

Laboratoire de Physique

des 2 Infinis

New alpha particle radioactivity

Florian MERCIER IJCLab, PhyNet

Collaborators : Jie Zhao, CCS, Shenzhen University Jean-Paul Ebran, CEA DAM, Paris Saclay University Elias Khan, IJCLab, Paris Saclay University Dario Vretenar, Physics Department, Zagreb University Tamara Niksic, Physics Department, Zagreb University

Microscopic description of radioactivity

Initial state

Is it possible to find a continuous transformation between initial and final state ?

Final state

Microscopic description of radioactivity

Mercier Florian

ESNT 2022

Lifetime computation

What quantity do we need to minimize to find the "good" path?

$$S(L) = \int_{s_{
m in}}^{s_{
m out}} rac{1}{\hbar} \sqrt{2 \mathcal{M}_{
m eff}(s)} \left[V_{
m eff}(s) - E_0
ight] ds$$

Inertial (effective) mass : information about the dynamic. Computed using Adiabatic Time Dependent Hartree Fock Bogoluibov method (ATDHFB) and perturbative cranking approximation

PES : information about the energy cost of a certain path. Computed at RHB level with covariant EDF (DD-PC1, DD-ME2 and PC-PK1)

$$egin{aligned} \mathcal{M}_{ ext{eff}} &= oldsymbol{\hbar}^2 \, M_{(1)}^{-1} \, M_{(3)} \, M_{(1)}^{-1} \ & \left[M_{(k)}
ight]_{ij} = \sum_{\mu
u} rac{\left< 0 ig| \hat{Q}_i ig| \mu
u
ight> \left< \mu
u ig| \hat{Q}_j ig| 0
ight> \ & \left(E_\mu + E_
u
ight)^k \end{aligned}$$

$$\delta S = 0 \longrightarrow au pprox A \exp[2S(L)]$$
 wkb

Lifetime computation

Minimizing the action in two steps :

I – From ground state to scission

- Computation of the PES with fully selfconsistant calculations
- Stop the calculations when the good number of nucleons is reached in the clusters
- Minimize the action w.r.t. β_2 and β_3

- Only Coulomb $V_{eff} = V_C = e^2 \frac{Z_1 Z_2}{R} Q$
- Classical approximation for inertial mass in terms of *R*.
- Minimize the action w.r.t. R.

Emission

Previous results for cluster emission and fission

Mercier Florian

What about α decay ?

Results for α decay of ¹⁰⁸Xe and ¹⁰⁴Te

F. Mercier et al., Phys. Rev. C 102, 011301(R) (2020)

Results for α decay of ¹⁰⁸Xe and ¹⁰⁴Te

F. Mercier et al., Phys. Rev. C 102, 011301(R) (2020)

Mercier Florian

Results for α decay of ¹⁰⁸Xe and ¹⁰⁴Te

F. Mercier et al., Phys. Rev. C 102, 011301(R) (2020)

Discontinuity in β_4 for ¹⁰⁴Te

Application to heavier nuclei ...

... or the problem of finding an α !

ESNT 2022

²²⁴Ra PES

Does not mean it does not exist !

We need to understand what it means to preform and emit an α from the deformation point of view !

Simply put two spheres on top of each others and compute the deformation parameters

Mercier Florian

Mercier Florian

F. Mercier et al., Phys. Rev. Lett. 127, 012501 (2021)

19

F. Mercier et al., Phys. Rev. Lett. 127, 012501 (2021)

0.15/0.075/0.1

20

Details on 2α decay of ²²⁴Ra : pairing et parametrization

Interaction	Pairing parameters	Action from GS to scission	Coulomb action	Lifetime (s)
DD-PC1	(1.0,1.0)	18.5	23.9	~ 10 ^{16.27}
DD-PC1	(1.09,1.12)	16.2	23.9	~ 10 ^{14.24}
DD-ME2	(1.09,1.12)	15.3	23.9	~ 10 ^{13.47}
PC-PK1	(1.09,1.12)	15.0	23.9	~ 10 ^{13.25}

Pairing adjusted to reproduce pairing gap of Gogny D1S interaction

Pairing adjusted on pairing gap of ²²⁴Ra

What about 2α emission in other nuclei?

F. Mercier et al., Phys. Rev. Lett. 127, 012501 (2021)

A single framework to describe ...

A single framework to describe ...

A single framework to describe ...

