

Nuclear discontinuities through the prism of Machine Learning

R.-D. Lasseri¹, D. Regnier², S. Hilaire²,

¹Centre Borelli, ENS-Paris Saclay, France ²CEA DAM/DIF, France

13th April 2022 R.-D. Lasseri 1 / 30

- Introduction: Problems and Challenge of Nuclear Theory
- 2 A taste of what Machine Learning is about
- 3 NucleAl Phase I: PES Prediction using Deep Learning
- 4 NucleAl Phase II: Probing nuclear phase transitions with deep learning

13th April 2022 R.-D. Lasseri 2/30

Why so complex?

- Three fundamental interactions
- Non elementary fermions
- Mesoscopic many-body problem

Some open questions

- Properties of exotic matter ?
- Mechanisms of nucleosynthesis ?
- Super-heavy island of stability ?

Why so complex?

- Three fundamental interactions
- Non elementary fermions
- Mesoscopic many-body problem

Some open questions

- Properties of exotic matter ?
- Mechanisms of nucleosynthesis ?
- Super-heavy island of stability ?

Building bridges – Global Strategy

13th April 2022 R.-D. Lasseri 4 / 30

13th April 2022 R.-D. Lasseri 4/30

Evaluation \(\begin{cases} \quad QRPA/5DCH \\ Machine Learning \end{cases} \]

13th April 2022 R.-D. Lasseri 4/30

Limitations

• No link with QCD

• Difficult to link with experiments

Spuriosities

Numerical Cost

13th April 2022 R.-D. Lasseri 6 / 30

- 1 Introduction: Problems and Challenge of Nuclear Theory
- A taste of what Machine Learning is about
- 3 NucleAl Phase I: PES Prediction using Deep Learning
- 4 NucleAl Phase II: Probing nuclear phase transitions with deep learning

13th April 2022 R.-D. Lasseri 7/30

- Let X be a vector space of all possible "inputs"
- Let Y be a vector space of all the possible "outputs"
- Let Z be the product space $Z = X \times Y$

Postulate

$$\exists p \in \mathcal{Z} | p(z) = p(x, y)$$

Where p is an unknown probability distribution mapping the "inputs" to the "outputs"

In Physics, because of the causal assumption \rightarrow **There is** something to learn.

13th April 2022 R.-D. Lasseri 8 / 30

$$y_1 = f_1(x) = A_1(W_1 \cdot x + b_1)$$
 $y_2 = f_2(y_1) = A_2(W_2 \cdot y_1 + b_1)$
 $y = f_3(y_2) = A_3(W_3 \cdot y_2 + b_2)$
 $y = f(x) = f_3 \circ f_2 \circ f_1(x)$

$$W_1, W_2, W_3 =$$
matrices, $b_1, b_2, b_3 =$ vectors.

We fit these parameters so to reproduce some training data $(\mathbf{x}^i, \mathbf{y}^i)$, $i \in [0, N]$.

13th April 2022 R.-D. Lasseri 9/30

Table of contents

- 1 Introduction: Problems and Challenge of Nuclear Theory
- 2 A taste of what Machine Learning is about
- NucleAl Phase I: PES Prediction using Deep Learning
- 4 NucleAl Phase II: Probing nuclear phase transitions with deep learning

13th April 2022 R.-D. Lasseri 10/30

Architecture:

Implementation:

- Keras/TensorFlow
- Fast GPU execution

13th April 2022 R.-D. Lasseri 11 / 30

Building the neural network

Architecture:

Implementation:

- Keras/TensorFlow
- Fast GPU execution

Training:

- Training set: sample from 2100 even-even nuclei, Gogny D1S functional
- Loss function based on a weighted sum of:

$$\mathcal{L}_{t}(N,Z) = \frac{6}{\pi B^{2}} \int_{\beta,\gamma} |t_{\mathsf{AI}}(\beta,\gamma) - t_{\mathsf{HFB}}(\beta,\gamma)|^{2} \mathsf{d}\beta \beta \mathsf{d}\gamma, \tag{1}$$

with
$$t = E_{HFB}, \Delta V, \mathcal{I}_1, \ldots$$

Numerical Cost

Applications

- Accurate and fast observable predictions (experimental and astrophysical applications)
- New EDF families (Ongoing work @ULB)

Applications

- Accurate and fast observable predictions (experimental and astrophysical applications)
- New EDF families (Ongoing work @ULB)

Experimental Observables

Applications

- Accurate and fast observable predictions (experimental and astrophysical applications)
- New EDF families (Ongoing work @ULB)

Table of contents

- 1 Introduction: Problems and Challenge of Nuclear Theory
- 2 A taste of what Machine Learning is about
- 3 NucleAl Phase I: PES Prediction using Deep Learning
- 4 NucleAl Phase II: Probing nuclear phase transitions with deep learning

13th April 2022 R.-D. Lasseri 13 / 30

13th April 2022 $$14\ /\ 30$$

Discontinuities – A painfull story

13th April 2022 R.-D. Lasseri $14 \ / \ 30$

13th April 2022 R.-D. Lasseri $14 \ / \ 30$

13th April 2022 R.-D. Lasseri $14 \ / \ 30$

- Bruteforce
- "Smart" smoothing: DPM Method
- A curious alternative: Generative Machine Learning

13th April 2022 R.-D. Lasseri 15 / 30

Discontinuities – How to get rid of them ?

- Bruteforce
- "Smart" smoothing: DPM Method
- A curious alternative: Generative Machine Learning

R.-D. Lasseri 13th April 2022 15 / 30

- Bruteforce
- "Smart" smoothing: DPM Method
- A curious alternative: Generative Machine Learning

Exponential increases of computation time

13th April 2022 R.-D. Lasseri 15 / 30

- Bruteforce
- "Smart" smoothing: DPM Method
- A curious alternative: Generative
 Machine Learning

Promising, yet expensive and relies on physicist insights (Hi Rémi ! :)) 1

¹Lau, Bernard, Simenel

- Bruteforce
- "Smart" smoothing: DPM Method
- A curious alternative: Generative Machine Learning

Physically cumbersome but very promising

General idea: building manifolds of many-body states

Generative Adversarial Networks, Auto Encoders: capacity to

- Reduce information to a small optimal latent space (neck)
- Generate a continuous outputs from the latent space

Example: the smile vector (T. White, Victoria Univ. of Wellington)

General idea: building manifolds of many-body states

Generative Adversarial Networks, Auto Encoders: capacity to

- Reduce information to a small optimal latent space (neck)
- @ Generate a continuous outputs from the latent space

Project: continuous manifolds of Hartree-Fock-Bogoliubov states

A new way to include the diabatic effects in our description of fission?

Cascade Auto Encoder: Reconstruction the full HFB matrix – Training

Losses:

- Mean Square Error / Mean Absolute Error
- ullet Mean Square Error + Trace conservation + Idempotence conservation +

. . .

What do we want to learn?

Currently the ρ matrix at Relativistic Mean Field Level (without κ)

The problem is:

- In an H.O basis
- Axially symmetric $\to \Omega^{\pi}$ block diagonal.
- Hermiticity → Symmetric

Over 1000 β_2 configurations.

Tips, tricks and limitations

A few limitations:

- GPU VRAM (From 4Gb to 40Gb)
- Vanishing Gradients
- Optimal metrics/cost function

Duplication Matrix:

$$D_n \operatorname{vech}(A) = \operatorname{vec}(A)$$

Elimination matrix:

$$L_n \text{vec}(A) = \text{vech}(A)$$

vech(A) being the half-vectorization of A Efficient (vetorizable) way to go from

$$n^2 o rac{n(n+1)}{2}$$

Tips, tricks and limitations

A few limitations:

- GPU VRAM (From 4Gb to 40Gb)
- Vanishing Gradients
- Optimal metrics/cost function

Transfer learning strategy \Rightarrow One order of magnitude decrease of the loss

Transfered Layer

Trained from scratch layer

A few limitations:

- GPU VRAM (From 4Gb to 40Gb)
- Vanishing Gradients
- Optimal metrics/cost function

What is the accurate distance in between two Slater/ ρ matrices ?

13th April 2022 R.-D. Lasseri 19 / 30

■ 8 Shell ■ DDME-2 Functional

Discontinuity in the PES

Clear clustering in the latent space

Nucleonic densities

Nucleonic densities

Extrapolation along the latent space

Extrapolation along the latent space + Nucleonic density

Hexadecapolar discontinuity

- A good prior/starting point for HFB solvers
- A direct generative approach for HFB states
- A possible way to overcome discontinuities?

- A good prior/starting point for HFB solvers
- A direct generative approach for HFB states
- A possible way to overcome discontinuities?

- A good prior/starting point for HFB solvers
- A direct generative approach for HFB states
- A possible way to overcome discontinuities ?

- A good prior/starting point for HFB solvers
- A direct generative approach for HFB states
- A possible way to overcome discontinuities?

- A good prior/starting point for HFB solvers
- A direct generative approach for HFB states
- A possible way to overcome discontinuities?

Currently struggling to reproduce approximately-enough"correct" HF states

Several open questions yet

Conclusions and outlooks

Machine Learning for:

- Modelisation of collective variables
- Generation of a manifold of HFB states

R.-D. Lasseri 22 / 30 13th April 2022

Machine Learning for:

- Modelisation of collective variables
- Generation of a manifold of HFB states

Conclusions and outlooks

Machine Learning for:

- Modelisation of collective variables
- Generation of a manifold of HFB states

R.-D. Lasseri 22 / 30 13th April 2022

Machine Learning for:

- Modelisation of collective variables
- Generation of a manifold of HFB states

The **NucleAI** project

Collaborators:

- G. Hupin, D. Lacroix, IJCLab
- D. Regnier, J-P. Ebran, S. Hilaire, CEA, DAM
- S. Goriely, ULB
- J. Margueron, IPNL
- A. Penon, J. Ripoche, Magic Lemp

Support:

NVIDIA GPU Grant Program:

2× Titan V GPU

Thank you for your attention!

The **NucleAI** project

Collaborators:

- G. Hupin, D. Lacroix, IJCLab
- D. Regnier, J-P. Ebran, S. Hilaire, CEA, DAM
- S. Goriely, ULB
- J. Margueron, IPNL
- A. Penon, J. Ripoche, Magic Lemp

Support:

NVIDIA GPU Grant Program:

2× Titan V GPU

Thank you for your attention!

Replacing the time consuming part by a neural network

[noframenumbering]

Multi task Learning

Learning the correlations between the 8 outputs

Using a committee of neural networks

Benefits of a committee

- Less sensitive to the random initialization
- Estimation of the associated standard deviation

Using a committee of neural networks

Benefits of a committee

- Less sensitive to the random initialization
- Estimation of the associated standard deviation

- An incremental and automatic choice of training nuclei (5 nuclei/step)
- ullet Query \simeq standard deviation between the committee members

- An incremental and automatic choice of training nuclei (5 nuclei/step)
- ullet Query \simeq standard deviation between the committee members

- An incremental and automatic choice of training nuclei (5 nuclei/step)
- ullet Query \simeq standard deviation between the committee members

- An incremental and automatic choice of training nuclei (5 nuclei/step)
- ullet Query \simeq standard deviation between the committee members

- An incremental and automatic choice of training nuclei (5 nuclei/step)
- ullet Query \simeq standard deviation between the committee members

- An incremental and automatic choice of training nuclei (5 nuclei/step)
- ullet Query \simeq standard deviation between the committee members

- An incremental and automatic choice of training nuclei (5 nuclei/step)
- ullet Query \simeq standard deviation between the committee members

- An incremental and automatic choice of training nuclei (5 nuclei/step)
- ullet Query \simeq standard deviation between the committee members

- An incremental and automatic choice of training nuclei (5 nuclei/step)
- ullet Query \simeq standard deviation between the committee members

Root Mean Square error (RMS) of the potential energy surface

Test RMS = $\sqrt{(AI - HFB)^2}$ on the nuclei not in the training set

27 / 30 13th April 2022 R.-D. Lasseri

Root Mean Square error (RMS) of all outputs

Al versus HFB:

Train	E HFB	ΔV	\mathcal{I}_1	\mathcal{I}_2	\mathcal{I}_3	B_{00}	B_{01}	B_{11}	E_{GS}
%	(keV)		$(\hbar^2 imes MeV^{-1})$			(MeV^{-1})			(keV)
5	1190	417	1.84	2.80	0.97	13.8	12.0	28.2	1325
10	557	312	1.40	2.25	0.76	11.7	10.2	23.9	716
15	471	247	1.25	2.02	0.69	10.6	9.4	21.9	655
20	388	202	1.22	1.96	0.68	10.2	9.1	21.2	518

The first column contains the size of the training set in % of the AMEDEE database while the others highlight the RMS of the outputs of the AI. The last column contains the RMS associated to the correlated ground state energy E_{GS} .

Keep in mind:

- RMS= 950 keV, AI vs Exp: Athanassopoulos et. al (2004), fitted on 1800 nuclei
- RMS= 790 keV: 5DCH Gogny D1M vs Exp.

Example of ¹⁷⁸Os

- RMS(E_{HFB}) \simeq median RMS on the 1800 test nuclei
- Closest trained nucleus: +4 neutrons, -2 protons

- ullet Correlated ground state: $|E_{GS}^{AI}-E_{GS}^{HFB}|=150$ keV
- Rotational states reproduced within 8%
- First vibrational state within 13%