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Predicting nuclear structure on the whole chart...

Why so complex ? Some open questions
@ Three fundamental interactions @ Properties of exotic matter ?
@ Non elementary fermions @ Mechanisms of nucleosynthesis ?
@ Mesoscopic many-body problem @ Super-heavy island of stability ?

Protons

3000 measured nuclei

> Neutrons
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Limits of our current paradigm

Probléme a

Limitations
e No link with QCD e Difficult to link with experiments

e Spuriosities e Numerical Cost
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Toward a new paradigm 7

Probléme 3

6 / 30

13th April 2022 R.-D. Lasseri



Introduction: Problems and Challenge of Nuclear Theory A taste of what Machine Learning is about NucleAl Phase |: PES Prediction using Deep Learning I

Table of contents

O A taste of what Machine Learning is about

13th April 2022 R.-D. Lasseri 7 /30



Introduction: Problems and Challenge of Nuclear Theory A taste of what Machine Learning is about NucleAl Phase |: PES Prediction using Deep Learning I

Statistical Learning — A fundamental postulate

@ Let X be a vector space of all possible "inputs”
@ Let Y be a vector space of all the possible "outputs”
@ Let Z be the product space Z =X X Y

Postulate
Ip € Z|p(z) = p(x,y) l

Where p is an unknown probability distribution mapping the "inputs” to the
"outputs”

In Physics, because of the causal assumption — There is something to learn.
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Machine Learning — Neural network

y; = filx)  =Ai(Wi-x+ b)
Yo = f2(}’1) :A2(W2 "Y1 T+ bl)
Yy = f3(.V2) :A3(W3 Yot b2)

y=1f(x)  =fofoh(x)
A1, A2, A3 = non-linear functions.
| ELU‘ activation function (a.: 1) . .
(R S ] Wi, Wa, W3 = matrices,
L R R o . b1, by, b3 = vectors.
0‘ We fit these parameters so to reproduce
some training data (x',y'),i € [0, N]. )
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Building the neural network

Architecture:

Outputs ]

64%64*8 Implementation:

Furp o Keras/TensorFlow
Inputs Hidden layers AV @ Fast GPU execution

Nz [1600-300-150-100-75
600 bits string (ELU)

A 2l
BO 0 TensorFlo :
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Building the neural network

Architecture:

Outputs ]

64%64*8 Implementation:

Furp o Keras/TensorFlow
Inputs Hidden layers AV @ Fast GPU execution

Nz [1600-300-150-100-75
600 bits string (ELU)

B 00 Tensor '

Training:
@ Training set: sample from 2100 even-even nuclei, Gogny D1S functional

@ Loss function based on a weighted sum of:

6

Li(N,Z) = —
B2 3,

1ta1(B, ) — turs (3, v)|°dBBdY, (1)

with t = Eyrg, AV, 14, . ...
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PES Prediction using Deep Learning — Published in Phys Rev Lett (2020)
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PES Prediction using Deep Learning — Published in Phys Rev Lett (2020)
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PES Prediction using Deep Learning — Published in Phys Rev Lett (2020)

Internal Variables —» Experimental Observables

12p 2 ==
I i i
_10f == 3+ 4
= qil 2+
= + -
E . : . 6+ 6:_2
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Deep o : +
Learning £ e Lﬁ 0‘4;_ 4.5 C o )
P 0-2] 2+ 2+ 27
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——— - Deep
1420 -1395 -1370 EDF Learning EXp.
Energy (MeV)
Applications

@ Accurate and fast observable predictions (experimental and astrophysical
applications)

e New EDF families (Ongoing work QULB)
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Discontinuities — How to get rid of them 7
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Discontinuities — How to get rid of them 7
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Discontinuities — How to get rid of them 7
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Discontinuities — How to get rid of them 7

@ Bruteforce
@ "Smart” smoothing: DPM Method

Promising, yet expensive and relies on physicist insights (Hi Rémi ! ;) ) !

'Lau, Bernard, Simenel

13th April 2022 R.-D. Lasseri 15/ 30



Introduction: Problems and Challenge of Nuclear Theory A taste of what Machine Learning is about NucleAl Phase |: PES Prediction using Deep Learning I

Discontinuities — How to get rid of them 7

[

@ Bruteforce
@ "Smart” smoothing: DPM Method
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@ A curious alternative: Generative R
:

Machine Learning L

Physically cumbersome but very promising
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General idea: building manifolds of many-body states

Generative Adversarial Networks, Auto Encoders: capacity to
@ Reduce information to a small optimal latent space (neck)

© Generate a continuous outputs from the latent space

Example: the smile vector (T. White, Victoria Univ. of Wellington)
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General idea: building manifolds of many-body states

Generative Adversarial Networks, Auto Encoders: capacity to
© Reduce information to a small optimal latent space (neck)

© Generate a continuous outputs from the latent space

Project: continuous manifolds of Hartree-Fock-Bogoliubov states

A new way to include the diabatic effects in our description of fission ?

i
y_
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Cascade Auto Encoder: Reconstruction the full HFB matrix — Training

Decoder
1

> "
Symmetrical

o D D ———  HFB J Block
P o - ol m
" [ ] . g { Protons
— 2 Neutrons
00 Latent 00
g g @ representation @ g g

n States

Encoder

Losses:
@ Mean Square Error / Mean Absolute Error

@ Mean Square Error + Trace conservation 4+ ldempotence conservation +
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What do we want to learn 7

Currently the p matrix at Relativistic Mean Field Level (without k)

The problem is:
@ In an H.O basis
@ Axially symmetric — Q" block diagonal.
@ Hermiticity — Symmetric

Block 1 Block 2

Over 1000 3, configurations.
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Tips, tricks and limitations

A few limitations:

@ GPU VRAM (From 4Gb to 40Gb)
@ Vanishing Gradients

@ Optimal metrics/cost function

Duplication Matrix : Elimination matrix:
Dnvech(A) = vec(A) L,vec(A) = vech(A)
vech(A) being the half-vectorization of A Efficient (vetorizable) way to go from
n? s n(n+1)

2
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Tips, tricks and limitations

A few limitations:
@ GPU VRAM (From 4Gb to 40Gb)

@ Vanishing Gradients

@ Optimal metrics/cost function

Transfer learning strategy = One order of magnitude decrease of the loss

|| Transfered Layer
7] Trained from scratch layer
|
5 ! 5
8. - ccomp + i 8
— )
| O
|
E ! 3
Q = = =y = =
S |
| — @)
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Tips, tricks and limitations

A few limitations:

@ GPU VRAM (From 4Gb to 40Gb)
@ Vanishing Gradients

© Optimal metrics/cost function

What is the accurate distance in between two Slater/p matrices ?
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20Ne: Some preliminary results
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20Ne: Some preliminary results

Discontinuity in the PES
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20Ne: Some preliminary results

Clear clustering in the latent space
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20Ne: Some preliminary results

Nucleonic densities
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20Ne: Some preliminary results

Nucleonic densities
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20Ne: Some preliminary results
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20Ne: Some preliminary results

Extrapolation along the latent space + Nucleonic density
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20Ne: Some preliminary results

Hexadecapolar discontinuity

(ASI) AbBsaul
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Possibles uses and roadmap

@ A good prior/starting point for HFB solvers
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Possibles uses and roadmap

@ A good prior/starting point for HFB solvers
@ A direct generative approach for HFB states
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Possibles uses and roadmap

@ A good prior /starting point for HFB solvers
@ A direct generative approach for HFB states

© A possible way to overcome discontinuities ?
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Possibles uses and roadmap

@ A good prior/starting point for HFB solvers
@ A direct generative approach for HFB states

© A possible way to overcome discontinuities ?

Currently struggling to reproduce approximately-enough”correct” HF states

U

Several open questions yet
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Conclusions and outlooks

Machine Learning for:

Outputs
64*%64+8
@ Modelisation of collective variables Eurs
Inputs Hidden layers AV
NZ 600-300-150-100-75
600 bits string (ELU) Il
Boo
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Conclusions and outlooks

Machine Learning for:

@ Modelisation of collective variables

Potential Energy Surfaces Numerical Cost
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Conclusions and outlooks

Machine Learning for:
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Conclusions and outlooks

Machine Learning for:
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The NucleAl project

Collaborators:
@ G. Hupin, D. Lacroix, 1JCLab

@ D. Regnier, J-P. Ebran, S. Hilaire, CEA,
DAM

@ S. Goriely, ULB
e J. Margueron, IPNL
@ A. Penon, J. Ripoche, Magic Lemp

Support:
e NVIDIA GPU Grant Program:

NUCIeAI 2x Titan V GPU E
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The NucleAl project

Collaborators:
@ G. Hupin, D. Lacroix, 1JCLab

@ D. Regnier, J-P. Ebran, S. Hilaire, CEA,
DAM

@ S. Goriely, ULB
e J. Margueron, IPNL
@ A. Penon, J. Ripoche, Magic Lemp

Support:
e NVIDIA GPU Grant Program:

NUCIeAI 2x Titan V GPU E

Thank you for your attention !
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Replacing the time consuming part by a neural network

[noframenumbering]

Multi task Learning

N=>©° Energy
o Vib. Inertias 4 SDCH |—= Spectrum

Rot. Inertias

@ Learning the correlations between the 8 outputs
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Using a committee of neural networks

Committee "Query" Candidate
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Benefits of a committee
@ Less sensitive to the random initialization

@ Estimation of the associated standard deviation
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Using a committee of neural networks

Committee "Query" Candidate
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Benefits of a committee
@ Less sensitive to the random initialization

@ Estimation of the associated standard deviation
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Active learning

@ An incremental and automatic choice of training nuclei (5 nuclei/step)
@ Query ~ standard deviation between the committee members

100f Training set i
o 50} -1-}---a . _— i
Q i il . 0 E
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o |
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Active learning

@ An incremental and automatic choice of training nuclei (5 nuclei/step)
@ Query ~ standard deviation between the committee members
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Active learning

@ An incremental and automatic choice of training nuclei (5 nuclei/step)
@ Query ~ standard deviation between the committee members
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Root Mean Square error (RMS) of the potential energy surface

Test RMS = /(Al — HFB)? on the nuclei not in the training set
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Al versus HFB:

Root Mean Square error (RMS) of all outputs

Train EHFB AV Il IQ I3 Boo 301 Bll EGS
% (keV) (h*xMeV™1) (MevV™1) (keV)
5 1190 417y 1.84 280 097 13.8 12.0 28.2 | 1325
10 557 312 140 2.25 0.76 11.7 10.2 23.9 | 716
15 471 247 125 202 0.69 10.6 0.4 21.9 655
20 388 202 122 196 0.68 10.2 0.1 21.2 518

The first column contains the size of the training set in % of the AMEDEE database
while the others highlight the RMS of the outputs of the Al. The last column contains
the RMS associated to the correlated ground state energy Egs.

Keep in mind:
@ RMS= 950 keV, Al vs Exp: Athanassopoulos et. al (2004), fitted on 1800 nuclei

@ RMS= 790 keV: 5DCH Gogny D1M vs Exp.
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Example of 1780s

® RMS(Enrg) >~ median RMS on the 1800 test nuclei

@ Closest trained nucleus: +4 neutrons. -2 protons
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Excitation spectrum of 178Q0s
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o Correlated ground state: |ESL — EGEP| = 150 keV

@ Rotational states reproduced within 8%

@ First vibrational state within 13%
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