ Euler angles (α, β, γ)

- General ansatz

$$
\left|\Theta_{\epsilon}^{J M \pi}\right\rangle \equiv \sum_{\left|q_{i}\right|, K} \tilde{f}_{\epsilon}^{J M \pi}\left(\left|q_{i}\right|, K\right) P_{M K}^{J} P^{\pi}\left|\Phi\left(\left|q_{i}\right|\right)\right\rangle
$$

Example: ${ }^{188} \mathrm{~Pb}$ with SLy6 EDF

Bender et al., Phys. Rev. C 69, 064303 (2004)

Example: ${ }^{188} \mathrm{~Pb}$ with SLy6 EDF

Bender et al., Phys. Rev. C 69, 064303 (2004)

Example: ${ }^{188} \mathrm{~Pb}$ with SLy6 EDF

$$
\bar{\beta}_{i}=\sum_{\beta} \beta g_{i}^{2}(\beta)
$$

Bender et al., Phys. Rev. C 69, 064303 (2004)

Example: ${ }^{188} \mathrm{~Pb}$ with SLy6 EDF

Bender et al., Phys. Rev. C 69, 064303 (2004)

Example: ${ }^{188} \mathrm{~Pb}$ with SLy6 EDF

Bender et al., Phys. Rev. C 69, 064303 (2004)

PGCM systematics (SLy4): binding energies

Method	RMS (MeV)
spherical	11.7
deformed	5.3
def. $+J=0$	4.4
PGCM $J=0$	4.4

Bender et al., Phys. Rev. C 73, 034322 (2006)

PGCM systematics (SLy4): charge radii

Method	RMS (fm)
spherical	0.037
deformed	0.032
def. $+J=0$	0.041
PGCM $J=0$	0.044

Bender et al., Phys. Rev. C 73, 034322 (2006)

Outline of the presentation

(1) Nuclear deformation and phenomenology
(2) Simple models
(3) Symmety-breaking reference states
(4) Symmetry-projected correlated states
(5) Conclusions

Conclusions

- Deformation is a useful concept \rightarrow grasp collective correlations efficiently

Conclusions

- Deformation is a useful concept \rightarrow grasp collective correlations efficiently
- But it is not an observable in the quantum mechanical sense

Conclusions

- Deformation is a useful concept \rightarrow grasp collective correlations efficiently
- But it is not an observable in the quantum mechanical sense
- Deformed references states have to be projected onto good quantum numbers

Conclusions

- Deformation is a useful concept \rightarrow grasp collective correlations efficiently
- But it is not an observable in the quantum mechanical sense
- Deformed references states have to be projected onto good quantum numbers
- PGCM is an efficient method to include these collective correlations while respecting the symmetries of H

Conclusions

- Deformation is a useful concept \rightarrow grasp collective correlations efficiently
- But it is not an observable in the quantum mechanical sense
- Deformed references states have to be projected onto good quantum numbers
- PGCM is an efficient method to include these collective correlations while respecting the symmetries of H
- Recent developments of PGCM in the ab initio context

```
Yao et al., Phys. Rev. Lett. 124, }232501\mathrm{ (2020)
Frosini et al., Eur. Phys. J. A 58, }62\mathrm{ (2022)
Frosini et al., Eur. Phys. J. A 58, }63\mathrm{ (2022)
Frosini et al., Eur. Phys. J. A 58, 64 (2022)
```

