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Goal

• Fusion phenomenology
• Quantitative predictions (no free parameter)
• From deep sub-barrier to above barrier
• Isolate contributions to nucleus-nucleus potentials

Pauli repulsion
Dynamics (shape polarisation, transfer…)



Outline

• Microscopic approach to nucleus-nucleus potential
FHF, DCFHF, DC-TDHF

• Application to 16O+208Pb
• Dynamical isovector contribution to the potential
• Pauli energy distribution



Hartree-Fock (HF)
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Independent nucleons
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Fig.19.(Top)Densityevolutionforthereaction16O+208Pb
correspondingtoahead-oncollisionatacenter-of-massen-
ergyEc.m.=74.44MeV(justbelowthefusionbarrier).The
redsurfacescorrespondtoaniso-densityathalfthesaturation
density(ρ0/2=0.08fm−3).Eachfigureisseparatedbyatime
stepof135fm/c.Timerunsfromlefttoright.(Bottom)The
sameatEc.m.=74.45MeV,i.e.,justabovethefusionthresh-
old.
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Fig.20.Bassbarriers[210](stars)andbarriersextractedfrom
TDHFcalculations(circles)asafunctionofexperimentalbar-
riers(centroidsoffusionbarrierdistributions).

oftherelativemotiontoatransfermechanism[76].In
fact,theoutgoingchannelof16O+208PbatEc.m.=
74.44MeV(seetopoffig.19)is,inaverage,14C+210Po.
Thistwo-protontransferchanneleffectivelylowersthe
barrierbydecreasingZ1Z2and,then,theCoulombre-
pulsion.Transferreactionsinthe16O+208Pbsystemare
discussedinmoredetailsinsect.4.3.Notethatlow-lying
collectivevibrations,suchasthefirst3−statein208Pb
(seefig.4)alsoaffectthefusionbarrierdistribution[207].

Systematiccalculationsoffusionbarriershavebeen
performedformedium-masssystemsinvolvingspherical
nuclei[76].Asummaryoftheresultsisshowninfig.20.
Agoodreproductionofthebarrierdistributioncentroids
hasbeenobtained(betterthantheBassparametrisation)
forallthestudiedsystems.Othercalculationswith3-
dimensionalTDHFcodesconfirmedthepredictivepower
oftheTDHFapproachforthedeterminationoffusion
barriers[78,209].

Above-barrierfusioncross-sectionshavebeencom-
putedforthe16O+208Pbsysteminref.[76].Thefact
thatfusionprobabilitiesareeither0or1impliesthat
cross-sectionsareobtainedusingthe“quantumsharpcut-

80100
ECM (MeV)

0.1

1

10

100

1000

Vfu
s  (
m
b)

experiment
TDHF

Fig.21.Experimentalfusioncross-sectionsfromref.[207]
(stars)comparedtocross-sectionsdeducedfromTDHFcal-
culations(lines)of16O+208Pbcollisions.Thetwolinescor-
respond,respectively,tolowerandupperlimitsoftheoretical
cross-sections.

offformula”[211],

σfus(E)=
πh̄2

2µE
[lmax(E)+1]2,(4.3)

wherethefusionprobabilityis0forl>lmax(E)and1
forl≤lmax(E).Toavoiddiscontinuitiesduetothein-
tegervaluesoflmax(E),[lmax(E)+1]̄hisgenerallyap-
proximatedbyitssemi-classicalequivalentLc=

√
2µEbc.

Thelattercorrespondstotheclassicalangularmomentum
thresholdforfusionandbcdenotesthemaximumimpact
parameterbelowwhichfusiontakesplace[212].Wefinally
obtainthestandardclassicalexpressionforfusioncross-
sectionsσfus(E)#πL2

c/2µE=πb2
c.

Theresultsareshowninfig.21forthe16O+208Pb
system.Fusioncross-sectionsareoverestimatedbyabout
16%abovethebarrier.Althoughthisdiscrepancyissmall
foratheorywhichhasnoparameteradjustedonreaction
mechanisms,itsoriginisunclear.

Finally,thecalculationsarenotabletoreproducethe
sub-barrierenergies.Thisisofcourseoneofthemain
drawbacksoftheTDHFapproach.Theinclusionofquan-
tumtunnellingofthemany-bodywavefunctionisclearly
oneofthebiggestchallengesinthemicroscopictreatment
oflow-energynuclearreactions.

4.2.2Fusionbarrierswithadeformednucleus

Wenowconsidercollisionsofasphericalnucleusonade-
formedone.Insuchacase,thebarrierdependsonthe
orientationofthedeformednucleusatthetouchingpoint,
leadingtoawiderbarrierdistributionthanthesinglebar-
riercase[187,215].

Figure22showstwoexamplesofexperimentalbar-
rierdistributionsinvolvingaprolatlydeformedheavytar-
get[213,214].Suchbarrierdistributionsareusuallywell
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VDCFHF (R) = h�|Ĥ|�i � E[⇢1]� E[⇢2]

VFHF (R) = E[⇢1 + ⇢2]� E[⇢1]� E[⇢2]

E[⇢] ⌘ E[⇢, ⌧,J · · ·] =
Z
d
3
rH(r)

1

Skyrme SLy4d functional



Frozen Hartree-Fock (FHF)
Brueckner et al., PR 173, 944 (1968)
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Fig.19.(Top)Densityevolutionforthereaction16O+208Pb
correspondingtoahead-oncollisionatacenter-of-massen-
ergyEc.m.=74.44MeV(justbelowthefusionbarrier).The
redsurfacescorrespondtoaniso-densityathalfthesaturation
density(ρ0/2=0.08fm−3).Eachfigureisseparatedbyatime
stepof135fm/c.Timerunsfromlefttoright.(Bottom)The
sameatEc.m.=74.45MeV,i.e.,justabovethefusionthresh-
old.
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Fig.21.Experimentalfusioncross-sectionsfromref.[207]
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culations(lines)of16O+208Pbcollisions.Thetwolinescor-
respond,respectively,tolowerandupperlimitsoftheoretical
cross-sections.

offformula”[211],

σfus(E)=
πh̄2

2µE
[lmax(E)+1]2,(4.3)

wherethefusionprobabilityis0forl>lmax(E)and1
forl≤lmax(E).Toavoiddiscontinuitiesduetothein-
tegervaluesoflmax(E),[lmax(E)+1]̄hisgenerallyap-
proximatedbyitssemi-classicalequivalentLc=

√
2µEbc.

Thelattercorrespondstotheclassicalangularmomentum
thresholdforfusionandbcdenotesthemaximumimpact
parameterbelowwhichfusiontakesplace[212].Wefinally
obtainthestandardclassicalexpressionforfusioncross-
sectionsσfus(E)#πL2

c/2µE=πb2
c.

Theresultsareshowninfig.21forthe16O+208Pb
system.Fusioncross-sectionsareoverestimatedbyabout
16%abovethebarrier.Althoughthisdiscrepancyissmall
foratheorywhichhasnoparameteradjustedonreaction
mechanisms,itsoriginisunclear.

Finally,thecalculationsarenotabletoreproducethe
sub-barrierenergies.Thisisofcourseoneofthemain
drawbacksoftheTDHFapproach.Theinclusionofquan-
tumtunnellingofthemany-bodywavefunctionisclearly
oneofthebiggestchallengesinthemicroscopictreatment
oflow-energynuclearreactions.

4.2.2Fusionbarrierswithadeformednucleus

Wenowconsidercollisionsofasphericalnucleusonade-
formedone.Insuchacase,thebarrierdependsonthe
orientationofthedeformednucleusatthetouchingpoint,
leadingtoawiderbarrierdistributionthanthesinglebar-
riercase[187,215].

Figure22showstwoexamplesofexperimentalbar-
rierdistributionsinvolvingaprolatlydeformedheavytar-
get[213,214].Suchbarrierdistributionsareusuallywell
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VDCFHF (R) = h�|Ĥ|�i � E[⇢1]� E[⇢2]

VFHF (R) = E[⇢1 + ⇢2]� E[⇢1]� E[⇢2]

1

(No Pauli)

Microscopic approach

Simenel et al., PRC 95, 031601 (2017)
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VDCFHF (R) = h�|Ĥ|�i � E[⇢1]� E[⇢2]

VFHF (R) = E[⇢1 + ⇢2]� E[⇢1]� E[⇢2]

1

(No Pauli)

Microscopic approach

� h�| Ĥ |�i = 0

⇢(r)

� h�|

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Fig.19.(Top)Densityevolutionforthereaction16O+208Pb
correspondingtoahead-oncollisionatacenter-of-massen-
ergyEc.m.=74.44MeV(justbelowthefusionbarrier).The
redsurfacescorrespondtoaniso-densityathalfthesaturation
density(ρ0/2=0.08fm−3).Eachfigureisseparatedbyatime
stepof135fm/c.Timerunsfromlefttoright.(Bottom)The
sameatEc.m.=74.45MeV,i.e.,justabovethefusionthresh-
old.
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Fig.21.Experimentalfusioncross-sectionsfromref.[207]
(stars)comparedtocross-sectionsdeducedfromTDHFcal-
culations(lines)of16O+208Pbcollisions.Thetwolinescor-
respond,respectively,tolowerandupperlimitsoftheoretical
cross-sections.
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Fig.19.(Top)Densityevolutionforthereaction16O+208Pb
correspondingtoahead-oncollisionatacenter-of-massen-
ergyEc.m.=74.44MeV(justbelowthefusionbarrier).The
redsurfacescorrespondtoaniso-densityathalfthesaturation
density(ρ0/2=0.08fm−3).Eachfigureisseparatedbyatime
stepof135fm/c.Timerunsfromlefttoright.(Bottom)The
sameatEc.m.=74.45MeV,i.e.,justabovethefusionthresh-
old.
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Fig.21.Experimentalfusioncross-sectionsfromref.[207]
(stars)comparedtocross-sectionsdeducedfromTDHFcal-
culations(lines)of16O+208Pbcollisions.Thetwolinescor-
respond,respectively,tolowerandupperlimitsoftheoretical
cross-sections.

offformula”[211],

σfus(E)=
πh̄2

2µE
[lmax(E)+1]2,(4.3)

wherethefusionprobabilityis0forl>lmax(E)and1
forl≤lmax(E).Toavoiddiscontinuitiesduetothein-
tegervaluesoflmax(E),[lmax(E)+1]̄hisgenerallyap-
proximatedbyitssemi-classicalequivalentLc=

√
2µEbc.

Thelattercorrespondstotheclassicalangularmomentum
thresholdforfusionandbcdenotesthemaximumimpact
parameterbelowwhichfusiontakesplace[212].Wefinally
obtainthestandardclassicalexpressionforfusioncross-
sectionsσfus(E)#πL2

c/2µE=πb2
c.

Theresultsareshowninfig.21forthe16O+208Pb
system.Fusioncross-sectionsareoverestimatedbyabout
16%abovethebarrier.Althoughthisdiscrepancyissmall
foratheorywhichhasnoparameteradjustedonreaction
mechanisms,itsoriginisunclear.

Finally,thecalculationsarenotabletoreproducethe
sub-barrierenergies.Thisisofcourseoneofthemain
drawbacksoftheTDHFapproach.Theinclusionofquan-
tumtunnellingofthemany-bodywavefunctionisclearly
oneofthebiggestchallengesinthemicroscopictreatment
oflow-energynuclearreactions.

4.2.2Fusionbarrierswithadeformednucleus

Wenowconsidercollisionsofasphericalnucleusonade-
formedone.Insuchacase,thebarrierdependsonthe
orientationofthedeformednucleusatthetouchingpoint,
leadingtoawiderbarrierdistributionthanthesinglebar-
riercase[187,215].

Figure22showstwoexamplesofexperimentalbar-
rierdistributionsinvolvingaprolatlydeformedheavytar-
get[213,214].Suchbarrierdistributionsareusuallywell
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� h�| Ĥ |�i = 0

1

Simenel et al., PRC 95, 031601 (2017)



Dynamics
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Fig.19.(Top)Densityevolutionforthereaction16O+208Pb
correspondingtoahead-oncollisionatacenter-of-massen-
ergyEc.m.=74.44MeV(justbelowthefusionbarrier).The
redsurfacescorrespondtoaniso-densityathalfthesaturation
density(ρ0/2=0.08fm−3).Eachfigureisseparatedbyatime
stepof135fm/c.Timerunsfromlefttoright.(Bottom)The
sameatEc.m.=74.45MeV,i.e.,justabovethefusionthresh-
old.
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Fig.20.Bassbarriers[210](stars)andbarriersextractedfrom
TDHFcalculations(circles)asafunctionofexperimentalbar-
riers(centroidsoffusionbarrierdistributions).
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74.44MeV(seetopoffig.19)is,inaverage,14C+210Po.
Thistwo-protontransferchanneleffectivelylowersthe
barrierbydecreasingZ1Z2and,then,theCoulombre-
pulsion.Transferreactionsinthe16O+208Pbsystemare
discussedinmoredetailsinsect.4.3.Notethatlow-lying
collectivevibrations,suchasthefirst3−statein208Pb
(seefig.4)alsoaffectthefusionbarrierdistribution[207].

Systematiccalculationsoffusionbarriershavebeen
performedformedium-masssystemsinvolvingspherical
nuclei[76].Asummaryoftheresultsisshowninfig.20.
Agoodreproductionofthebarrierdistributioncentroids
hasbeenobtained(betterthantheBassparametrisation)
forallthestudiedsystems.Othercalculationswith3-
dimensionalTDHFcodesconfirmedthepredictivepower
oftheTDHFapproachforthedeterminationoffusion
barriers[78,209].

Above-barrierfusioncross-sectionshavebeencom-
putedforthe16O+208Pbsysteminref.[76].Thefact
thatfusionprobabilitiesareeither0or1impliesthat
cross-sectionsareobtainedusingthe“quantumsharpcut-
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Fig.21.Experimentalfusioncross-sectionsfromref.[207]
(stars)comparedtocross-sectionsdeducedfromTDHFcal-
culations(lines)of16O+208Pbcollisions.Thetwolinescor-
respond,respectively,tolowerandupperlimitsoftheoretical
cross-sections.

offformula”[211],

σfus(E)=
πh̄2

2µE
[lmax(E)+1]2,(4.3)

wherethefusionprobabilityis0forl>lmax(E)and1
forl≤lmax(E).Toavoiddiscontinuitiesduetothein-
tegervaluesoflmax(E),[lmax(E)+1]̄hisgenerallyap-
proximatedbyitssemi-classicalequivalentLc=

√
2µEbc.

Thelattercorrespondstotheclassicalangularmomentum
thresholdforfusionandbcdenotesthemaximumimpact
parameterbelowwhichfusiontakesplace[212].Wefinally
obtainthestandardclassicalexpressionforfusioncross-
sectionsσfus(E)#πL2

c/2µE=πb2
c.

Theresultsareshowninfig.21forthe16O+208Pb
system.Fusioncross-sectionsareoverestimatedbyabout
16%abovethebarrier.Althoughthisdiscrepancyissmall
foratheorywhichhasnoparameteradjustedonreaction
mechanisms,itsoriginisunclear.

Finally,thecalculationsarenotabletoreproducethe
sub-barrierenergies.Thisisofcourseoneofthemain
drawbacksoftheTDHFapproach.Theinclusionofquan-
tumtunnellingofthemany-bodywavefunctionisclearly
oneofthebiggestchallengesinthemicroscopictreatment
oflow-energynuclearreactions.

4.2.2Fusionbarrierswithadeformednucleus

Wenowconsidercollisionsofasphericalnucleusonade-
formedone.Insuchacase,thebarrierdependsonthe
orientationofthedeformednucleusatthetouchingpoint,
leadingtoawiderbarrierdistributionthanthesinglebar-
riercase[187,215].

Figure22showstwoexamplesofexperimentalbar-
rierdistributionsinvolvingaprolatlydeformedheavytar-
get[213,214].Suchbarrierdistributionsareusuallywell
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Ĥ � i@t

i
|�i = 0

⇢TDHF (r, t)

VDCTDHF [R(t)] = h�|Ĥ|�i � E[⇢1]� E[⇢2]
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as an integral of the energy density H (r) [52]

E =
Z

d
3rH (r) , (2)

which includes the kinetic, isoscalar, isovector, and Coulomb

terms [53]:

H (r) = h̄
2

2m
t0 +H0(r)+H1(r)+HC(r) . (3)

In particular,
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where we have used the gauge invariant form suitable for
time-dependent calculations. The isospin index I = 0,1 for
isoscalar and isovector energy densities, respectively. The
most common choice of Skyrme EDF restricts the density de-
pendence of the coupling constants to the C

r
I and C

s

I terms
only. These density dependent coefficients contribute to the
coupling of isoscalar and isovector fields in the Hartree-Fock
Hamiltonian. The isoscalar (isovector) energy density, H0(r)
(H1(r)), depends on the isoscalar (isovector) particle density,
r0 = rn +rp (r1 = rn �rp), with analogous expressions for
other densities and currents. Values of the coupling coeffi-
cients as well as their relation to the alternative parametriza-
tions of the Skyrme EDF can be found in [53].
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FIG. 1. (Color online) For the 40Ca+48Ca system; Total and isoscalar
DC-TDHF potentials. The shaded region corresponds to the reduc-
tion originating from the isovector contribution to the energy density.
The insert shows the isoscalar and isovector contributions to the in-
teraction barrier without the Coulomb potential. The TDHF collision
energy was Ec.m. = 55 MeV.

The above form of the EDF is more suitable for study-
ing the isospin dependence of nuclear properties and have
been employed in nuclear structure studies [53]. In the same
spirit we can utilize this approach to study isospin depen-
dent effects in nuclear reactions microscopically. In particular,
the density-constrained time-dependent Hartree-Fock (DC-
TDHF) method [41] can be employed to study isospin effects

on fusion barriers and fusion cross-sections. The DC-TDHF
approach calculates the nucleus-nucleus potentials V (R) di-
rectly from TDHF dynamics and has been used to calculate
fusion cross-sections for a wide range of reactions [54–60].
The basic idea of this approach is the following: At certain
times t or, equivalently, at certain internuclear distances R(t),
a static energy minimization is performed while constraining
the proton and neutron densities to be equal to the instanta-
neous TDHF densities. We refer to the minimized energy as
the “density constrained energy” EDC(R). The ion-ion inter-
action potential V (R) is obtained by subtracting the constant
binding energies EA1 and EA2 of the two individual nuclei

V (R) = EDC(R)�EA1 �EA2 . (5)

The calculated ion-ion interaction barriers contain all of the
dynamical changes in the nuclear density during the TDHF
time-evolution in a self-consistent manner. As a consequence
of the dynamics the DC-TDHF potential is energy depen-
dent [54]. Using the decomposition of the Skyrme EDF into
isoscalar and isovector parts [Eq. (4)], we can re-write this po-
tential as

V (R) = Â
I=0,1

vI(R)+VC(R) , (6)

where vI(R) denotes the potential computed by using the
isoscalar and isovector parts of the Skyrme EDF given in
Eq. (3) in Eq. (5). The Coulomb potential is also calculated
via Eq. (5) using the Coulomb energy density.

We have used the DC-TDHF approach to study fusion bar-
riers for a number of systems. Calculations were done in a
three-dimensional Cartesian geometry with no symmetry as-
sumptions [61] and using the Skyrme SLy4 EDF [62]. The
three-dimensional Poisson equation for the Coulomb poten-
tial is solved by using Fast-Fourier Transform techniques and
the Slater approximation is used for the Coulomb exchange
term. The box size used for all the calculations was chosen to
be 60⇥30⇥30 fm3, with a mesh spacing of 1.0 fm in all di-
rections. These values provide very accurate results due to the
employment of sophisticated discretization techniques [63].

In Fig. 1 we show the total and isoscalar fusion barriers
(both including the Coulomb contribution) for the 40Ca+48Ca
system at Ec.m. = 55 MeV. For the Ca+Ca systems the energy
dependence is relatively weak [54,64,65]. The reduction of

Dynamics
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as an integral of the energy density H (r) [52]
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where we have used the gauge invariant form suitable for
time-dependent calculations. The isospin index I = 0,1 for
isoscalar and isovector energy densities, respectively. The
most common choice of Skyrme EDF restricts the density de-
pendence of the coupling constants to the C

r
I and C

s

I terms
only. These density dependent coefficients contribute to the
coupling of isoscalar and isovector fields in the Hartree-Fock
Hamiltonian. The isoscalar (isovector) energy density, H0(r)
(H1(r)), depends on the isoscalar (isovector) particle density,
r0 = rn +rp (r1 = rn �rp), with analogous expressions for
other densities and currents. Values of the coupling coeffi-
cients as well as their relation to the alternative parametriza-
tions of the Skyrme EDF can be found in [53].
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FIG. 1. (Color online) For the 40Ca+48Ca system; Total and isoscalar
DC-TDHF potentials. The shaded region corresponds to the reduc-
tion originating from the isovector contribution to the energy density.
The insert shows the isoscalar and isovector contributions to the in-
teraction barrier without the Coulomb potential. The TDHF collision
energy was Ec.m. = 55 MeV.

The above form of the EDF is more suitable for study-
ing the isospin dependence of nuclear properties and have
been employed in nuclear structure studies [53]. In the same
spirit we can utilize this approach to study isospin depen-
dent effects in nuclear reactions microscopically. In particular,
the density-constrained time-dependent Hartree-Fock (DC-
TDHF) method [41] can be employed to study isospin effects

on fusion barriers and fusion cross-sections. The DC-TDHF
approach calculates the nucleus-nucleus potentials V (R) di-
rectly from TDHF dynamics and has been used to calculate
fusion cross-sections for a wide range of reactions [54–60].
The basic idea of this approach is the following: At certain
times t or, equivalently, at certain internuclear distances R(t),
a static energy minimization is performed while constraining
the proton and neutron densities to be equal to the instanta-
neous TDHF densities. We refer to the minimized energy as
the “density constrained energy” EDC(R). The ion-ion inter-
action potential V (R) is obtained by subtracting the constant
binding energies EA1 and EA2 of the two individual nuclei

V (R) = EDC(R)�EA1 �EA2 . (5)

The calculated ion-ion interaction barriers contain all of the
dynamical changes in the nuclear density during the TDHF
time-evolution in a self-consistent manner. As a consequence
of the dynamics the DC-TDHF potential is energy depen-
dent [54]. Using the decomposition of the Skyrme EDF into
isoscalar and isovector parts [Eq. (4)], we can re-write this po-
tential as

V (R) = Â
I=0,1

vI(R)+VC(R) , (6)

where vI(R) denotes the potential computed by using the
isoscalar and isovector parts of the Skyrme EDF given in
Eq. (3) in Eq. (5). The Coulomb potential is also calculated
via Eq. (5) using the Coulomb energy density.

We have used the DC-TDHF approach to study fusion bar-
riers for a number of systems. Calculations were done in a
three-dimensional Cartesian geometry with no symmetry as-
sumptions [61] and using the Skyrme SLy4 EDF [62]. The
three-dimensional Poisson equation for the Coulomb poten-
tial is solved by using Fast-Fourier Transform techniques and
the Slater approximation is used for the Coulomb exchange
term. The box size used for all the calculations was chosen to
be 60⇥30⇥30 fm3, with a mesh spacing of 1.0 fm in all di-
rections. These values provide very accurate results due to the
employment of sophisticated discretization techniques [63].

In Fig. 1 we show the total and isoscalar fusion barriers
(both including the Coulomb contribution) for the 40Ca+48Ca
system at Ec.m. = 55 MeV. For the Ca+Ca systems the energy
dependence is relatively weak [54,64,65]. The reduction of
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as an integral of the energy density H (r) [52]

E =
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which includes the kinetic, isoscalar, isovector, and Coulomb

terms [53]:
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where we have used the gauge invariant form suitable for
time-dependent calculations. The isospin index I = 0,1 for
isoscalar and isovector energy densities, respectively. The
most common choice of Skyrme EDF restricts the density de-
pendence of the coupling constants to the C

r
I and C

s

I terms
only. These density dependent coefficients contribute to the
coupling of isoscalar and isovector fields in the Hartree-Fock
Hamiltonian. The isoscalar (isovector) energy density, H0(r)
(H1(r)), depends on the isoscalar (isovector) particle density,
r0 = rn +rp (r1 = rn �rp), with analogous expressions for
other densities and currents. Values of the coupling coeffi-
cients as well as their relation to the alternative parametriza-
tions of the Skyrme EDF can be found in [53].
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FIG. 1. (Color online) For the 40Ca+48Ca system; Total and isoscalar
DC-TDHF potentials. The shaded region corresponds to the reduc-
tion originating from the isovector contribution to the energy density.
The insert shows the isoscalar and isovector contributions to the in-
teraction barrier without the Coulomb potential. The TDHF collision
energy was Ec.m. = 55 MeV.

The above form of the EDF is more suitable for study-
ing the isospin dependence of nuclear properties and have
been employed in nuclear structure studies [53]. In the same
spirit we can utilize this approach to study isospin depen-
dent effects in nuclear reactions microscopically. In particular,
the density-constrained time-dependent Hartree-Fock (DC-
TDHF) method [41] can be employed to study isospin effects

on fusion barriers and fusion cross-sections. The DC-TDHF
approach calculates the nucleus-nucleus potentials V (R) di-
rectly from TDHF dynamics and has been used to calculate
fusion cross-sections for a wide range of reactions [54–60].
The basic idea of this approach is the following: At certain
times t or, equivalently, at certain internuclear distances R(t),
a static energy minimization is performed while constraining
the proton and neutron densities to be equal to the instanta-
neous TDHF densities. We refer to the minimized energy as
the “density constrained energy” EDC(R). The ion-ion inter-
action potential V (R) is obtained by subtracting the constant
binding energies EA1 and EA2 of the two individual nuclei

V (R) = EDC(R)�EA1 �EA2 . (5)

The calculated ion-ion interaction barriers contain all of the
dynamical changes in the nuclear density during the TDHF
time-evolution in a self-consistent manner. As a consequence
of the dynamics the DC-TDHF potential is energy depen-
dent [54]. Using the decomposition of the Skyrme EDF into
isoscalar and isovector parts [Eq. (4)], we can re-write this po-
tential as

V (R) = Â
I=0,1

vI(R)+VC(R) , (6)

where vI(R) denotes the potential computed by using the
isoscalar and isovector parts of the Skyrme EDF given in
Eq. (3) in Eq. (5). The Coulomb potential is also calculated
via Eq. (5) using the Coulomb energy density.

We have used the DC-TDHF approach to study fusion bar-
riers for a number of systems. Calculations were done in a
three-dimensional Cartesian geometry with no symmetry as-
sumptions [61] and using the Skyrme SLy4 EDF [62]. The
three-dimensional Poisson equation for the Coulomb poten-
tial is solved by using Fast-Fourier Transform techniques and
the Slater approximation is used for the Coulomb exchange
term. The box size used for all the calculations was chosen to
be 60⇥30⇥30 fm3, with a mesh spacing of 1.0 fm in all di-
rections. These values provide very accurate results due to the
employment of sophisticated discretization techniques [63].

In Fig. 1 we show the total and isoscalar fusion barriers
(both including the Coulomb contribution) for the 40Ca+48Ca
system at Ec.m. = 55 MeV. For the Ca+Ca systems the energy
dependence is relatively weak [54,64,65]. The reduction of
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FIG. 2. (Color online) For the 16O+208Pb system; (a) Total and
isoscalar DC-TDHF potentials at Ec.m. = 75 MeV. The shaded re-
gion corresponds to the reduction originating from the isovector
contribution to the energy density. (b) Same as in (a) except for
Ec.m. = 90 MeV. (c) Same as in (a) except for Ec.m. = 120 MeV.

the isoscalar barrier is due to the isovector contribution. It is
evident that the isovector dynamics results in the narrowing
of the fusion barrier, thus resulting in an enhancement of the
sub-barrier fusion cross-sections. The insert in Fig. 1 shows
the isovector and isoscalar components without the Coulomb
contribution. We have also calculated fusion barriers for the
40Ca+40Ca and 48Ca+48Ca systems, where the isovector con-
tribution is zero as expected from symmetry.

As an example of a more asymmetric system we performed
calculations for the 16O+208Pb system at Ec.m. = 75 MeV. Re-
sults are shown in Fig. 2(a). Here we see a substantial en-
hancement of sub-barrier fusion due to the isovector dynam-
ics. For this system we have performed further calculations at
c.m. energies of 90 MeV and 120 MeV shown in Fig. 2(b-c).
As the beam energy increases, the relative contribution from
the isovector component to the total barrier decreases, while
the overall barrier height increases with increasing energy. At
TDHF energies much higher than the barrier height the total
barriers approaches the frozen density barrier [54,65] due to
the inability of the system to rearrange at that time-scale at
which time the isovector contribution vanishes as well. The
above results demonstrate the influence of isovector dynamics
on typical fusion barriers.

We next look at Ca+Sn reactions. The experimental ob-
servation of a sub-barrier fusion enhancement in the sys-
tem 40Ca+132Sn as compared to more neutron-rich sys-
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FIG. 3. (Color online) For (a) 40Ca+132Sn, (b) 48Ca+132Sn systems;
Total and isoscalar DC-TDHF potentials. In (a) the blue shaded
region corresponds to the reduction originating from the isovector
contribution. In (b) we see no isovector effect. The inserts show
the isoscalar and isovector contributions to the interaction barrier
without the Coulomb potential. The TDHF collision energy was
Ec.m. = 120 MeV.

tem 48Ca+132Sn was the subject of a previous DC-TDHF
study [66], where it was shown that the fusion barriers for the
two systems have essentially the same height but the fusion
barrier for the 48Ca+132Sn system was much wider than that
for the 40Ca+132Sn system. We see in Fig. 3(a) a strong reduc-
tion of the isoscalar barrier due to the isovector contribution.
This behavior is similar to that of the previous two systems
albeit the isovector reduction is somewhat larger as shown in
the insert of Fig. 3(a). We then performed the same calculation
for the 48Ca+132Sn system as shown in Fig. 3(b). The startling
result is the vanishing of the isovector contribution. With no
isovector reduction the fusion barrier for this system is much
wider than that for the 40Ca+132Sn system for which substan-
tial reduction occurs. The absence of the isovector component
for the 48Ca+132Sn system could be a reflection of the negative
Q�values for neutron pickup. This is the first direct observa-
tion of this phenomena in microscopic calculations. This may
also explain why for the 48Ca+132Sn system simply consid-
ering the 2+ and 3� excitations of the target and projectile
in coupled-channel calculations is able to reproduce the sub-
barrier fusion cross-sections, whereas doing the same for the
40Ca+132Sn system grossly under-predicts the cross-sections.
In Ref. [17], this was attributed to transfer which manifests
itself in the isovector dynamics.

In all the studied systems, we observe an isovector reduc-
tion in the presence of positive Q�values for transfer chan-
nels. This can be understood from the C

r
I r2

I term in Eq. (3)
which quantitatively dominates. When an isospin equilibra-
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FIG. 2. (Color online) For the 16O+208Pb system; (a) Total and
isoscalar DC-TDHF potentials at Ec.m. = 75 MeV. The shaded re-
gion corresponds to the reduction originating from the isovector
contribution to the energy density. (b) Same as in (a) except for
Ec.m. = 90 MeV. (c) Same as in (a) except for Ec.m. = 120 MeV.

the isoscalar barrier is due to the isovector contribution. It is
evident that the isovector dynamics results in the narrowing
of the fusion barrier, thus resulting in an enhancement of the
sub-barrier fusion cross-sections. The insert in Fig. 1 shows
the isovector and isoscalar components without the Coulomb
contribution. We have also calculated fusion barriers for the
40Ca+40Ca and 48Ca+48Ca systems, where the isovector con-
tribution is zero as expected from symmetry.

As an example of a more asymmetric system we performed
calculations for the 16O+208Pb system at Ec.m. = 75 MeV. Re-
sults are shown in Fig. 2(a). Here we see a substantial en-
hancement of sub-barrier fusion due to the isovector dynam-
ics. For this system we have performed further calculations at
c.m. energies of 90 MeV and 120 MeV shown in Fig. 2(b-c).
As the beam energy increases, the relative contribution from
the isovector component to the total barrier decreases, while
the overall barrier height increases with increasing energy. At
TDHF energies much higher than the barrier height the total
barriers approaches the frozen density barrier [54,65] due to
the inability of the system to rearrange at that time-scale at
which time the isovector contribution vanishes as well. The
above results demonstrate the influence of isovector dynamics
on typical fusion barriers.

We next look at Ca+Sn reactions. The experimental ob-
servation of a sub-barrier fusion enhancement in the sys-
tem 40Ca+132Sn as compared to more neutron-rich sys-
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FIG. 3. (Color online) For (a) 40Ca+132Sn, (b) 48Ca+132Sn systems;
Total and isoscalar DC-TDHF potentials. In (a) the blue shaded
region corresponds to the reduction originating from the isovector
contribution. In (b) we see no isovector effect. The inserts show
the isoscalar and isovector contributions to the interaction barrier
without the Coulomb potential. The TDHF collision energy was
Ec.m. = 120 MeV.

tem 48Ca+132Sn was the subject of a previous DC-TDHF
study [66], where it was shown that the fusion barriers for the
two systems have essentially the same height but the fusion
barrier for the 48Ca+132Sn system was much wider than that
for the 40Ca+132Sn system. We see in Fig. 3(a) a strong reduc-
tion of the isoscalar barrier due to the isovector contribution.
This behavior is similar to that of the previous two systems
albeit the isovector reduction is somewhat larger as shown in
the insert of Fig. 3(a). We then performed the same calculation
for the 48Ca+132Sn system as shown in Fig. 3(b). The startling
result is the vanishing of the isovector contribution. With no
isovector reduction the fusion barrier for this system is much
wider than that for the 40Ca+132Sn system for which substan-
tial reduction occurs. The absence of the isovector component
for the 48Ca+132Sn system could be a reflection of the negative
Q�values for neutron pickup. This is the first direct observa-
tion of this phenomena in microscopic calculations. This may
also explain why for the 48Ca+132Sn system simply consid-
ering the 2+ and 3� excitations of the target and projectile
in coupled-channel calculations is able to reproduce the sub-
barrier fusion cross-sections, whereas doing the same for the
40Ca+132Sn system grossly under-predicts the cross-sections.
In Ref. [17], this was attributed to transfer which manifests
itself in the isovector dynamics.

In all the studied systems, we observe an isovector reduc-
tion in the presence of positive Q�values for transfer chan-
nels. This can be understood from the C

r
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I term in Eq. (3)
which quantitatively dominates. When an isospin equilibra-
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methods employed to compute the Pauli contribution to the
ion-ion interaction barriers and we describe the Pauli energy
calculations using the NLF. This is followed by the results of
these calculations in Sec. III. Conclusions are summarized in
Sec. IV.

II. METHOD

In this section, we briefly outline the formalisms and meth-
ods used in our calculations. Further details can be found in
the cited references.

A. Microscopic methods

In order to investigate the Pauli energy in heavy-ion fusion
reactions, we employ microscopic methods to compute the
interaction between nuclei. Following the idea of Brueckner
et al. [44], the bare nucleus-nucleus potential (i.e., without
dynamical rearrangement) is computed from an energy den-
sity functional (EDF) E [ρ] written as a space integral of an
energy density H[ρ(r)]

E [ρ] =
∫

dr H[ρ(r)]. (1)

The bare potential is obtained by requiring frozen ground-
state densities ρi of each nucleus (i = 1, 2), which we
compute using the Hartree-Fock (HF) mean-field approxima-
tion. One advantage of this method is that it does not introduce
new parameters other than those of the EDF. Indeed, the same
Skyrme EDF [66] is used both in HF calculations and to
compute the bare potential.

Neglecting the Pauli exclusion principle between nucleons
in different nuclei (except for those arising from the exchange
terms in the effective interaction [67]) leads to the usual FHF
potential [43,46–50]

VFHF(R) =
∫

dr H[ρ1(r) + ρ2(r − R)] − E [ρ1] − E [ρ2],

(2)
where R is the distance vector between the centers of mass
of the nuclei. To account for the Pauli repulsion in the bare
potential, we use instead the DCFHF method [11]. The Pauli
exclusion principle is included exactly by allowing the single-
particle states, constituting the combined nuclear density, to
reorganize to attain their minimum energy configuration and
be properly antisymmetrized, as the many-body state is a
Slater determinant of all the occupied single-particle wave
functions. The HF minimization of the combined system is
thus performed subject to the constraint that the local proton
(p) and neutron (n) densities do not change:

δ

〈

H −
∑

q=p,n

∫
dr λq(r)

[
ρ1q (r) + ρ2q (r − R)

]
〉

= 0, (3)

where the λn,p(r) are Lagrange parameters at each point of
space constraining the neutron and proton local densities.
This equation determines a unique Slater determinant |$(R)〉.
Assuming the potential to be central leads to the expression

VDCFHF(R) = 〈$(R)|H |$(R)〉 − E [ρ1] − E [ρ2]. (4)

The resulting DCFHF bare potentials thus account for the
Pauli repulsion, widening the fusion barrier and producing
a potential pocket at short distance R which is not present
in FHF potentials [11]. Consequently, comparisons between
FHF and DCFHF bare potentials allow us to study the ef-
fects of the Pauli principle for frozen nuclear densities. These
potentials, however, do not account for any dynamical rear-
rangement of the densities induced.

TDHF calculations, on the other hand, account for such
rearrangement, at the mean-field level, in particular those
produced by couplings to vibrational [51,68,69] and rota-
tional modes [70,71], as well as nucleon transfer through
the neck [48,50,72–76]. Nucleus-nucleus potentials extracted
from TDHF calculations [47,49,52,77] then account for both
dynamical effects and the Pauli exclusion principle. In order
to further investigate the full dynamics, we have thus used
the DC-TDHF method, where the densities are taken directly
from the TDHF evolution of the system and the same con-
straint procedure used in DCFHF is employed (see Ref. [52]
for details):

δ

〈

H −
∑

q=p,n

∫
dr λq(r)[ρq(r) − ρTDHF

q (r, t )]

〉

= 0,

where ρq represents the combined density for the system. The
TDHF evolution gives access to the time evolution of the
distance R(t ) between the centers of mass of the fragments.
The potential is then obtained as in Eq. (2) by removing the
binding energy of the HF ground states,

VDC-TDHF(R) = 〈$(R(t))|H |$(R(t))〉 − E [ρ1] − E [ρ2].
(5)

The DC-TDHF approach accounts for microscopic effects
associated with the Pauli exclusion principle, such as the
splitting of orbitals with some states contributing attractively
(bounding) and some repulsively (antibounding) to the poten-
tial [78]. It should be noted also that, due to their dynamical
nature, density rearrangements naturally depend on the en-
ergy of the collision, inducing an energy dependence to the
potential [47,79–81]. One limitation of methods relying on
TDHF evolutions is that the latter do not account for many-
body tunneling. Thus, the energy dependence of the potential
at sub-barrier energies is unknown. Nevertheless, near- and
sub-barrier fusion cross sections have been computed using
DC-TDHF potentials determined from TDHF evolutions at
near-barrier central collisions, showing overall good agree-
ment with experiment [69,81–88].

B. The nucleon localization function (NLF)

The measure of localization has been originally devel-
oped in the context of a mean-field description for electronic
systems [53–55] and subsequently introduced to nuclear sys-
tems [57,65]. We first realize that a fermionic mean-field
state is fully characterized by the one-body density-matrix
ρq(rs, r′s′). The probability of finding two nucleons with the
same spin at spatial locations r and r′ (same-spin pair proba-
bility) for isospin q is proportional to

Pqs(r, r′) = ρq(rs, rs)ρq(r′s, r′s) − |ρq(rs, r′s)|2, (6)
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which vanishes for r = r′ due to the Pauli exclusion principle.
The conditional probability for finding a nucleon at r′ when
we know with certainty that another nucleon with the same
spin and isospin is at r is proportional to

Rqs(r, r′) = Pqs(r, r′)
ρq(rs, rs)

. (7)

The short-range behavior of Rqs can be obtained using tech-
niques similar to the local density approximation [57,65]. The
leading term in the expansion yields the localization measure

Dqsµ
= τqsµ

− 1
4

|∇ρqsµ
|2

ρqsµ

−
|jqsµ

|2

ρqsµ

. (8)

This measure is the most general form that is appropriate
for deformed nuclei and without assuming time-reversal in-
variance, thus also including the time-odd terms important
in applications such as cranking or TDHF. The densities and
currents are given in their most unrestricted form [89–91] for
µ axis denoting the spin-quantization axis by [65]

ρqsµ
(r) = 1

2ρq(r) + 1
2σµsqµ(r), (9a)

τqsµ
(r) = 1

2τq(r) + 1
2σµTqµ(r), (9b)

jqsµ
(r) = 1

2 jq(r) + 1
2σµJq(r) · eµ, (9c)

where σµ = 2sµ = ±1 and eµ is the unit vector in the direc-
tion of the µ axis. Note that subscripts sµ denote spin along
the quantization axis and should not be confused by the spin
density sqµ. The dot product in Eq. (9) is explicitly given in
the case of, e.g., µ = z:

Jq(r) · ez = 1
2i

[(∇ − ∇′)sqz(r, r′)]r=r′ .

The explicit expressions of the local densities and currents are
given in Refs. [65,89]. We note that the localization measure
includes the spin density sqµ(r), the time-odd part of the
kinetic density Tqµ(r), as well as the full spin-orbit tensor
Jq(r), which is a pseudotensor. In this sense, all of the terms
in the Skyrme energy density functional [89] contribute to
the measure. Finally, we note that the time-odd terms con-
tained in the above definitions (sqµ, Tqµ, and jq) are zero in
static calculations of even-even nuclei but the spin tensor Jq
is not. Therefore, jqsµ

is not zero in general. The DCFHF
and DC-TDHF procedures result in a time-reversal invariant
solution where the time-odd terms are zero. However, all time-
odd terms are present in TDHF calculations as they assure
Galilean invariance of the time evolution. Thus, the TDHF
densities used in the DC-TDHF method are generated with the
presence of time-odd terms, resulting in an excitation energy
that is removed by the DC-TDHF procedure [79].

An alternate meaning of the localization function relates
to the kinetic energy and the Pauli exclusion principle. In
fact, the last two terms in Eq. (8) are the kinetic density for
a complex valued single particle state of a given spin s and
isospin q that satisfies local gauge invariance [65,92]

τ s.p.
qs = 1

4
|∇ρqs|2

ρqs
+

|jqs|2

ρqs
. (10)

The first term in Eq. (10) is related to the von Weizsacker
kinetic-energy density [93]. Equations (8) and (10) give

Dqs = τqs − τ s.p.
qs , (11)

meaning that, for a single nucleon system, Dqs = 0. Conse-
quently, Dqs is a measure of the excess of kinetic density due
to the Pauli exclusion principle. One can now define the Pauli
kinetic energy (PKE) from the above expression as

EP
qs = h̄2

2m

∫
d3r Dqs(r). (12)

Note that this is the intrinsic PKE produced by all nucleons
of any nuclear system. So far, these equations are general
and can be used to compute the PKE from different mean-
field approaches by using the corresponding one-body density
matrix.

For example, using a DCFHF one-body density matrix
ρDCFHF(R) for nuclei at a distance R in Eq. (8), one can
compute the total PKE with Eq. (12) from the resulting
DDCFHF

qs (R; r). However, the Pauli exclusion principle between
nucleons belonging to the same nucleus do not contribute to
the Pauli repulsion in the nucleus-nucleus potential. We then
define the net PKE for two nuclei separated by a distance R
between their centers as

$EP(F)
qµ (R) = h̄2

2m

∑

sµ

∫
d3r

[
DDCFHF

qsµ
(r, R) − DFHF

qsµ
(r, R)

]
,

(13)
where we have subtracted the contribution of the PKE from
the FHF approach. Indeed, the latter uses the same frozen
density as DCFHF, but it neglects the Pauli exclusion principle
between nucleons of different nuclei. We have also summed
over the spin-up and spin-down components for a given spin
projection axis µ. The notation P(F) stands for “Pauli in the
frozen approximation.”

The calculation of this PKE difference with frozen den-
sities allows one to identify the internuclear PKE without
the presence of particle transfer and other relaxation effects
similar to methods used in condensed matter physics and
chemistry [6,7,9]. We note that $EP(F)(R) is zero for large val-
ues of R since the antisymmetrization of two well-separated
nuclei does not introduce any change to local nuclear densities
of Eq. (9) and thus both DCFHF and FHF give the intrinsic
Pauli energy in this case. We note also that, assuming that
the PKE is independent of the choice of the spin quantiza-
tion axis, summing over the isospin q gives the total Pauli
repulsion which should then be equivalent to the difference
between the DCFHF and FHF potentials,

∑
q $EP(F)

qµ (R) #
VDCFHF(R) − VFHF(R).

We can similarly define the dynamical contribution to this
net PKE by taking the difference between the DC-TDHF and
DCFHF localization measures

$EP(D)
qµ (R) = h̄2

2m

∑

sµ

∫
d3r

×
[
DDC−TDHF

qsµ
(r, R) − DDCFHF

qsµ
(r, R)

]
, (14)
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methods employed to compute the Pauli contribution to the
ion-ion interaction barriers and we describe the Pauli energy
calculations using the NLF. This is followed by the results of
these calculations in Sec. III. Conclusions are summarized in
Sec. IV.

II. METHOD

In this section, we briefly outline the formalisms and meth-
ods used in our calculations. Further details can be found in
the cited references.

A. Microscopic methods

In order to investigate the Pauli energy in heavy-ion fusion
reactions, we employ microscopic methods to compute the
interaction between nuclei. Following the idea of Brueckner
et al. [44], the bare nucleus-nucleus potential (i.e., without
dynamical rearrangement) is computed from an energy den-
sity functional (EDF) E [ρ] written as a space integral of an
energy density H[ρ(r)]

E [ρ] =
∫

dr H[ρ(r)]. (1)

The bare potential is obtained by requiring frozen ground-
state densities ρi of each nucleus (i = 1, 2), which we
compute using the Hartree-Fock (HF) mean-field approxima-
tion. One advantage of this method is that it does not introduce
new parameters other than those of the EDF. Indeed, the same
Skyrme EDF [66] is used both in HF calculations and to
compute the bare potential.

Neglecting the Pauli exclusion principle between nucleons
in different nuclei (except for those arising from the exchange
terms in the effective interaction [67]) leads to the usual FHF
potential [43,46–50]

VFHF(R) =
∫

dr H[ρ1(r) + ρ2(r − R)] − E [ρ1] − E [ρ2],

(2)
where R is the distance vector between the centers of mass
of the nuclei. To account for the Pauli repulsion in the bare
potential, we use instead the DCFHF method [11]. The Pauli
exclusion principle is included exactly by allowing the single-
particle states, constituting the combined nuclear density, to
reorganize to attain their minimum energy configuration and
be properly antisymmetrized, as the many-body state is a
Slater determinant of all the occupied single-particle wave
functions. The HF minimization of the combined system is
thus performed subject to the constraint that the local proton
(p) and neutron (n) densities do not change:

δ

〈

H −
∑

q=p,n

∫
dr λq(r)

[
ρ1q (r) + ρ2q (r − R)

]
〉

= 0, (3)

where the λn,p(r) are Lagrange parameters at each point of
space constraining the neutron and proton local densities.
This equation determines a unique Slater determinant |$(R)〉.
Assuming the potential to be central leads to the expression

VDCFHF(R) = 〈$(R)|H |$(R)〉 − E [ρ1] − E [ρ2]. (4)

The resulting DCFHF bare potentials thus account for the
Pauli repulsion, widening the fusion barrier and producing
a potential pocket at short distance R which is not present
in FHF potentials [11]. Consequently, comparisons between
FHF and DCFHF bare potentials allow us to study the ef-
fects of the Pauli principle for frozen nuclear densities. These
potentials, however, do not account for any dynamical rear-
rangement of the densities induced.

TDHF calculations, on the other hand, account for such
rearrangement, at the mean-field level, in particular those
produced by couplings to vibrational [51,68,69] and rota-
tional modes [70,71], as well as nucleon transfer through
the neck [48,50,72–76]. Nucleus-nucleus potentials extracted
from TDHF calculations [47,49,52,77] then account for both
dynamical effects and the Pauli exclusion principle. In order
to further investigate the full dynamics, we have thus used
the DC-TDHF method, where the densities are taken directly
from the TDHF evolution of the system and the same con-
straint procedure used in DCFHF is employed (see Ref. [52]
for details):

δ

〈

H −
∑

q=p,n

∫
dr λq(r)[ρq(r) − ρTDHF

q (r, t )]

〉

= 0,

where ρq represents the combined density for the system. The
TDHF evolution gives access to the time evolution of the
distance R(t ) between the centers of mass of the fragments.
The potential is then obtained as in Eq. (2) by removing the
binding energy of the HF ground states,

VDC-TDHF(R) = 〈$(R(t))|H |$(R(t))〉 − E [ρ1] − E [ρ2].
(5)

The DC-TDHF approach accounts for microscopic effects
associated with the Pauli exclusion principle, such as the
splitting of orbitals with some states contributing attractively
(bounding) and some repulsively (antibounding) to the poten-
tial [78]. It should be noted also that, due to their dynamical
nature, density rearrangements naturally depend on the en-
ergy of the collision, inducing an energy dependence to the
potential [47,79–81]. One limitation of methods relying on
TDHF evolutions is that the latter do not account for many-
body tunneling. Thus, the energy dependence of the potential
at sub-barrier energies is unknown. Nevertheless, near- and
sub-barrier fusion cross sections have been computed using
DC-TDHF potentials determined from TDHF evolutions at
near-barrier central collisions, showing overall good agree-
ment with experiment [69,81–88].

B. The nucleon localization function (NLF)

The measure of localization has been originally devel-
oped in the context of a mean-field description for electronic
systems [53–55] and subsequently introduced to nuclear sys-
tems [57,65]. We first realize that a fermionic mean-field
state is fully characterized by the one-body density-matrix
ρq(rs, r′s′). The probability of finding two nucleons with the
same spin at spatial locations r and r′ (same-spin pair proba-
bility) for isospin q is proportional to

Pqs(r, r′) = ρq(rs, rs)ρq(r′s, r′s) − |ρq(rs, r′s)|2, (6)
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which vanishes for r = r′ due to the Pauli exclusion principle.
The conditional probability for finding a nucleon at r′ when
we know with certainty that another nucleon with the same
spin and isospin is at r is proportional to

Rqs(r, r′) = Pqs(r, r′)
ρq(rs, rs)

. (7)

The short-range behavior of Rqs can be obtained using tech-
niques similar to the local density approximation [57,65]. The
leading term in the expansion yields the localization measure

Dqsµ
= τqsµ

− 1
4

|∇ρqsµ
|2

ρqsµ

−
|jqsµ

|2

ρqsµ

. (8)

This measure is the most general form that is appropriate
for deformed nuclei and without assuming time-reversal in-
variance, thus also including the time-odd terms important
in applications such as cranking or TDHF. The densities and
currents are given in their most unrestricted form [89–91] for
µ axis denoting the spin-quantization axis by [65]

ρqsµ
(r) = 1

2ρq(r) + 1
2σµsqµ(r), (9a)

τqsµ
(r) = 1

2τq(r) + 1
2σµTqµ(r), (9b)

jqsµ
(r) = 1

2 jq(r) + 1
2σµJq(r) · eµ, (9c)

where σµ = 2sµ = ±1 and eµ is the unit vector in the direc-
tion of the µ axis. Note that subscripts sµ denote spin along
the quantization axis and should not be confused by the spin
density sqµ. The dot product in Eq. (9) is explicitly given in
the case of, e.g., µ = z:

Jq(r) · ez = 1
2i

[(∇ − ∇′)sqz(r, r′)]r=r′ .

The explicit expressions of the local densities and currents are
given in Refs. [65,89]. We note that the localization measure
includes the spin density sqµ(r), the time-odd part of the
kinetic density Tqµ(r), as well as the full spin-orbit tensor
Jq(r), which is a pseudotensor. In this sense, all of the terms
in the Skyrme energy density functional [89] contribute to
the measure. Finally, we note that the time-odd terms con-
tained in the above definitions (sqµ, Tqµ, and jq) are zero in
static calculations of even-even nuclei but the spin tensor Jq
is not. Therefore, jqsµ

is not zero in general. The DCFHF
and DC-TDHF procedures result in a time-reversal invariant
solution where the time-odd terms are zero. However, all time-
odd terms are present in TDHF calculations as they assure
Galilean invariance of the time evolution. Thus, the TDHF
densities used in the DC-TDHF method are generated with the
presence of time-odd terms, resulting in an excitation energy
that is removed by the DC-TDHF procedure [79].

An alternate meaning of the localization function relates
to the kinetic energy and the Pauli exclusion principle. In
fact, the last two terms in Eq. (8) are the kinetic density for
a complex valued single particle state of a given spin s and
isospin q that satisfies local gauge invariance [65,92]

τ s.p.
qs = 1

4
|∇ρqs|2

ρqs
+

|jqs|2

ρqs
. (10)

The first term in Eq. (10) is related to the von Weizsacker
kinetic-energy density [93]. Equations (8) and (10) give

Dqs = τqs − τ s.p.
qs , (11)

meaning that, for a single nucleon system, Dqs = 0. Conse-
quently, Dqs is a measure of the excess of kinetic density due
to the Pauli exclusion principle. One can now define the Pauli
kinetic energy (PKE) from the above expression as

EP
qs = h̄2

2m

∫
d3r Dqs(r). (12)

Note that this is the intrinsic PKE produced by all nucleons
of any nuclear system. So far, these equations are general
and can be used to compute the PKE from different mean-
field approaches by using the corresponding one-body density
matrix.

For example, using a DCFHF one-body density matrix
ρDCFHF(R) for nuclei at a distance R in Eq. (8), one can
compute the total PKE with Eq. (12) from the resulting
DDCFHF

qs (R; r). However, the Pauli exclusion principle between
nucleons belonging to the same nucleus do not contribute to
the Pauli repulsion in the nucleus-nucleus potential. We then
define the net PKE for two nuclei separated by a distance R
between their centers as

$EP(F)
qµ (R) = h̄2

2m

∑

sµ

∫
d3r

[
DDCFHF

qsµ
(r, R) − DFHF

qsµ
(r, R)

]
,

(13)
where we have subtracted the contribution of the PKE from
the FHF approach. Indeed, the latter uses the same frozen
density as DCFHF, but it neglects the Pauli exclusion principle
between nucleons of different nuclei. We have also summed
over the spin-up and spin-down components for a given spin
projection axis µ. The notation P(F) stands for “Pauli in the
frozen approximation.”

The calculation of this PKE difference with frozen den-
sities allows one to identify the internuclear PKE without
the presence of particle transfer and other relaxation effects
similar to methods used in condensed matter physics and
chemistry [6,7,9]. We note that $EP(F)(R) is zero for large val-
ues of R since the antisymmetrization of two well-separated
nuclei does not introduce any change to local nuclear densities
of Eq. (9) and thus both DCFHF and FHF give the intrinsic
Pauli energy in this case. We note also that, assuming that
the PKE is independent of the choice of the spin quantiza-
tion axis, summing over the isospin q gives the total Pauli
repulsion which should then be equivalent to the difference
between the DCFHF and FHF potentials,

∑
q $EP(F)

qµ (R) #
VDCFHF(R) − VFHF(R).

We can similarly define the dynamical contribution to this
net PKE by taking the difference between the DC-TDHF and
DCFHF localization measures

$EP(D)
qµ (R) = h̄2

2m

∑

sµ

∫
d3r

×
[
DDC−TDHF

qsµ
(r, R) − DDCFHF

qsµ
(r, R)

]
, (14)
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which vanishes for r = r′ due to the Pauli exclusion principle.
The conditional probability for finding a nucleon at r′ when
we know with certainty that another nucleon with the same
spin and isospin is at r is proportional to

Rqs(r, r′) = Pqs(r, r′)
ρq(rs, rs)

. (7)

The short-range behavior of Rqs can be obtained using tech-
niques similar to the local density approximation [57,65]. The
leading term in the expansion yields the localization measure

Dqsµ
= τqsµ

− 1
4

|∇ρqsµ
|2

ρqsµ

−
|jqsµ

|2

ρqsµ

. (8)

This measure is the most general form that is appropriate
for deformed nuclei and without assuming time-reversal in-
variance, thus also including the time-odd terms important
in applications such as cranking or TDHF. The densities and
currents are given in their most unrestricted form [89–91] for
µ axis denoting the spin-quantization axis by [65]

ρqsµ
(r) = 1

2ρq(r) + 1
2σµsqµ(r), (9a)

τqsµ
(r) = 1

2τq(r) + 1
2σµTqµ(r), (9b)

jqsµ
(r) = 1

2 jq(r) + 1
2σµJq(r) · eµ, (9c)

where σµ = 2sµ = ±1 and eµ is the unit vector in the direc-
tion of the µ axis. Note that subscripts sµ denote spin along
the quantization axis and should not be confused by the spin
density sqµ. The dot product in Eq. (9) is explicitly given in
the case of, e.g., µ = z:

Jq(r) · ez = 1
2i

[(∇ − ∇′)sqz(r, r′)]r=r′ .

The explicit expressions of the local densities and currents are
given in Refs. [65,89]. We note that the localization measure
includes the spin density sqµ(r), the time-odd part of the
kinetic density Tqµ(r), as well as the full spin-orbit tensor
Jq(r), which is a pseudotensor. In this sense, all of the terms
in the Skyrme energy density functional [89] contribute to
the measure. Finally, we note that the time-odd terms con-
tained in the above definitions (sqµ, Tqµ, and jq) are zero in
static calculations of even-even nuclei but the spin tensor Jq
is not. Therefore, jqsµ

is not zero in general. The DCFHF
and DC-TDHF procedures result in a time-reversal invariant
solution where the time-odd terms are zero. However, all time-
odd terms are present in TDHF calculations as they assure
Galilean invariance of the time evolution. Thus, the TDHF
densities used in the DC-TDHF method are generated with the
presence of time-odd terms, resulting in an excitation energy
that is removed by the DC-TDHF procedure [79].

An alternate meaning of the localization function relates
to the kinetic energy and the Pauli exclusion principle. In
fact, the last two terms in Eq. (8) are the kinetic density for
a complex valued single particle state of a given spin s and
isospin q that satisfies local gauge invariance [65,92]

τ s.p.
qs = 1

4
|∇ρqs|2

ρqs
+

|jqs|2

ρqs
. (10)

The first term in Eq. (10) is related to the von Weizsacker
kinetic-energy density [93]. Equations (8) and (10) give

Dqs = τqs − τ s.p.
qs , (11)

meaning that, for a single nucleon system, Dqs = 0. Conse-
quently, Dqs is a measure of the excess of kinetic density due
to the Pauli exclusion principle. One can now define the Pauli
kinetic energy (PKE) from the above expression as

EP
qs = h̄2

2m

∫
d3r Dqs(r). (12)

Note that this is the intrinsic PKE produced by all nucleons
of any nuclear system. So far, these equations are general
and can be used to compute the PKE from different mean-
field approaches by using the corresponding one-body density
matrix.

For example, using a DCFHF one-body density matrix
ρDCFHF(R) for nuclei at a distance R in Eq. (8), one can
compute the total PKE with Eq. (12) from the resulting
DDCFHF

qs (R; r). However, the Pauli exclusion principle between
nucleons belonging to the same nucleus do not contribute to
the Pauli repulsion in the nucleus-nucleus potential. We then
define the net PKE for two nuclei separated by a distance R
between their centers as

$EP(F)
qµ (R) = h̄2

2m

∑

sµ

∫
d3r

[
DDCFHF

qsµ
(r, R) − DFHF

qsµ
(r, R)

]
,

(13)
where we have subtracted the contribution of the PKE from
the FHF approach. Indeed, the latter uses the same frozen
density as DCFHF, but it neglects the Pauli exclusion principle
between nucleons of different nuclei. We have also summed
over the spin-up and spin-down components for a given spin
projection axis µ. The notation P(F) stands for “Pauli in the
frozen approximation.”

The calculation of this PKE difference with frozen den-
sities allows one to identify the internuclear PKE without
the presence of particle transfer and other relaxation effects
similar to methods used in condensed matter physics and
chemistry [6,7,9]. We note that $EP(F)(R) is zero for large val-
ues of R since the antisymmetrization of two well-separated
nuclei does not introduce any change to local nuclear densities
of Eq. (9) and thus both DCFHF and FHF give the intrinsic
Pauli energy in this case. We note also that, assuming that
the PKE is independent of the choice of the spin quantiza-
tion axis, summing over the isospin q gives the total Pauli
repulsion which should then be equivalent to the difference
between the DCFHF and FHF potentials,

∑
q $EP(F)

qµ (R) #
VDCFHF(R) − VFHF(R).

We can similarly define the dynamical contribution to this
net PKE by taking the difference between the DC-TDHF and
DCFHF localization measures

$EP(D)
qµ (R) = h̄2

2m

∑

sµ

∫
d3r

×
[
DDC−TDHF

qsµ
(r, R) − DDCFHF

qsµ
(r, R)

]
, (14)
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which vanishes for r = r′ due to the Pauli exclusion principle.
The conditional probability for finding a nucleon at r′ when
we know with certainty that another nucleon with the same
spin and isospin is at r is proportional to

Rqs(r, r′) = Pqs(r, r′)
ρq(rs, rs)

. (7)

The short-range behavior of Rqs can be obtained using tech-
niques similar to the local density approximation [57,65]. The
leading term in the expansion yields the localization measure

Dqsµ
= τqsµ

− 1
4

|∇ρqsµ
|2

ρqsµ

−
|jqsµ

|2

ρqsµ

. (8)

This measure is the most general form that is appropriate
for deformed nuclei and without assuming time-reversal in-
variance, thus also including the time-odd terms important
in applications such as cranking or TDHF. The densities and
currents are given in their most unrestricted form [89–91] for
µ axis denoting the spin-quantization axis by [65]

ρqsµ
(r) = 1

2ρq(r) + 1
2σµsqµ(r), (9a)

τqsµ
(r) = 1

2τq(r) + 1
2σµTqµ(r), (9b)

jqsµ
(r) = 1

2 jq(r) + 1
2σµJq(r) · eµ, (9c)

where σµ = 2sµ = ±1 and eµ is the unit vector in the direc-
tion of the µ axis. Note that subscripts sµ denote spin along
the quantization axis and should not be confused by the spin
density sqµ. The dot product in Eq. (9) is explicitly given in
the case of, e.g., µ = z:

Jq(r) · ez = 1
2i

[(∇ − ∇′)sqz(r, r′)]r=r′ .

The explicit expressions of the local densities and currents are
given in Refs. [65,89]. We note that the localization measure
includes the spin density sqµ(r), the time-odd part of the
kinetic density Tqµ(r), as well as the full spin-orbit tensor
Jq(r), which is a pseudotensor. In this sense, all of the terms
in the Skyrme energy density functional [89] contribute to
the measure. Finally, we note that the time-odd terms con-
tained in the above definitions (sqµ, Tqµ, and jq) are zero in
static calculations of even-even nuclei but the spin tensor Jq
is not. Therefore, jqsµ

is not zero in general. The DCFHF
and DC-TDHF procedures result in a time-reversal invariant
solution where the time-odd terms are zero. However, all time-
odd terms are present in TDHF calculations as they assure
Galilean invariance of the time evolution. Thus, the TDHF
densities used in the DC-TDHF method are generated with the
presence of time-odd terms, resulting in an excitation energy
that is removed by the DC-TDHF procedure [79].

An alternate meaning of the localization function relates
to the kinetic energy and the Pauli exclusion principle. In
fact, the last two terms in Eq. (8) are the kinetic density for
a complex valued single particle state of a given spin s and
isospin q that satisfies local gauge invariance [65,92]

τ s.p.
qs = 1

4
|∇ρqs|2

ρqs
+

|jqs|2

ρqs
. (10)

The first term in Eq. (10) is related to the von Weizsacker
kinetic-energy density [93]. Equations (8) and (10) give

Dqs = τqs − τ s.p.
qs , (11)

meaning that, for a single nucleon system, Dqs = 0. Conse-
quently, Dqs is a measure of the excess of kinetic density due
to the Pauli exclusion principle. One can now define the Pauli
kinetic energy (PKE) from the above expression as

EP
qs = h̄2

2m

∫
d3r Dqs(r). (12)

Note that this is the intrinsic PKE produced by all nucleons
of any nuclear system. So far, these equations are general
and can be used to compute the PKE from different mean-
field approaches by using the corresponding one-body density
matrix.

For example, using a DCFHF one-body density matrix
ρDCFHF(R) for nuclei at a distance R in Eq. (8), one can
compute the total PKE with Eq. (12) from the resulting
DDCFHF

qs (R; r). However, the Pauli exclusion principle between
nucleons belonging to the same nucleus do not contribute to
the Pauli repulsion in the nucleus-nucleus potential. We then
define the net PKE for two nuclei separated by a distance R
between their centers as

$EP(F)
qµ (R) = h̄2

2m

∑

sµ

∫
d3r

[
DDCFHF

qsµ
(r, R) − DFHF

qsµ
(r, R)

]
,

(13)
where we have subtracted the contribution of the PKE from
the FHF approach. Indeed, the latter uses the same frozen
density as DCFHF, but it neglects the Pauli exclusion principle
between nucleons of different nuclei. We have also summed
over the spin-up and spin-down components for a given spin
projection axis µ. The notation P(F) stands for “Pauli in the
frozen approximation.”

The calculation of this PKE difference with frozen den-
sities allows one to identify the internuclear PKE without
the presence of particle transfer and other relaxation effects
similar to methods used in condensed matter physics and
chemistry [6,7,9]. We note that $EP(F)(R) is zero for large val-
ues of R since the antisymmetrization of two well-separated
nuclei does not introduce any change to local nuclear densities
of Eq. (9) and thus both DCFHF and FHF give the intrinsic
Pauli energy in this case. We note also that, assuming that
the PKE is independent of the choice of the spin quantiza-
tion axis, summing over the isospin q gives the total Pauli
repulsion which should then be equivalent to the difference
between the DCFHF and FHF potentials,

∑
q $EP(F)

qµ (R) #
VDCFHF(R) − VFHF(R).

We can similarly define the dynamical contribution to this
net PKE by taking the difference between the DC-TDHF and
DCFHF localization measures

$EP(D)
qµ (R) = h̄2

2m

∑

sµ

∫
d3r

×
[
DDC−TDHF

qsµ
(r, R) − DDCFHF

qsµ
(r, R)

]
, (14)
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which vanishes for r = r′ due to the Pauli exclusion principle.
The conditional probability for finding a nucleon at r′ when
we know with certainty that another nucleon with the same
spin and isospin is at r is proportional to

Rqs(r, r′) = Pqs(r, r′)
ρq(rs, rs)

. (7)

The short-range behavior of Rqs can be obtained using tech-
niques similar to the local density approximation [57,65]. The
leading term in the expansion yields the localization measure

Dqsµ
= τqsµ

− 1
4

|∇ρqsµ
|2

ρqsµ

−
|jqsµ

|2

ρqsµ

. (8)

This measure is the most general form that is appropriate
for deformed nuclei and without assuming time-reversal in-
variance, thus also including the time-odd terms important
in applications such as cranking or TDHF. The densities and
currents are given in their most unrestricted form [89–91] for
µ axis denoting the spin-quantization axis by [65]

ρqsµ
(r) = 1

2ρq(r) + 1
2σµsqµ(r), (9a)

τqsµ
(r) = 1

2τq(r) + 1
2σµTqµ(r), (9b)

jqsµ
(r) = 1

2 jq(r) + 1
2σµJq(r) · eµ, (9c)

where σµ = 2sµ = ±1 and eµ is the unit vector in the direc-
tion of the µ axis. Note that subscripts sµ denote spin along
the quantization axis and should not be confused by the spin
density sqµ. The dot product in Eq. (9) is explicitly given in
the case of, e.g., µ = z:

Jq(r) · ez = 1
2i

[(∇ − ∇′)sqz(r, r′)]r=r′ .

The explicit expressions of the local densities and currents are
given in Refs. [65,89]. We note that the localization measure
includes the spin density sqµ(r), the time-odd part of the
kinetic density Tqµ(r), as well as the full spin-orbit tensor
Jq(r), which is a pseudotensor. In this sense, all of the terms
in the Skyrme energy density functional [89] contribute to
the measure. Finally, we note that the time-odd terms con-
tained in the above definitions (sqµ, Tqµ, and jq) are zero in
static calculations of even-even nuclei but the spin tensor Jq
is not. Therefore, jqsµ

is not zero in general. The DCFHF
and DC-TDHF procedures result in a time-reversal invariant
solution where the time-odd terms are zero. However, all time-
odd terms are present in TDHF calculations as they assure
Galilean invariance of the time evolution. Thus, the TDHF
densities used in the DC-TDHF method are generated with the
presence of time-odd terms, resulting in an excitation energy
that is removed by the DC-TDHF procedure [79].

An alternate meaning of the localization function relates
to the kinetic energy and the Pauli exclusion principle. In
fact, the last two terms in Eq. (8) are the kinetic density for
a complex valued single particle state of a given spin s and
isospin q that satisfies local gauge invariance [65,92]

τ s.p.
qs = 1

4
|∇ρqs|2

ρqs
+

|jqs|2

ρqs
. (10)

The first term in Eq. (10) is related to the von Weizsacker
kinetic-energy density [93]. Equations (8) and (10) give

Dqs = τqs − τ s.p.
qs , (11)

meaning that, for a single nucleon system, Dqs = 0. Conse-
quently, Dqs is a measure of the excess of kinetic density due
to the Pauli exclusion principle. One can now define the Pauli
kinetic energy (PKE) from the above expression as

EP
qs = h̄2

2m

∫
d3r Dqs(r). (12)

Note that this is the intrinsic PKE produced by all nucleons
of any nuclear system. So far, these equations are general
and can be used to compute the PKE from different mean-
field approaches by using the corresponding one-body density
matrix.

For example, using a DCFHF one-body density matrix
ρDCFHF(R) for nuclei at a distance R in Eq. (8), one can
compute the total PKE with Eq. (12) from the resulting
DDCFHF

qs (R; r). However, the Pauli exclusion principle between
nucleons belonging to the same nucleus do not contribute to
the Pauli repulsion in the nucleus-nucleus potential. We then
define the net PKE for two nuclei separated by a distance R
between their centers as

$EP(F)
qµ (R) = h̄2

2m

∑

sµ

∫
d3r

[
DDCFHF

qsµ
(r, R) − DFHF

qsµ
(r, R)

]
,

(13)
where we have subtracted the contribution of the PKE from
the FHF approach. Indeed, the latter uses the same frozen
density as DCFHF, but it neglects the Pauli exclusion principle
between nucleons of different nuclei. We have also summed
over the spin-up and spin-down components for a given spin
projection axis µ. The notation P(F) stands for “Pauli in the
frozen approximation.”

The calculation of this PKE difference with frozen den-
sities allows one to identify the internuclear PKE without
the presence of particle transfer and other relaxation effects
similar to methods used in condensed matter physics and
chemistry [6,7,9]. We note that $EP(F)(R) is zero for large val-
ues of R since the antisymmetrization of two well-separated
nuclei does not introduce any change to local nuclear densities
of Eq. (9) and thus both DCFHF and FHF give the intrinsic
Pauli energy in this case. We note also that, assuming that
the PKE is independent of the choice of the spin quantiza-
tion axis, summing over the isospin q gives the total Pauli
repulsion which should then be equivalent to the difference
between the DCFHF and FHF potentials,

∑
q $EP(F)

qµ (R) #
VDCFHF(R) − VFHF(R).

We can similarly define the dynamical contribution to this
net PKE by taking the difference between the DC-TDHF and
DCFHF localization measures

$EP(D)
qµ (R) = h̄2

2m

∑

sµ

∫
d3r

×
[
DDC−TDHF

qsµ
(r, R) − DDCFHF

qsµ
(r, R)

]
, (14)
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which vanishes for r = r′ due to the Pauli exclusion principle.
The conditional probability for finding a nucleon at r′ when
we know with certainty that another nucleon with the same
spin and isospin is at r is proportional to

Rqs(r, r′) = Pqs(r, r′)
ρq(rs, rs)

. (7)

The short-range behavior of Rqs can be obtained using tech-
niques similar to the local density approximation [57,65]. The
leading term in the expansion yields the localization measure

Dqsµ
= τqsµ

− 1
4

|∇ρqsµ
|2

ρqsµ

−
|jqsµ

|2

ρqsµ

. (8)

This measure is the most general form that is appropriate
for deformed nuclei and without assuming time-reversal in-
variance, thus also including the time-odd terms important
in applications such as cranking or TDHF. The densities and
currents are given in their most unrestricted form [89–91] for
µ axis denoting the spin-quantization axis by [65]

ρqsµ
(r) = 1

2ρq(r) + 1
2σµsqµ(r), (9a)

τqsµ
(r) = 1

2τq(r) + 1
2σµTqµ(r), (9b)

jqsµ
(r) = 1

2 jq(r) + 1
2σµJq(r) · eµ, (9c)

where σµ = 2sµ = ±1 and eµ is the unit vector in the direc-
tion of the µ axis. Note that subscripts sµ denote spin along
the quantization axis and should not be confused by the spin
density sqµ. The dot product in Eq. (9) is explicitly given in
the case of, e.g., µ = z:

Jq(r) · ez = 1
2i

[(∇ − ∇′)sqz(r, r′)]r=r′ .

The explicit expressions of the local densities and currents are
given in Refs. [65,89]. We note that the localization measure
includes the spin density sqµ(r), the time-odd part of the
kinetic density Tqµ(r), as well as the full spin-orbit tensor
Jq(r), which is a pseudotensor. In this sense, all of the terms
in the Skyrme energy density functional [89] contribute to
the measure. Finally, we note that the time-odd terms con-
tained in the above definitions (sqµ, Tqµ, and jq) are zero in
static calculations of even-even nuclei but the spin tensor Jq
is not. Therefore, jqsµ

is not zero in general. The DCFHF
and DC-TDHF procedures result in a time-reversal invariant
solution where the time-odd terms are zero. However, all time-
odd terms are present in TDHF calculations as they assure
Galilean invariance of the time evolution. Thus, the TDHF
densities used in the DC-TDHF method are generated with the
presence of time-odd terms, resulting in an excitation energy
that is removed by the DC-TDHF procedure [79].

An alternate meaning of the localization function relates
to the kinetic energy and the Pauli exclusion principle. In
fact, the last two terms in Eq. (8) are the kinetic density for
a complex valued single particle state of a given spin s and
isospin q that satisfies local gauge invariance [65,92]

τ s.p.
qs = 1

4
|∇ρqs|2

ρqs
+

|jqs|2

ρqs
. (10)

The first term in Eq. (10) is related to the von Weizsacker
kinetic-energy density [93]. Equations (8) and (10) give

Dqs = τqs − τ s.p.
qs , (11)

meaning that, for a single nucleon system, Dqs = 0. Conse-
quently, Dqs is a measure of the excess of kinetic density due
to the Pauli exclusion principle. One can now define the Pauli
kinetic energy (PKE) from the above expression as

EP
qs = h̄2

2m

∫
d3r Dqs(r). (12)

Note that this is the intrinsic PKE produced by all nucleons
of any nuclear system. So far, these equations are general
and can be used to compute the PKE from different mean-
field approaches by using the corresponding one-body density
matrix.

For example, using a DCFHF one-body density matrix
ρDCFHF(R) for nuclei at a distance R in Eq. (8), one can
compute the total PKE with Eq. (12) from the resulting
DDCFHF

qs (R; r). However, the Pauli exclusion principle between
nucleons belonging to the same nucleus do not contribute to
the Pauli repulsion in the nucleus-nucleus potential. We then
define the net PKE for two nuclei separated by a distance R
between their centers as

$EP(F)
qµ (R) = h̄2

2m

∑

sµ

∫
d3r

[
DDCFHF

qsµ
(r, R) − DFHF

qsµ
(r, R)

]
,

(13)
where we have subtracted the contribution of the PKE from
the FHF approach. Indeed, the latter uses the same frozen
density as DCFHF, but it neglects the Pauli exclusion principle
between nucleons of different nuclei. We have also summed
over the spin-up and spin-down components for a given spin
projection axis µ. The notation P(F) stands for “Pauli in the
frozen approximation.”

The calculation of this PKE difference with frozen den-
sities allows one to identify the internuclear PKE without
the presence of particle transfer and other relaxation effects
similar to methods used in condensed matter physics and
chemistry [6,7,9]. We note that $EP(F)(R) is zero for large val-
ues of R since the antisymmetrization of two well-separated
nuclei does not introduce any change to local nuclear densities
of Eq. (9) and thus both DCFHF and FHF give the intrinsic
Pauli energy in this case. We note also that, assuming that
the PKE is independent of the choice of the spin quantiza-
tion axis, summing over the isospin q gives the total Pauli
repulsion which should then be equivalent to the difference
between the DCFHF and FHF potentials,

∑
q $EP(F)

qµ (R) #
VDCFHF(R) − VFHF(R).

We can similarly define the dynamical contribution to this
net PKE by taking the difference between the DC-TDHF and
DCFHF localization measures

$EP(D)
qµ (R) = h̄2

2m

∑

sµ

∫
d3r

×
[
DDC−TDHF

qsµ
(r, R) − DDCFHF

qsµ
(r, R)

]
, (14)
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methods employed to compute the Pauli contribution to the
ion-ion interaction barriers and we describe the Pauli energy
calculations using the NLF. This is followed by the results of
these calculations in Sec. III. Conclusions are summarized in
Sec. IV.

II. METHOD

In this section, we briefly outline the formalisms and meth-
ods used in our calculations. Further details can be found in
the cited references.

A. Microscopic methods

In order to investigate the Pauli energy in heavy-ion fusion
reactions, we employ microscopic methods to compute the
interaction between nuclei. Following the idea of Brueckner
et al. [44], the bare nucleus-nucleus potential (i.e., without
dynamical rearrangement) is computed from an energy den-
sity functional (EDF) E [ρ] written as a space integral of an
energy density H[ρ(r)]

E [ρ] =
∫

dr H[ρ(r)]. (1)

The bare potential is obtained by requiring frozen ground-
state densities ρi of each nucleus (i = 1, 2), which we
compute using the Hartree-Fock (HF) mean-field approxima-
tion. One advantage of this method is that it does not introduce
new parameters other than those of the EDF. Indeed, the same
Skyrme EDF [66] is used both in HF calculations and to
compute the bare potential.

Neglecting the Pauli exclusion principle between nucleons
in different nuclei (except for those arising from the exchange
terms in the effective interaction [67]) leads to the usual FHF
potential [43,46–50]

VFHF(R) =
∫

dr H[ρ1(r) + ρ2(r − R)] − E [ρ1] − E [ρ2],

(2)
where R is the distance vector between the centers of mass
of the nuclei. To account for the Pauli repulsion in the bare
potential, we use instead the DCFHF method [11]. The Pauli
exclusion principle is included exactly by allowing the single-
particle states, constituting the combined nuclear density, to
reorganize to attain their minimum energy configuration and
be properly antisymmetrized, as the many-body state is a
Slater determinant of all the occupied single-particle wave
functions. The HF minimization of the combined system is
thus performed subject to the constraint that the local proton
(p) and neutron (n) densities do not change:

δ

〈

H −
∑

q=p,n

∫
dr λq(r)

[
ρ1q (r) + ρ2q (r − R)

]
〉

= 0, (3)

where the λn,p(r) are Lagrange parameters at each point of
space constraining the neutron and proton local densities.
This equation determines a unique Slater determinant |$(R)〉.
Assuming the potential to be central leads to the expression

VDCFHF(R) = 〈$(R)|H |$(R)〉 − E [ρ1] − E [ρ2]. (4)

The resulting DCFHF bare potentials thus account for the
Pauli repulsion, widening the fusion barrier and producing
a potential pocket at short distance R which is not present
in FHF potentials [11]. Consequently, comparisons between
FHF and DCFHF bare potentials allow us to study the ef-
fects of the Pauli principle for frozen nuclear densities. These
potentials, however, do not account for any dynamical rear-
rangement of the densities induced.

TDHF calculations, on the other hand, account for such
rearrangement, at the mean-field level, in particular those
produced by couplings to vibrational [51,68,69] and rota-
tional modes [70,71], as well as nucleon transfer through
the neck [48,50,72–76]. Nucleus-nucleus potentials extracted
from TDHF calculations [47,49,52,77] then account for both
dynamical effects and the Pauli exclusion principle. In order
to further investigate the full dynamics, we have thus used
the DC-TDHF method, where the densities are taken directly
from the TDHF evolution of the system and the same con-
straint procedure used in DCFHF is employed (see Ref. [52]
for details):

δ

〈

H −
∑

q=p,n

∫
dr λq(r)[ρq(r) − ρTDHF

q (r, t )]

〉

= 0,

where ρq represents the combined density for the system. The
TDHF evolution gives access to the time evolution of the
distance R(t ) between the centers of mass of the fragments.
The potential is then obtained as in Eq. (2) by removing the
binding energy of the HF ground states,

VDC-TDHF(R) = 〈$(R(t))|H |$(R(t))〉 − E [ρ1] − E [ρ2].
(5)

The DC-TDHF approach accounts for microscopic effects
associated with the Pauli exclusion principle, such as the
splitting of orbitals with some states contributing attractively
(bounding) and some repulsively (antibounding) to the poten-
tial [78]. It should be noted also that, due to their dynamical
nature, density rearrangements naturally depend on the en-
ergy of the collision, inducing an energy dependence to the
potential [47,79–81]. One limitation of methods relying on
TDHF evolutions is that the latter do not account for many-
body tunneling. Thus, the energy dependence of the potential
at sub-barrier energies is unknown. Nevertheless, near- and
sub-barrier fusion cross sections have been computed using
DC-TDHF potentials determined from TDHF evolutions at
near-barrier central collisions, showing overall good agree-
ment with experiment [69,81–88].

B. The nucleon localization function (NLF)

The measure of localization has been originally devel-
oped in the context of a mean-field description for electronic
systems [53–55] and subsequently introduced to nuclear sys-
tems [57,65]. We first realize that a fermionic mean-field
state is fully characterized by the one-body density-matrix
ρq(rs, r′s′). The probability of finding two nucleons with the
same spin at spatial locations r and r′ (same-spin pair proba-
bility) for isospin q is proportional to

Pqs(r, r′) = ρq(rs, rs)ρq(r′s, r′s) − |ρq(rs, r′s)|2, (6)
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which vanishes for r = r′ due to the Pauli exclusion principle.
The conditional probability for finding a nucleon at r′ when
we know with certainty that another nucleon with the same
spin and isospin is at r is proportional to

Rqs(r, r′) = Pqs(r, r′)
ρq(rs, rs)

. (7)

The short-range behavior of Rqs can be obtained using tech-
niques similar to the local density approximation [57,65]. The
leading term in the expansion yields the localization measure

Dqsµ
= τqsµ

− 1
4

|∇ρqsµ
|2

ρqsµ

−
|jqsµ

|2

ρqsµ

. (8)

This measure is the most general form that is appropriate
for deformed nuclei and without assuming time-reversal in-
variance, thus also including the time-odd terms important
in applications such as cranking or TDHF. The densities and
currents are given in their most unrestricted form [89–91] for
µ axis denoting the spin-quantization axis by [65]

ρqsµ
(r) = 1

2ρq(r) + 1
2σµsqµ(r), (9a)

τqsµ
(r) = 1

2τq(r) + 1
2σµTqµ(r), (9b)

jqsµ
(r) = 1

2 jq(r) + 1
2σµJq(r) · eµ, (9c)

where σµ = 2sµ = ±1 and eµ is the unit vector in the direc-
tion of the µ axis. Note that subscripts sµ denote spin along
the quantization axis and should not be confused by the spin
density sqµ. The dot product in Eq. (9) is explicitly given in
the case of, e.g., µ = z:

Jq(r) · ez = 1
2i

[(∇ − ∇′)sqz(r, r′)]r=r′ .

The explicit expressions of the local densities and currents are
given in Refs. [65,89]. We note that the localization measure
includes the spin density sqµ(r), the time-odd part of the
kinetic density Tqµ(r), as well as the full spin-orbit tensor
Jq(r), which is a pseudotensor. In this sense, all of the terms
in the Skyrme energy density functional [89] contribute to
the measure. Finally, we note that the time-odd terms con-
tained in the above definitions (sqµ, Tqµ, and jq) are zero in
static calculations of even-even nuclei but the spin tensor Jq
is not. Therefore, jqsµ

is not zero in general. The DCFHF
and DC-TDHF procedures result in a time-reversal invariant
solution where the time-odd terms are zero. However, all time-
odd terms are present in TDHF calculations as they assure
Galilean invariance of the time evolution. Thus, the TDHF
densities used in the DC-TDHF method are generated with the
presence of time-odd terms, resulting in an excitation energy
that is removed by the DC-TDHF procedure [79].

An alternate meaning of the localization function relates
to the kinetic energy and the Pauli exclusion principle. In
fact, the last two terms in Eq. (8) are the kinetic density for
a complex valued single particle state of a given spin s and
isospin q that satisfies local gauge invariance [65,92]

τ s.p.
qs = 1

4
|∇ρqs|2

ρqs
+

|jqs|2

ρqs
. (10)

The first term in Eq. (10) is related to the von Weizsacker
kinetic-energy density [93]. Equations (8) and (10) give

Dqs = τqs − τ s.p.
qs , (11)

meaning that, for a single nucleon system, Dqs = 0. Conse-
quently, Dqs is a measure of the excess of kinetic density due
to the Pauli exclusion principle. One can now define the Pauli
kinetic energy (PKE) from the above expression as

EP
qs = h̄2

2m

∫
d3r Dqs(r). (12)

Note that this is the intrinsic PKE produced by all nucleons
of any nuclear system. So far, these equations are general
and can be used to compute the PKE from different mean-
field approaches by using the corresponding one-body density
matrix.

For example, using a DCFHF one-body density matrix
ρDCFHF(R) for nuclei at a distance R in Eq. (8), one can
compute the total PKE with Eq. (12) from the resulting
DDCFHF

qs (R; r). However, the Pauli exclusion principle between
nucleons belonging to the same nucleus do not contribute to
the Pauli repulsion in the nucleus-nucleus potential. We then
define the net PKE for two nuclei separated by a distance R
between their centers as

$EP(F)
qµ (R) = h̄2

2m

∑

sµ

∫
d3r

[
DDCFHF

qsµ
(r, R) − DFHF

qsµ
(r, R)

]
,

(13)
where we have subtracted the contribution of the PKE from
the FHF approach. Indeed, the latter uses the same frozen
density as DCFHF, but it neglects the Pauli exclusion principle
between nucleons of different nuclei. We have also summed
over the spin-up and spin-down components for a given spin
projection axis µ. The notation P(F) stands for “Pauli in the
frozen approximation.”

The calculation of this PKE difference with frozen den-
sities allows one to identify the internuclear PKE without
the presence of particle transfer and other relaxation effects
similar to methods used in condensed matter physics and
chemistry [6,7,9]. We note that $EP(F)(R) is zero for large val-
ues of R since the antisymmetrization of two well-separated
nuclei does not introduce any change to local nuclear densities
of Eq. (9) and thus both DCFHF and FHF give the intrinsic
Pauli energy in this case. We note also that, assuming that
the PKE is independent of the choice of the spin quantiza-
tion axis, summing over the isospin q gives the total Pauli
repulsion which should then be equivalent to the difference
between the DCFHF and FHF potentials,

∑
q $EP(F)

qµ (R) #
VDCFHF(R) − VFHF(R).

We can similarly define the dynamical contribution to this
net PKE by taking the difference between the DC-TDHF and
DCFHF localization measures

$EP(D)
qµ (R) = h̄2

2m

∑

sµ

∫
d3r

×
[
DDC−TDHF

qsµ
(r, R) − DDCFHF

qsµ
(r, R)

]
, (14)
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which vanishes for r = r′ due to the Pauli exclusion principle.
The conditional probability for finding a nucleon at r′ when
we know with certainty that another nucleon with the same
spin and isospin is at r is proportional to

Rqs(r, r′) = Pqs(r, r′)
ρq(rs, rs)

. (7)

The short-range behavior of Rqs can be obtained using tech-
niques similar to the local density approximation [57,65]. The
leading term in the expansion yields the localization measure

Dqsµ
= τqsµ

− 1
4

|∇ρqsµ
|2

ρqsµ

−
|jqsµ

|2

ρqsµ

. (8)

This measure is the most general form that is appropriate
for deformed nuclei and without assuming time-reversal in-
variance, thus also including the time-odd terms important
in applications such as cranking or TDHF. The densities and
currents are given in their most unrestricted form [89–91] for
µ axis denoting the spin-quantization axis by [65]

ρqsµ
(r) = 1

2ρq(r) + 1
2σµsqµ(r), (9a)

τqsµ
(r) = 1

2τq(r) + 1
2σµTqµ(r), (9b)

jqsµ
(r) = 1

2 jq(r) + 1
2σµJq(r) · eµ, (9c)

where σµ = 2sµ = ±1 and eµ is the unit vector in the direc-
tion of the µ axis. Note that subscripts sµ denote spin along
the quantization axis and should not be confused by the spin
density sqµ. The dot product in Eq. (9) is explicitly given in
the case of, e.g., µ = z:

Jq(r) · ez = 1
2i

[(∇ − ∇′)sqz(r, r′)]r=r′ .

The explicit expressions of the local densities and currents are
given in Refs. [65,89]. We note that the localization measure
includes the spin density sqµ(r), the time-odd part of the
kinetic density Tqµ(r), as well as the full spin-orbit tensor
Jq(r), which is a pseudotensor. In this sense, all of the terms
in the Skyrme energy density functional [89] contribute to
the measure. Finally, we note that the time-odd terms con-
tained in the above definitions (sqµ, Tqµ, and jq) are zero in
static calculations of even-even nuclei but the spin tensor Jq
is not. Therefore, jqsµ

is not zero in general. The DCFHF
and DC-TDHF procedures result in a time-reversal invariant
solution where the time-odd terms are zero. However, all time-
odd terms are present in TDHF calculations as they assure
Galilean invariance of the time evolution. Thus, the TDHF
densities used in the DC-TDHF method are generated with the
presence of time-odd terms, resulting in an excitation energy
that is removed by the DC-TDHF procedure [79].

An alternate meaning of the localization function relates
to the kinetic energy and the Pauli exclusion principle. In
fact, the last two terms in Eq. (8) are the kinetic density for
a complex valued single particle state of a given spin s and
isospin q that satisfies local gauge invariance [65,92]

τ s.p.
qs = 1

4
|∇ρqs|2

ρqs
+

|jqs|2

ρqs
. (10)

The first term in Eq. (10) is related to the von Weizsacker
kinetic-energy density [93]. Equations (8) and (10) give

Dqs = τqs − τ s.p.
qs , (11)

meaning that, for a single nucleon system, Dqs = 0. Conse-
quently, Dqs is a measure of the excess of kinetic density due
to the Pauli exclusion principle. One can now define the Pauli
kinetic energy (PKE) from the above expression as

EP
qs = h̄2

2m

∫
d3r Dqs(r). (12)

Note that this is the intrinsic PKE produced by all nucleons
of any nuclear system. So far, these equations are general
and can be used to compute the PKE from different mean-
field approaches by using the corresponding one-body density
matrix.

For example, using a DCFHF one-body density matrix
ρDCFHF(R) for nuclei at a distance R in Eq. (8), one can
compute the total PKE with Eq. (12) from the resulting
DDCFHF

qs (R; r). However, the Pauli exclusion principle between
nucleons belonging to the same nucleus do not contribute to
the Pauli repulsion in the nucleus-nucleus potential. We then
define the net PKE for two nuclei separated by a distance R
between their centers as

$EP(F)
qµ (R) = h̄2

2m

∑

sµ

∫
d3r

[
DDCFHF

qsµ
(r, R) − DFHF

qsµ
(r, R)

]
,

(13)
where we have subtracted the contribution of the PKE from
the FHF approach. Indeed, the latter uses the same frozen
density as DCFHF, but it neglects the Pauli exclusion principle
between nucleons of different nuclei. We have also summed
over the spin-up and spin-down components for a given spin
projection axis µ. The notation P(F) stands for “Pauli in the
frozen approximation.”

The calculation of this PKE difference with frozen den-
sities allows one to identify the internuclear PKE without
the presence of particle transfer and other relaxation effects
similar to methods used in condensed matter physics and
chemistry [6,7,9]. We note that $EP(F)(R) is zero for large val-
ues of R since the antisymmetrization of two well-separated
nuclei does not introduce any change to local nuclear densities
of Eq. (9) and thus both DCFHF and FHF give the intrinsic
Pauli energy in this case. We note also that, assuming that
the PKE is independent of the choice of the spin quantiza-
tion axis, summing over the isospin q gives the total Pauli
repulsion which should then be equivalent to the difference
between the DCFHF and FHF potentials,

∑
q $EP(F)

qµ (R) #
VDCFHF(R) − VFHF(R).

We can similarly define the dynamical contribution to this
net PKE by taking the difference between the DC-TDHF and
DCFHF localization measures

$EP(D)
qµ (R) = h̄2

2m

∑

sµ

∫
d3r

×
[
DDC−TDHF

qsµ
(r, R) − DDCFHF

qsµ
(r, R)

]
, (14)
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where (D) stands for “dynamical contribution.” In this way,
we can easily compare the static (i.e., in the frozen approxi-
mation) and dynamical contributions to the Pauli repulsion.

It is interesting to visualize the NLF as it is also defined
from the localization measure in Eq. (8). We first normalize
the localization measure using [4,65]

Dqsµ
(r) =

Dqsµ
(r)

τTF
qsµ

(r)
, (15)

where the normalization τTF
qsµ

(r) = 3
5 (6π2)2/3ρ5/3

qsµ
(r) is the

Thomas-Fermi kinetic density. The NLF can then be repre-
sented either by 1/Dqsµ

or by

Cqsµ
(r) =

[
1 + D2

qsµ

]−1
. (16)

The advantage of the latter form is that it scales to be in the
interval [0,1], but otherwise both forms show similar localiza-
tion details. We also see that while this is called the NLF, it is
a visual measure of the Pauli energy.

C. Numerical details

Calculations were done in a three-dimensional Cartesian
geometry with no symmetry assumptions using the code of
Ref. [94] and using the Skyrme SLy4d interaction [95], which
has been successful in describing various types of nuclear
reactions [32,33]. The three-dimensional Poisson equation for
the Coulomb potential is solved by using fast-Fourier trans-
form techniques and the Slater approximation is used for the
Coulomb exchange term. The static HF equations and the
DCFHF minimizations are implemented using the damped
gradient iteration method [96]. The box size used for all
the calculations was chosen to be 60 × 30 × 30 fm3, with a
mesh spacing of 1.0 fm in all directions. These values provide
very accurate results due to the employment of sophisticated
discretization techniques [97,98].

III. RESULTS

A. NLF and Pauli energy distribution

The outcome of a central heavy-ion collision at near barrier
energy is highly sensitive to the structure and dynamics of
the system at the barrier radius RB, i.e., when short-range
nuclear attraction and long-range Coulomb repulsion compen-
sate. The proton and neutron frozen densities in 48Ca + 48Ca
and 16O + 208Pb are represented in Figs. 1(a) and 1(b) and
Figs. 2(a) and 2(b), respectively. In both cases, the neck
density is small and does not exceed 20% of the saturation
density. Note, however, that RB is determined from DC-TDHF
potentials including shape polarization, which may slightly
increase the neck density. Nevertheless, one would expect that
the small neck density in the frozen calculations implies that
the Pauli repulsion should remain small a priori. This expec-
tation, however, is based on the assumption that the nucleons
contributing to the neck density are essentially localized in the
neck.

To verify this assumption, we plot the normalized NLF
from DCFHF using Eq. (16) in Figs. 1(c), 1(d), 2(c), and 2(d).
Interestingly, while the densities of the fragments add up in

FIG. 1. Frozen neutron (a) and proton (b) HF densities in
48Ca + 48Ca for a distance between the nuclei close to the barrier
radius RB # 10.8 fm. Only a subpart of the numerical box is shown,
with 29 × 21 fm2 in the (x, z) plane. Corresponding normalized NLF,
computed from Eq. (16) for spin up (along the µ = z axis) with the
DCFHF method, are plotted in panels (c) and (d). (The plots for spin
down are similar). The difference $Cqsz = CFHF

qsz
− CDCFHF

qsz
between

FHF and DCFHF normalized NLF are plotted in panels (e) and (f).

the neck region, the NLF behave differently with an apparent
repulsion flattening the facing surfaces of the NLF near con-
tact. A possible interpretation is that the neck nucleons could
be delocalized, i.e., belonging to both fragments. This would
provide a microscopic support to the “collectivization” mech-
anism invoked by Zagrebaev [99]. However, this observation,
in itself, does not necessarily imply a large Pauli repulsion.
Nevertheless, it weakens the validity of the commonly used

FIG. 2. Same as Fig. 1 for 16O + 208Pb with RB # 12 fm. The part
of the box that is represented covers 33 × 21 fm2 in the (x, z) plane.
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which vanishes for r = r′ due to the Pauli exclusion principle.
The conditional probability for finding a nucleon at r′ when
we know with certainty that another nucleon with the same
spin and isospin is at r is proportional to

Rqs(r, r′) = Pqs(r, r′)
ρq(rs, rs)

. (7)

The short-range behavior of Rqs can be obtained using tech-
niques similar to the local density approximation [57,65]. The
leading term in the expansion yields the localization measure

Dqsµ
= τqsµ

− 1
4

|∇ρqsµ
|2

ρqsµ

−
|jqsµ

|2

ρqsµ

. (8)

This measure is the most general form that is appropriate
for deformed nuclei and without assuming time-reversal in-
variance, thus also including the time-odd terms important
in applications such as cranking or TDHF. The densities and
currents are given in their most unrestricted form [89–91] for
µ axis denoting the spin-quantization axis by [65]

ρqsµ
(r) = 1

2ρq(r) + 1
2σµsqµ(r), (9a)

τqsµ
(r) = 1

2τq(r) + 1
2σµTqµ(r), (9b)

jqsµ
(r) = 1

2 jq(r) + 1
2σµJq(r) · eµ, (9c)

where σµ = 2sµ = ±1 and eµ is the unit vector in the direc-
tion of the µ axis. Note that subscripts sµ denote spin along
the quantization axis and should not be confused by the spin
density sqµ. The dot product in Eq. (9) is explicitly given in
the case of, e.g., µ = z:

Jq(r) · ez = 1
2i

[(∇ − ∇′)sqz(r, r′)]r=r′ .

The explicit expressions of the local densities and currents are
given in Refs. [65,89]. We note that the localization measure
includes the spin density sqµ(r), the time-odd part of the
kinetic density Tqµ(r), as well as the full spin-orbit tensor
Jq(r), which is a pseudotensor. In this sense, all of the terms
in the Skyrme energy density functional [89] contribute to
the measure. Finally, we note that the time-odd terms con-
tained in the above definitions (sqµ, Tqµ, and jq) are zero in
static calculations of even-even nuclei but the spin tensor Jq
is not. Therefore, jqsµ

is not zero in general. The DCFHF
and DC-TDHF procedures result in a time-reversal invariant
solution where the time-odd terms are zero. However, all time-
odd terms are present in TDHF calculations as they assure
Galilean invariance of the time evolution. Thus, the TDHF
densities used in the DC-TDHF method are generated with the
presence of time-odd terms, resulting in an excitation energy
that is removed by the DC-TDHF procedure [79].

An alternate meaning of the localization function relates
to the kinetic energy and the Pauli exclusion principle. In
fact, the last two terms in Eq. (8) are the kinetic density for
a complex valued single particle state of a given spin s and
isospin q that satisfies local gauge invariance [65,92]

τ s.p.
qs = 1

4
|∇ρqs|2

ρqs
+

|jqs|2

ρqs
. (10)

The first term in Eq. (10) is related to the von Weizsacker
kinetic-energy density [93]. Equations (8) and (10) give

Dqs = τqs − τ s.p.
qs , (11)

meaning that, for a single nucleon system, Dqs = 0. Conse-
quently, Dqs is a measure of the excess of kinetic density due
to the Pauli exclusion principle. One can now define the Pauli
kinetic energy (PKE) from the above expression as

EP
qs = h̄2

2m

∫
d3r Dqs(r). (12)

Note that this is the intrinsic PKE produced by all nucleons
of any nuclear system. So far, these equations are general
and can be used to compute the PKE from different mean-
field approaches by using the corresponding one-body density
matrix.

For example, using a DCFHF one-body density matrix
ρDCFHF(R) for nuclei at a distance R in Eq. (8), one can
compute the total PKE with Eq. (12) from the resulting
DDCFHF

qs (R; r). However, the Pauli exclusion principle between
nucleons belonging to the same nucleus do not contribute to
the Pauli repulsion in the nucleus-nucleus potential. We then
define the net PKE for two nuclei separated by a distance R
between their centers as

$EP(F)
qµ (R) = h̄2

2m

∑

sµ

∫
d3r

[
DDCFHF

qsµ
(r, R) − DFHF

qsµ
(r, R)

]
,

(13)
where we have subtracted the contribution of the PKE from
the FHF approach. Indeed, the latter uses the same frozen
density as DCFHF, but it neglects the Pauli exclusion principle
between nucleons of different nuclei. We have also summed
over the spin-up and spin-down components for a given spin
projection axis µ. The notation P(F) stands for “Pauli in the
frozen approximation.”

The calculation of this PKE difference with frozen den-
sities allows one to identify the internuclear PKE without
the presence of particle transfer and other relaxation effects
similar to methods used in condensed matter physics and
chemistry [6,7,9]. We note that $EP(F)(R) is zero for large val-
ues of R since the antisymmetrization of two well-separated
nuclei does not introduce any change to local nuclear densities
of Eq. (9) and thus both DCFHF and FHF give the intrinsic
Pauli energy in this case. We note also that, assuming that
the PKE is independent of the choice of the spin quantiza-
tion axis, summing over the isospin q gives the total Pauli
repulsion which should then be equivalent to the difference
between the DCFHF and FHF potentials,

∑
q $EP(F)

qµ (R) #
VDCFHF(R) − VFHF(R).

We can similarly define the dynamical contribution to this
net PKE by taking the difference between the DC-TDHF and
DCFHF localization measures

$EP(D)
qµ (R) = h̄2

2m

∑

sµ

∫
d3r

×
[
DDC−TDHF

qsµ
(r, R) − DDCFHF

qsµ
(r, R)

]
, (14)
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which vanishes for r = r′ due to the Pauli exclusion principle.
The conditional probability for finding a nucleon at r′ when
we know with certainty that another nucleon with the same
spin and isospin is at r is proportional to

Rqs(r, r′) = Pqs(r, r′)
ρq(rs, rs)

. (7)

The short-range behavior of Rqs can be obtained using tech-
niques similar to the local density approximation [57,65]. The
leading term in the expansion yields the localization measure

Dqsµ
= τqsµ

− 1
4

|∇ρqsµ
|2

ρqsµ

−
|jqsµ

|2

ρqsµ

. (8)

This measure is the most general form that is appropriate
for deformed nuclei and without assuming time-reversal in-
variance, thus also including the time-odd terms important
in applications such as cranking or TDHF. The densities and
currents are given in their most unrestricted form [89–91] for
µ axis denoting the spin-quantization axis by [65]

ρqsµ
(r) = 1

2ρq(r) + 1
2σµsqµ(r), (9a)

τqsµ
(r) = 1

2τq(r) + 1
2σµTqµ(r), (9b)

jqsµ
(r) = 1

2 jq(r) + 1
2σµJq(r) · eµ, (9c)

where σµ = 2sµ = ±1 and eµ is the unit vector in the direc-
tion of the µ axis. Note that subscripts sµ denote spin along
the quantization axis and should not be confused by the spin
density sqµ. The dot product in Eq. (9) is explicitly given in
the case of, e.g., µ = z:

Jq(r) · ez = 1
2i

[(∇ − ∇′)sqz(r, r′)]r=r′ .

The explicit expressions of the local densities and currents are
given in Refs. [65,89]. We note that the localization measure
includes the spin density sqµ(r), the time-odd part of the
kinetic density Tqµ(r), as well as the full spin-orbit tensor
Jq(r), which is a pseudotensor. In this sense, all of the terms
in the Skyrme energy density functional [89] contribute to
the measure. Finally, we note that the time-odd terms con-
tained in the above definitions (sqµ, Tqµ, and jq) are zero in
static calculations of even-even nuclei but the spin tensor Jq
is not. Therefore, jqsµ

is not zero in general. The DCFHF
and DC-TDHF procedures result in a time-reversal invariant
solution where the time-odd terms are zero. However, all time-
odd terms are present in TDHF calculations as they assure
Galilean invariance of the time evolution. Thus, the TDHF
densities used in the DC-TDHF method are generated with the
presence of time-odd terms, resulting in an excitation energy
that is removed by the DC-TDHF procedure [79].

An alternate meaning of the localization function relates
to the kinetic energy and the Pauli exclusion principle. In
fact, the last two terms in Eq. (8) are the kinetic density for
a complex valued single particle state of a given spin s and
isospin q that satisfies local gauge invariance [65,92]

τ s.p.
qs = 1

4
|∇ρqs|2

ρqs
+

|jqs|2

ρqs
. (10)

The first term in Eq. (10) is related to the von Weizsacker
kinetic-energy density [93]. Equations (8) and (10) give

Dqs = τqs − τ s.p.
qs , (11)

meaning that, for a single nucleon system, Dqs = 0. Conse-
quently, Dqs is a measure of the excess of kinetic density due
to the Pauli exclusion principle. One can now define the Pauli
kinetic energy (PKE) from the above expression as

EP
qs = h̄2

2m

∫
d3r Dqs(r). (12)

Note that this is the intrinsic PKE produced by all nucleons
of any nuclear system. So far, these equations are general
and can be used to compute the PKE from different mean-
field approaches by using the corresponding one-body density
matrix.

For example, using a DCFHF one-body density matrix
ρDCFHF(R) for nuclei at a distance R in Eq. (8), one can
compute the total PKE with Eq. (12) from the resulting
DDCFHF

qs (R; r). However, the Pauli exclusion principle between
nucleons belonging to the same nucleus do not contribute to
the Pauli repulsion in the nucleus-nucleus potential. We then
define the net PKE for two nuclei separated by a distance R
between their centers as

$EP(F)
qµ (R) = h̄2

2m

∑

sµ

∫
d3r

[
DDCFHF

qsµ
(r, R) − DFHF

qsµ
(r, R)

]
,

(13)
where we have subtracted the contribution of the PKE from
the FHF approach. Indeed, the latter uses the same frozen
density as DCFHF, but it neglects the Pauli exclusion principle
between nucleons of different nuclei. We have also summed
over the spin-up and spin-down components for a given spin
projection axis µ. The notation P(F) stands for “Pauli in the
frozen approximation.”

The calculation of this PKE difference with frozen den-
sities allows one to identify the internuclear PKE without
the presence of particle transfer and other relaxation effects
similar to methods used in condensed matter physics and
chemistry [6,7,9]. We note that $EP(F)(R) is zero for large val-
ues of R since the antisymmetrization of two well-separated
nuclei does not introduce any change to local nuclear densities
of Eq. (9) and thus both DCFHF and FHF give the intrinsic
Pauli energy in this case. We note also that, assuming that
the PKE is independent of the choice of the spin quantiza-
tion axis, summing over the isospin q gives the total Pauli
repulsion which should then be equivalent to the difference
between the DCFHF and FHF potentials,

∑
q $EP(F)

qµ (R) #
VDCFHF(R) − VFHF(R).

We can similarly define the dynamical contribution to this
net PKE by taking the difference between the DC-TDHF and
DCFHF localization measures

$EP(D)
qµ (R) = h̄2

2m

∑

sµ

∫
d3r

×
[
DDC−TDHF

qsµ
(r, R) − DDCFHF

qsµ
(r, R)

]
, (14)
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which vanishes for r = r′ due to the Pauli exclusion principle.
The conditional probability for finding a nucleon at r′ when
we know with certainty that another nucleon with the same
spin and isospin is at r is proportional to

Rqs(r, r′) = Pqs(r, r′)
ρq(rs, rs)

. (7)

The short-range behavior of Rqs can be obtained using tech-
niques similar to the local density approximation [57,65]. The
leading term in the expansion yields the localization measure

Dqsµ
= τqsµ

− 1
4

|∇ρqsµ
|2

ρqsµ

−
|jqsµ

|2

ρqsµ

. (8)

This measure is the most general form that is appropriate
for deformed nuclei and without assuming time-reversal in-
variance, thus also including the time-odd terms important
in applications such as cranking or TDHF. The densities and
currents are given in their most unrestricted form [89–91] for
µ axis denoting the spin-quantization axis by [65]

ρqsµ
(r) = 1

2ρq(r) + 1
2σµsqµ(r), (9a)

τqsµ
(r) = 1

2τq(r) + 1
2σµTqµ(r), (9b)

jqsµ
(r) = 1

2 jq(r) + 1
2σµJq(r) · eµ, (9c)

where σµ = 2sµ = ±1 and eµ is the unit vector in the direc-
tion of the µ axis. Note that subscripts sµ denote spin along
the quantization axis and should not be confused by the spin
density sqµ. The dot product in Eq. (9) is explicitly given in
the case of, e.g., µ = z:

Jq(r) · ez = 1
2i

[(∇ − ∇′)sqz(r, r′)]r=r′ .

The explicit expressions of the local densities and currents are
given in Refs. [65,89]. We note that the localization measure
includes the spin density sqµ(r), the time-odd part of the
kinetic density Tqµ(r), as well as the full spin-orbit tensor
Jq(r), which is a pseudotensor. In this sense, all of the terms
in the Skyrme energy density functional [89] contribute to
the measure. Finally, we note that the time-odd terms con-
tained in the above definitions (sqµ, Tqµ, and jq) are zero in
static calculations of even-even nuclei but the spin tensor Jq
is not. Therefore, jqsµ

is not zero in general. The DCFHF
and DC-TDHF procedures result in a time-reversal invariant
solution where the time-odd terms are zero. However, all time-
odd terms are present in TDHF calculations as they assure
Galilean invariance of the time evolution. Thus, the TDHF
densities used in the DC-TDHF method are generated with the
presence of time-odd terms, resulting in an excitation energy
that is removed by the DC-TDHF procedure [79].

An alternate meaning of the localization function relates
to the kinetic energy and the Pauli exclusion principle. In
fact, the last two terms in Eq. (8) are the kinetic density for
a complex valued single particle state of a given spin s and
isospin q that satisfies local gauge invariance [65,92]

τ s.p.
qs = 1

4
|∇ρqs|2

ρqs
+

|jqs|2

ρqs
. (10)

The first term in Eq. (10) is related to the von Weizsacker
kinetic-energy density [93]. Equations (8) and (10) give

Dqs = τqs − τ s.p.
qs , (11)

meaning that, for a single nucleon system, Dqs = 0. Conse-
quently, Dqs is a measure of the excess of kinetic density due
to the Pauli exclusion principle. One can now define the Pauli
kinetic energy (PKE) from the above expression as

EP
qs = h̄2

2m

∫
d3r Dqs(r). (12)

Note that this is the intrinsic PKE produced by all nucleons
of any nuclear system. So far, these equations are general
and can be used to compute the PKE from different mean-
field approaches by using the corresponding one-body density
matrix.

For example, using a DCFHF one-body density matrix
ρDCFHF(R) for nuclei at a distance R in Eq. (8), one can
compute the total PKE with Eq. (12) from the resulting
DDCFHF

qs (R; r). However, the Pauli exclusion principle between
nucleons belonging to the same nucleus do not contribute to
the Pauli repulsion in the nucleus-nucleus potential. We then
define the net PKE for two nuclei separated by a distance R
between their centers as

$EP(F)
qµ (R) = h̄2

2m

∑

sµ

∫
d3r

[
DDCFHF

qsµ
(r, R) − DFHF

qsµ
(r, R)

]
,

(13)
where we have subtracted the contribution of the PKE from
the FHF approach. Indeed, the latter uses the same frozen
density as DCFHF, but it neglects the Pauli exclusion principle
between nucleons of different nuclei. We have also summed
over the spin-up and spin-down components for a given spin
projection axis µ. The notation P(F) stands for “Pauli in the
frozen approximation.”

The calculation of this PKE difference with frozen den-
sities allows one to identify the internuclear PKE without
the presence of particle transfer and other relaxation effects
similar to methods used in condensed matter physics and
chemistry [6,7,9]. We note that $EP(F)(R) is zero for large val-
ues of R since the antisymmetrization of two well-separated
nuclei does not introduce any change to local nuclear densities
of Eq. (9) and thus both DCFHF and FHF give the intrinsic
Pauli energy in this case. We note also that, assuming that
the PKE is independent of the choice of the spin quantiza-
tion axis, summing over the isospin q gives the total Pauli
repulsion which should then be equivalent to the difference
between the DCFHF and FHF potentials,

∑
q $EP(F)

qµ (R) #
VDCFHF(R) − VFHF(R).

We can similarly define the dynamical contribution to this
net PKE by taking the difference between the DC-TDHF and
DCFHF localization measures

$EP(D)
qµ (R) = h̄2

2m

∑

sµ

∫
d3r

×
[
DDC−TDHF

qsµ
(r, R) − DDCFHF

qsµ
(r, R)

]
, (14)
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FIG. 3. [(a)–(d)] Nucleus-nucleus potentials in 40,48Ca + 40,48Ca and 16O + 208Pb computed from FHF, DCFHF, and DC-TDHF methods.
[(e)–(h)] Neutron and proton contributions to the Pauli repulsion from Eq. (13) in the frozen approximation (thick lines). Replacing the DCFHF
Pauli energy by the FHF one with Thomas-Fermi approximation of the kinetic energy in Eq. (13) leads to results represented by thin lines.
[(i)–(l)] Additional dynamical contributions to the Pauli repulsion computed from Eq. (14). The line marked by RB indicates the (DC-TDHF)
barrier peak for each system. The dotted horizontal lines show the location of zero PKE difference.

assumption that Pauli repulsion can be neglected when the
density in the neck is small compared to saturation density.

To get a deeper insight into the spatial distribution of the
Pauli repulsion, we plot the difference of the NLF computed
from FHF and DCFHF in Figs. 1(e), 1(f), 2(e), and 2(f). As
expected, this difference is mostly found around the neck re-
gion as it is due to the symmetrization process which tends to
delocalize the neck nucleons. As a result, the Pauli repulsion
is mostly occurring in the neck region. Note, however, that in
the asymmetric 16O +208Pb reaction, the spatial distribution
of the Pauli repulsion also extends away from the neck. This
distribution is also found be different for neutrons and pro-
tons. Quantitative comparisons between neutron and proton
repulsion are discussed in the next section.

B. Pauli repulsion from potentials and NLF

Pauli repulsion is a contribution to the bare nucleus-
nucleus potential which becomes important at short distance
when the nuclei overlap. The FHF and DCFHF potentials
are represented by solid and dashed lines, respectively, in
Figs. 3(a)–3(d) for the 40,48Ca + 40,48Ca and 16O + 208Pb sys-
tems. The Pauli repulsion included in DCFHF induces a
widening of the barrier as well as a small increase of its
height, up to ≈1.6 MeV in 16O + 208Pb. To a large extent, this
increase of the barrier height is compensated by dynamical
polarization effects accounted for in the DC-TDHF potential
[dotted lines in Fig. 3(a)–3(d)]. Indeed, coupling effects in

these systems lower the average DC-TDHF barrier by few
MeV. Nevertheless, the widening of the barrier due to Pauli
repulsion is still present, indicating that it plays an important
role in the inner barrier region.

The NLF method allows us to decompose the Pauli
repulsion into proton and neutron contributions. This decom-
position would make sense, however, only if the resulting
Pauli energy does not strongly depend on the choice of the
spin quantization axis µ in the region of interest. This depen-
dence is studied in Fig. 4 for 40Ca + 40Ca by comparing µ = z
and x spin quantization axes. Although the difference reaches
≈10% at very short distances, it remains small in the region
studied in Fig. 3, which is physically relevant for sub-barrier
fusion reactions down to ≈20% below the barrier. We have
chosen the spin projection axis to be the z axis (perpendicular
to the collision axis x) in all the following calculations. In
general, except at small distances (where the frozen density
distributions become unphysical), we do not see any signifi-
cant dependence on the choice of the spin projection axis.

Before we study in more detail the proton and neutron
contributions to the Pauli repulsion, we need to verify that the
NLF method gives the expected Pauli repulsion. A compar-
ison between Pauli repulsion calculations from the potential
difference V DCFHF − V FHF and using the NLF method in
the frozen approximation [Eq. (13)] is shown in Fig. 5 for
40Ca + 40Ca. The overall agreement between both methods
is good, although the NLF method slightly overestimates the
Pauli repulsion in the barrier region (see inset of Fig. 5). It
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methods employed to compute the Pauli contribution to the
ion-ion interaction barriers and we describe the Pauli energy
calculations using the NLF. This is followed by the results of
these calculations in Sec. III. Conclusions are summarized in
Sec. IV.

II. METHOD

In this section, we briefly outline the formalisms and meth-
ods used in our calculations. Further details can be found in
the cited references.

A. Microscopic methods

In order to investigate the Pauli energy in heavy-ion fusion
reactions, we employ microscopic methods to compute the
interaction between nuclei. Following the idea of Brueckner
et al. [44], the bare nucleus-nucleus potential (i.e., without
dynamical rearrangement) is computed from an energy den-
sity functional (EDF) E [ρ] written as a space integral of an
energy density H[ρ(r)]

E [ρ] =
∫

dr H[ρ(r)]. (1)

The bare potential is obtained by requiring frozen ground-
state densities ρi of each nucleus (i = 1, 2), which we
compute using the Hartree-Fock (HF) mean-field approxima-
tion. One advantage of this method is that it does not introduce
new parameters other than those of the EDF. Indeed, the same
Skyrme EDF [66] is used both in HF calculations and to
compute the bare potential.

Neglecting the Pauli exclusion principle between nucleons
in different nuclei (except for those arising from the exchange
terms in the effective interaction [67]) leads to the usual FHF
potential [43,46–50]

VFHF(R) =
∫

dr H[ρ1(r) + ρ2(r − R)] − E [ρ1] − E [ρ2],

(2)
where R is the distance vector between the centers of mass
of the nuclei. To account for the Pauli repulsion in the bare
potential, we use instead the DCFHF method [11]. The Pauli
exclusion principle is included exactly by allowing the single-
particle states, constituting the combined nuclear density, to
reorganize to attain their minimum energy configuration and
be properly antisymmetrized, as the many-body state is a
Slater determinant of all the occupied single-particle wave
functions. The HF minimization of the combined system is
thus performed subject to the constraint that the local proton
(p) and neutron (n) densities do not change:

δ

〈

H −
∑

q=p,n

∫
dr λq(r)

[
ρ1q (r) + ρ2q (r − R)

]
〉

= 0, (3)

where the λn,p(r) are Lagrange parameters at each point of
space constraining the neutron and proton local densities.
This equation determines a unique Slater determinant |$(R)〉.
Assuming the potential to be central leads to the expression

VDCFHF(R) = 〈$(R)|H |$(R)〉 − E [ρ1] − E [ρ2]. (4)

The resulting DCFHF bare potentials thus account for the
Pauli repulsion, widening the fusion barrier and producing
a potential pocket at short distance R which is not present
in FHF potentials [11]. Consequently, comparisons between
FHF and DCFHF bare potentials allow us to study the ef-
fects of the Pauli principle for frozen nuclear densities. These
potentials, however, do not account for any dynamical rear-
rangement of the densities induced.

TDHF calculations, on the other hand, account for such
rearrangement, at the mean-field level, in particular those
produced by couplings to vibrational [51,68,69] and rota-
tional modes [70,71], as well as nucleon transfer through
the neck [48,50,72–76]. Nucleus-nucleus potentials extracted
from TDHF calculations [47,49,52,77] then account for both
dynamical effects and the Pauli exclusion principle. In order
to further investigate the full dynamics, we have thus used
the DC-TDHF method, where the densities are taken directly
from the TDHF evolution of the system and the same con-
straint procedure used in DCFHF is employed (see Ref. [52]
for details):

δ

〈

H −
∑

q=p,n

∫
dr λq(r)[ρq(r) − ρTDHF

q (r, t )]

〉

= 0,

where ρq represents the combined density for the system. The
TDHF evolution gives access to the time evolution of the
distance R(t ) between the centers of mass of the fragments.
The potential is then obtained as in Eq. (2) by removing the
binding energy of the HF ground states,

VDC-TDHF(R) = 〈$(R(t))|H |$(R(t))〉 − E [ρ1] − E [ρ2].
(5)

The DC-TDHF approach accounts for microscopic effects
associated with the Pauli exclusion principle, such as the
splitting of orbitals with some states contributing attractively
(bounding) and some repulsively (antibounding) to the poten-
tial [78]. It should be noted also that, due to their dynamical
nature, density rearrangements naturally depend on the en-
ergy of the collision, inducing an energy dependence to the
potential [47,79–81]. One limitation of methods relying on
TDHF evolutions is that the latter do not account for many-
body tunneling. Thus, the energy dependence of the potential
at sub-barrier energies is unknown. Nevertheless, near- and
sub-barrier fusion cross sections have been computed using
DC-TDHF potentials determined from TDHF evolutions at
near-barrier central collisions, showing overall good agree-
ment with experiment [69,81–88].

B. The nucleon localization function (NLF)

The measure of localization has been originally devel-
oped in the context of a mean-field description for electronic
systems [53–55] and subsequently introduced to nuclear sys-
tems [57,65]. We first realize that a fermionic mean-field
state is fully characterized by the one-body density-matrix
ρq(rs, r′s′). The probability of finding two nucleons with the
same spin at spatial locations r and r′ (same-spin pair proba-
bility) for isospin q is proportional to

Pqs(r, r′) = ρq(rs, rs)ρq(r′s, r′s) − |ρq(rs, r′s)|2, (6)
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which vanishes for r = r′ due to the Pauli exclusion principle.
The conditional probability for finding a nucleon at r′ when
we know with certainty that another nucleon with the same
spin and isospin is at r is proportional to

Rqs(r, r′) = Pqs(r, r′)
ρq(rs, rs)

. (7)

The short-range behavior of Rqs can be obtained using tech-
niques similar to the local density approximation [57,65]. The
leading term in the expansion yields the localization measure

Dqsµ
= τqsµ

− 1
4

|∇ρqsµ
|2

ρqsµ

−
|jqsµ

|2

ρqsµ

. (8)

This measure is the most general form that is appropriate
for deformed nuclei and without assuming time-reversal in-
variance, thus also including the time-odd terms important
in applications such as cranking or TDHF. The densities and
currents are given in their most unrestricted form [89–91] for
µ axis denoting the spin-quantization axis by [65]

ρqsµ
(r) = 1

2ρq(r) + 1
2σµsqµ(r), (9a)

τqsµ
(r) = 1

2τq(r) + 1
2σµTqµ(r), (9b)

jqsµ
(r) = 1

2 jq(r) + 1
2σµJq(r) · eµ, (9c)

where σµ = 2sµ = ±1 and eµ is the unit vector in the direc-
tion of the µ axis. Note that subscripts sµ denote spin along
the quantization axis and should not be confused by the spin
density sqµ. The dot product in Eq. (9) is explicitly given in
the case of, e.g., µ = z:

Jq(r) · ez = 1
2i

[(∇ − ∇′)sqz(r, r′)]r=r′ .

The explicit expressions of the local densities and currents are
given in Refs. [65,89]. We note that the localization measure
includes the spin density sqµ(r), the time-odd part of the
kinetic density Tqµ(r), as well as the full spin-orbit tensor
Jq(r), which is a pseudotensor. In this sense, all of the terms
in the Skyrme energy density functional [89] contribute to
the measure. Finally, we note that the time-odd terms con-
tained in the above definitions (sqµ, Tqµ, and jq) are zero in
static calculations of even-even nuclei but the spin tensor Jq
is not. Therefore, jqsµ

is not zero in general. The DCFHF
and DC-TDHF procedures result in a time-reversal invariant
solution where the time-odd terms are zero. However, all time-
odd terms are present in TDHF calculations as they assure
Galilean invariance of the time evolution. Thus, the TDHF
densities used in the DC-TDHF method are generated with the
presence of time-odd terms, resulting in an excitation energy
that is removed by the DC-TDHF procedure [79].

An alternate meaning of the localization function relates
to the kinetic energy and the Pauli exclusion principle. In
fact, the last two terms in Eq. (8) are the kinetic density for
a complex valued single particle state of a given spin s and
isospin q that satisfies local gauge invariance [65,92]

τ s.p.
qs = 1

4
|∇ρqs|2

ρqs
+

|jqs|2

ρqs
. (10)

The first term in Eq. (10) is related to the von Weizsacker
kinetic-energy density [93]. Equations (8) and (10) give

Dqs = τqs − τ s.p.
qs , (11)

meaning that, for a single nucleon system, Dqs = 0. Conse-
quently, Dqs is a measure of the excess of kinetic density due
to the Pauli exclusion principle. One can now define the Pauli
kinetic energy (PKE) from the above expression as

EP
qs = h̄2

2m

∫
d3r Dqs(r). (12)

Note that this is the intrinsic PKE produced by all nucleons
of any nuclear system. So far, these equations are general
and can be used to compute the PKE from different mean-
field approaches by using the corresponding one-body density
matrix.

For example, using a DCFHF one-body density matrix
ρDCFHF(R) for nuclei at a distance R in Eq. (8), one can
compute the total PKE with Eq. (12) from the resulting
DDCFHF

qs (R; r). However, the Pauli exclusion principle between
nucleons belonging to the same nucleus do not contribute to
the Pauli repulsion in the nucleus-nucleus potential. We then
define the net PKE for two nuclei separated by a distance R
between their centers as

$EP(F)
qµ (R) = h̄2

2m

∑

sµ

∫
d3r

[
DDCFHF

qsµ
(r, R) − DFHF

qsµ
(r, R)

]
,

(13)
where we have subtracted the contribution of the PKE from
the FHF approach. Indeed, the latter uses the same frozen
density as DCFHF, but it neglects the Pauli exclusion principle
between nucleons of different nuclei. We have also summed
over the spin-up and spin-down components for a given spin
projection axis µ. The notation P(F) stands for “Pauli in the
frozen approximation.”

The calculation of this PKE difference with frozen den-
sities allows one to identify the internuclear PKE without
the presence of particle transfer and other relaxation effects
similar to methods used in condensed matter physics and
chemistry [6,7,9]. We note that $EP(F)(R) is zero for large val-
ues of R since the antisymmetrization of two well-separated
nuclei does not introduce any change to local nuclear densities
of Eq. (9) and thus both DCFHF and FHF give the intrinsic
Pauli energy in this case. We note also that, assuming that
the PKE is independent of the choice of the spin quantiza-
tion axis, summing over the isospin q gives the total Pauli
repulsion which should then be equivalent to the difference
between the DCFHF and FHF potentials,

∑
q $EP(F)

qµ (R) #
VDCFHF(R) − VFHF(R).

We can similarly define the dynamical contribution to this
net PKE by taking the difference between the DC-TDHF and
DCFHF localization measures

$EP(D)
qµ (R) = h̄2

2m

∑

sµ

∫
d3r

×
[
DDC−TDHF

qsµ
(r, R) − DDCFHF

qsµ
(r, R)

]
, (14)
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which vanishes for r = r′ due to the Pauli exclusion principle.
The conditional probability for finding a nucleon at r′ when
we know with certainty that another nucleon with the same
spin and isospin is at r is proportional to

Rqs(r, r′) = Pqs(r, r′)
ρq(rs, rs)

. (7)

The short-range behavior of Rqs can be obtained using tech-
niques similar to the local density approximation [57,65]. The
leading term in the expansion yields the localization measure

Dqsµ
= τqsµ

− 1
4

|∇ρqsµ
|2

ρqsµ

−
|jqsµ

|2

ρqsµ

. (8)

This measure is the most general form that is appropriate
for deformed nuclei and without assuming time-reversal in-
variance, thus also including the time-odd terms important
in applications such as cranking or TDHF. The densities and
currents are given in their most unrestricted form [89–91] for
µ axis denoting the spin-quantization axis by [65]

ρqsµ
(r) = 1

2ρq(r) + 1
2σµsqµ(r), (9a)

τqsµ
(r) = 1

2τq(r) + 1
2σµTqµ(r), (9b)

jqsµ
(r) = 1

2 jq(r) + 1
2σµJq(r) · eµ, (9c)

where σµ = 2sµ = ±1 and eµ is the unit vector in the direc-
tion of the µ axis. Note that subscripts sµ denote spin along
the quantization axis and should not be confused by the spin
density sqµ. The dot product in Eq. (9) is explicitly given in
the case of, e.g., µ = z:

Jq(r) · ez = 1
2i

[(∇ − ∇′)sqz(r, r′)]r=r′ .

The explicit expressions of the local densities and currents are
given in Refs. [65,89]. We note that the localization measure
includes the spin density sqµ(r), the time-odd part of the
kinetic density Tqµ(r), as well as the full spin-orbit tensor
Jq(r), which is a pseudotensor. In this sense, all of the terms
in the Skyrme energy density functional [89] contribute to
the measure. Finally, we note that the time-odd terms con-
tained in the above definitions (sqµ, Tqµ, and jq) are zero in
static calculations of even-even nuclei but the spin tensor Jq
is not. Therefore, jqsµ

is not zero in general. The DCFHF
and DC-TDHF procedures result in a time-reversal invariant
solution where the time-odd terms are zero. However, all time-
odd terms are present in TDHF calculations as they assure
Galilean invariance of the time evolution. Thus, the TDHF
densities used in the DC-TDHF method are generated with the
presence of time-odd terms, resulting in an excitation energy
that is removed by the DC-TDHF procedure [79].

An alternate meaning of the localization function relates
to the kinetic energy and the Pauli exclusion principle. In
fact, the last two terms in Eq. (8) are the kinetic density for
a complex valued single particle state of a given spin s and
isospin q that satisfies local gauge invariance [65,92]

τ s.p.
qs = 1

4
|∇ρqs|2

ρqs
+

|jqs|2

ρqs
. (10)

The first term in Eq. (10) is related to the von Weizsacker
kinetic-energy density [93]. Equations (8) and (10) give

Dqs = τqs − τ s.p.
qs , (11)

meaning that, for a single nucleon system, Dqs = 0. Conse-
quently, Dqs is a measure of the excess of kinetic density due
to the Pauli exclusion principle. One can now define the Pauli
kinetic energy (PKE) from the above expression as

EP
qs = h̄2

2m

∫
d3r Dqs(r). (12)

Note that this is the intrinsic PKE produced by all nucleons
of any nuclear system. So far, these equations are general
and can be used to compute the PKE from different mean-
field approaches by using the corresponding one-body density
matrix.

For example, using a DCFHF one-body density matrix
ρDCFHF(R) for nuclei at a distance R in Eq. (8), one can
compute the total PKE with Eq. (12) from the resulting
DDCFHF

qs (R; r). However, the Pauli exclusion principle between
nucleons belonging to the same nucleus do not contribute to
the Pauli repulsion in the nucleus-nucleus potential. We then
define the net PKE for two nuclei separated by a distance R
between their centers as

$EP(F)
qµ (R) = h̄2

2m

∑

sµ

∫
d3r

[
DDCFHF

qsµ
(r, R) − DFHF

qsµ
(r, R)

]
,

(13)
where we have subtracted the contribution of the PKE from
the FHF approach. Indeed, the latter uses the same frozen
density as DCFHF, but it neglects the Pauli exclusion principle
between nucleons of different nuclei. We have also summed
over the spin-up and spin-down components for a given spin
projection axis µ. The notation P(F) stands for “Pauli in the
frozen approximation.”

The calculation of this PKE difference with frozen den-
sities allows one to identify the internuclear PKE without
the presence of particle transfer and other relaxation effects
similar to methods used in condensed matter physics and
chemistry [6,7,9]. We note that $EP(F)(R) is zero for large val-
ues of R since the antisymmetrization of two well-separated
nuclei does not introduce any change to local nuclear densities
of Eq. (9) and thus both DCFHF and FHF give the intrinsic
Pauli energy in this case. We note also that, assuming that
the PKE is independent of the choice of the spin quantiza-
tion axis, summing over the isospin q gives the total Pauli
repulsion which should then be equivalent to the difference
between the DCFHF and FHF potentials,

∑
q $EP(F)

qµ (R) #
VDCFHF(R) − VFHF(R).

We can similarly define the dynamical contribution to this
net PKE by taking the difference between the DC-TDHF and
DCFHF localization measures

$EP(D)
qµ (R) = h̄2

2m

∑

sµ

∫
d3r

×
[
DDC−TDHF

qsµ
(r, R) − DDCFHF

qsµ
(r, R)

]
, (14)
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which vanishes for r = r′ due to the Pauli exclusion principle.
The conditional probability for finding a nucleon at r′ when
we know with certainty that another nucleon with the same
spin and isospin is at r is proportional to

Rqs(r, r′) = Pqs(r, r′)
ρq(rs, rs)

. (7)

The short-range behavior of Rqs can be obtained using tech-
niques similar to the local density approximation [57,65]. The
leading term in the expansion yields the localization measure

Dqsµ
= τqsµ

− 1
4

|∇ρqsµ
|2

ρqsµ

−
|jqsµ

|2

ρqsµ

. (8)

This measure is the most general form that is appropriate
for deformed nuclei and without assuming time-reversal in-
variance, thus also including the time-odd terms important
in applications such as cranking or TDHF. The densities and
currents are given in their most unrestricted form [89–91] for
µ axis denoting the spin-quantization axis by [65]

ρqsµ
(r) = 1

2ρq(r) + 1
2σµsqµ(r), (9a)

τqsµ
(r) = 1

2τq(r) + 1
2σµTqµ(r), (9b)

jqsµ
(r) = 1

2 jq(r) + 1
2σµJq(r) · eµ, (9c)

where σµ = 2sµ = ±1 and eµ is the unit vector in the direc-
tion of the µ axis. Note that subscripts sµ denote spin along
the quantization axis and should not be confused by the spin
density sqµ. The dot product in Eq. (9) is explicitly given in
the case of, e.g., µ = z:

Jq(r) · ez = 1
2i

[(∇ − ∇′)sqz(r, r′)]r=r′ .

The explicit expressions of the local densities and currents are
given in Refs. [65,89]. We note that the localization measure
includes the spin density sqµ(r), the time-odd part of the
kinetic density Tqµ(r), as well as the full spin-orbit tensor
Jq(r), which is a pseudotensor. In this sense, all of the terms
in the Skyrme energy density functional [89] contribute to
the measure. Finally, we note that the time-odd terms con-
tained in the above definitions (sqµ, Tqµ, and jq) are zero in
static calculations of even-even nuclei but the spin tensor Jq
is not. Therefore, jqsµ

is not zero in general. The DCFHF
and DC-TDHF procedures result in a time-reversal invariant
solution where the time-odd terms are zero. However, all time-
odd terms are present in TDHF calculations as they assure
Galilean invariance of the time evolution. Thus, the TDHF
densities used in the DC-TDHF method are generated with the
presence of time-odd terms, resulting in an excitation energy
that is removed by the DC-TDHF procedure [79].

An alternate meaning of the localization function relates
to the kinetic energy and the Pauli exclusion principle. In
fact, the last two terms in Eq. (8) are the kinetic density for
a complex valued single particle state of a given spin s and
isospin q that satisfies local gauge invariance [65,92]

τ s.p.
qs = 1

4
|∇ρqs|2

ρqs
+

|jqs|2

ρqs
. (10)

The first term in Eq. (10) is related to the von Weizsacker
kinetic-energy density [93]. Equations (8) and (10) give

Dqs = τqs − τ s.p.
qs , (11)

meaning that, for a single nucleon system, Dqs = 0. Conse-
quently, Dqs is a measure of the excess of kinetic density due
to the Pauli exclusion principle. One can now define the Pauli
kinetic energy (PKE) from the above expression as

EP
qs = h̄2

2m

∫
d3r Dqs(r). (12)

Note that this is the intrinsic PKE produced by all nucleons
of any nuclear system. So far, these equations are general
and can be used to compute the PKE from different mean-
field approaches by using the corresponding one-body density
matrix.

For example, using a DCFHF one-body density matrix
ρDCFHF(R) for nuclei at a distance R in Eq. (8), one can
compute the total PKE with Eq. (12) from the resulting
DDCFHF

qs (R; r). However, the Pauli exclusion principle between
nucleons belonging to the same nucleus do not contribute to
the Pauli repulsion in the nucleus-nucleus potential. We then
define the net PKE for two nuclei separated by a distance R
between their centers as

$EP(F)
qµ (R) = h̄2

2m

∑

sµ

∫
d3r

[
DDCFHF

qsµ
(r, R) − DFHF

qsµ
(r, R)

]
,

(13)
where we have subtracted the contribution of the PKE from
the FHF approach. Indeed, the latter uses the same frozen
density as DCFHF, but it neglects the Pauli exclusion principle
between nucleons of different nuclei. We have also summed
over the spin-up and spin-down components for a given spin
projection axis µ. The notation P(F) stands for “Pauli in the
frozen approximation.”

The calculation of this PKE difference with frozen den-
sities allows one to identify the internuclear PKE without
the presence of particle transfer and other relaxation effects
similar to methods used in condensed matter physics and
chemistry [6,7,9]. We note that $EP(F)(R) is zero for large val-
ues of R since the antisymmetrization of two well-separated
nuclei does not introduce any change to local nuclear densities
of Eq. (9) and thus both DCFHF and FHF give the intrinsic
Pauli energy in this case. We note also that, assuming that
the PKE is independent of the choice of the spin quantiza-
tion axis, summing over the isospin q gives the total Pauli
repulsion which should then be equivalent to the difference
between the DCFHF and FHF potentials,

∑
q $EP(F)

qµ (R) #
VDCFHF(R) − VFHF(R).

We can similarly define the dynamical contribution to this
net PKE by taking the difference between the DC-TDHF and
DCFHF localization measures

$EP(D)
qµ (R) = h̄2

2m

∑

sµ

∫
d3r

×
[
DDC−TDHF

qsµ
(r, R) − DDCFHF

qsµ
(r, R)

]
, (14)
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which vanishes for r = r′ due to the Pauli exclusion principle.
The conditional probability for finding a nucleon at r′ when
we know with certainty that another nucleon with the same
spin and isospin is at r is proportional to

Rqs(r, r′) = Pqs(r, r′)
ρq(rs, rs)

. (7)

The short-range behavior of Rqs can be obtained using tech-
niques similar to the local density approximation [57,65]. The
leading term in the expansion yields the localization measure

Dqsµ
= τqsµ

− 1
4

|∇ρqsµ
|2

ρqsµ

−
|jqsµ

|2

ρqsµ

. (8)

This measure is the most general form that is appropriate
for deformed nuclei and without assuming time-reversal in-
variance, thus also including the time-odd terms important
in applications such as cranking or TDHF. The densities and
currents are given in their most unrestricted form [89–91] for
µ axis denoting the spin-quantization axis by [65]

ρqsµ
(r) = 1

2ρq(r) + 1
2σµsqµ(r), (9a)

τqsµ
(r) = 1

2τq(r) + 1
2σµTqµ(r), (9b)

jqsµ
(r) = 1

2 jq(r) + 1
2σµJq(r) · eµ, (9c)

where σµ = 2sµ = ±1 and eµ is the unit vector in the direc-
tion of the µ axis. Note that subscripts sµ denote spin along
the quantization axis and should not be confused by the spin
density sqµ. The dot product in Eq. (9) is explicitly given in
the case of, e.g., µ = z:

Jq(r) · ez = 1
2i

[(∇ − ∇′)sqz(r, r′)]r=r′ .

The explicit expressions of the local densities and currents are
given in Refs. [65,89]. We note that the localization measure
includes the spin density sqµ(r), the time-odd part of the
kinetic density Tqµ(r), as well as the full spin-orbit tensor
Jq(r), which is a pseudotensor. In this sense, all of the terms
in the Skyrme energy density functional [89] contribute to
the measure. Finally, we note that the time-odd terms con-
tained in the above definitions (sqµ, Tqµ, and jq) are zero in
static calculations of even-even nuclei but the spin tensor Jq
is not. Therefore, jqsµ

is not zero in general. The DCFHF
and DC-TDHF procedures result in a time-reversal invariant
solution where the time-odd terms are zero. However, all time-
odd terms are present in TDHF calculations as they assure
Galilean invariance of the time evolution. Thus, the TDHF
densities used in the DC-TDHF method are generated with the
presence of time-odd terms, resulting in an excitation energy
that is removed by the DC-TDHF procedure [79].

An alternate meaning of the localization function relates
to the kinetic energy and the Pauli exclusion principle. In
fact, the last two terms in Eq. (8) are the kinetic density for
a complex valued single particle state of a given spin s and
isospin q that satisfies local gauge invariance [65,92]

τ s.p.
qs = 1

4
|∇ρqs|2

ρqs
+

|jqs|2

ρqs
. (10)

The first term in Eq. (10) is related to the von Weizsacker
kinetic-energy density [93]. Equations (8) and (10) give

Dqs = τqs − τ s.p.
qs , (11)

meaning that, for a single nucleon system, Dqs = 0. Conse-
quently, Dqs is a measure of the excess of kinetic density due
to the Pauli exclusion principle. One can now define the Pauli
kinetic energy (PKE) from the above expression as

EP
qs = h̄2

2m

∫
d3r Dqs(r). (12)

Note that this is the intrinsic PKE produced by all nucleons
of any nuclear system. So far, these equations are general
and can be used to compute the PKE from different mean-
field approaches by using the corresponding one-body density
matrix.

For example, using a DCFHF one-body density matrix
ρDCFHF(R) for nuclei at a distance R in Eq. (8), one can
compute the total PKE with Eq. (12) from the resulting
DDCFHF

qs (R; r). However, the Pauli exclusion principle between
nucleons belonging to the same nucleus do not contribute to
the Pauli repulsion in the nucleus-nucleus potential. We then
define the net PKE for two nuclei separated by a distance R
between their centers as

$EP(F)
qµ (R) = h̄2

2m

∑

sµ

∫
d3r

[
DDCFHF

qsµ
(r, R) − DFHF

qsµ
(r, R)

]
,

(13)
where we have subtracted the contribution of the PKE from
the FHF approach. Indeed, the latter uses the same frozen
density as DCFHF, but it neglects the Pauli exclusion principle
between nucleons of different nuclei. We have also summed
over the spin-up and spin-down components for a given spin
projection axis µ. The notation P(F) stands for “Pauli in the
frozen approximation.”

The calculation of this PKE difference with frozen den-
sities allows one to identify the internuclear PKE without
the presence of particle transfer and other relaxation effects
similar to methods used in condensed matter physics and
chemistry [6,7,9]. We note that $EP(F)(R) is zero for large val-
ues of R since the antisymmetrization of two well-separated
nuclei does not introduce any change to local nuclear densities
of Eq. (9) and thus both DCFHF and FHF give the intrinsic
Pauli energy in this case. We note also that, assuming that
the PKE is independent of the choice of the spin quantiza-
tion axis, summing over the isospin q gives the total Pauli
repulsion which should then be equivalent to the difference
between the DCFHF and FHF potentials,

∑
q $EP(F)

qµ (R) #
VDCFHF(R) − VFHF(R).

We can similarly define the dynamical contribution to this
net PKE by taking the difference between the DC-TDHF and
DCFHF localization measures

$EP(D)
qµ (R) = h̄2

2m

∑

sµ

∫
d3r

×
[
DDC−TDHF

qsµ
(r, R) − DDCFHF

qsµ
(r, R)

]
, (14)
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which vanishes for r = r′ due to the Pauli exclusion principle.
The conditional probability for finding a nucleon at r′ when
we know with certainty that another nucleon with the same
spin and isospin is at r is proportional to

Rqs(r, r′) = Pqs(r, r′)
ρq(rs, rs)

. (7)

The short-range behavior of Rqs can be obtained using tech-
niques similar to the local density approximation [57,65]. The
leading term in the expansion yields the localization measure

Dqsµ
= τqsµ

− 1
4

|∇ρqsµ
|2

ρqsµ

−
|jqsµ

|2

ρqsµ

. (8)

This measure is the most general form that is appropriate
for deformed nuclei and without assuming time-reversal in-
variance, thus also including the time-odd terms important
in applications such as cranking or TDHF. The densities and
currents are given in their most unrestricted form [89–91] for
µ axis denoting the spin-quantization axis by [65]

ρqsµ
(r) = 1

2ρq(r) + 1
2σµsqµ(r), (9a)

τqsµ
(r) = 1

2τq(r) + 1
2σµTqµ(r), (9b)

jqsµ
(r) = 1

2 jq(r) + 1
2σµJq(r) · eµ, (9c)

where σµ = 2sµ = ±1 and eµ is the unit vector in the direc-
tion of the µ axis. Note that subscripts sµ denote spin along
the quantization axis and should not be confused by the spin
density sqµ. The dot product in Eq. (9) is explicitly given in
the case of, e.g., µ = z:

Jq(r) · ez = 1
2i

[(∇ − ∇′)sqz(r, r′)]r=r′ .

The explicit expressions of the local densities and currents are
given in Refs. [65,89]. We note that the localization measure
includes the spin density sqµ(r), the time-odd part of the
kinetic density Tqµ(r), as well as the full spin-orbit tensor
Jq(r), which is a pseudotensor. In this sense, all of the terms
in the Skyrme energy density functional [89] contribute to
the measure. Finally, we note that the time-odd terms con-
tained in the above definitions (sqµ, Tqµ, and jq) are zero in
static calculations of even-even nuclei but the spin tensor Jq
is not. Therefore, jqsµ

is not zero in general. The DCFHF
and DC-TDHF procedures result in a time-reversal invariant
solution where the time-odd terms are zero. However, all time-
odd terms are present in TDHF calculations as they assure
Galilean invariance of the time evolution. Thus, the TDHF
densities used in the DC-TDHF method are generated with the
presence of time-odd terms, resulting in an excitation energy
that is removed by the DC-TDHF procedure [79].

An alternate meaning of the localization function relates
to the kinetic energy and the Pauli exclusion principle. In
fact, the last two terms in Eq. (8) are the kinetic density for
a complex valued single particle state of a given spin s and
isospin q that satisfies local gauge invariance [65,92]

τ s.p.
qs = 1

4
|∇ρqs|2

ρqs
+

|jqs|2

ρqs
. (10)

The first term in Eq. (10) is related to the von Weizsacker
kinetic-energy density [93]. Equations (8) and (10) give

Dqs = τqs − τ s.p.
qs , (11)

meaning that, for a single nucleon system, Dqs = 0. Conse-
quently, Dqs is a measure of the excess of kinetic density due
to the Pauli exclusion principle. One can now define the Pauli
kinetic energy (PKE) from the above expression as

EP
qs = h̄2

2m

∫
d3r Dqs(r). (12)

Note that this is the intrinsic PKE produced by all nucleons
of any nuclear system. So far, these equations are general
and can be used to compute the PKE from different mean-
field approaches by using the corresponding one-body density
matrix.

For example, using a DCFHF one-body density matrix
ρDCFHF(R) for nuclei at a distance R in Eq. (8), one can
compute the total PKE with Eq. (12) from the resulting
DDCFHF

qs (R; r). However, the Pauli exclusion principle between
nucleons belonging to the same nucleus do not contribute to
the Pauli repulsion in the nucleus-nucleus potential. We then
define the net PKE for two nuclei separated by a distance R
between their centers as

$EP(F)
qµ (R) = h̄2

2m

∑

sµ

∫
d3r

[
DDCFHF

qsµ
(r, R) − DFHF

qsµ
(r, R)

]
,

(13)
where we have subtracted the contribution of the PKE from
the FHF approach. Indeed, the latter uses the same frozen
density as DCFHF, but it neglects the Pauli exclusion principle
between nucleons of different nuclei. We have also summed
over the spin-up and spin-down components for a given spin
projection axis µ. The notation P(F) stands for “Pauli in the
frozen approximation.”

The calculation of this PKE difference with frozen den-
sities allows one to identify the internuclear PKE without
the presence of particle transfer and other relaxation effects
similar to methods used in condensed matter physics and
chemistry [6,7,9]. We note that $EP(F)(R) is zero for large val-
ues of R since the antisymmetrization of two well-separated
nuclei does not introduce any change to local nuclear densities
of Eq. (9) and thus both DCFHF and FHF give the intrinsic
Pauli energy in this case. We note also that, assuming that
the PKE is independent of the choice of the spin quantiza-
tion axis, summing over the isospin q gives the total Pauli
repulsion which should then be equivalent to the difference
between the DCFHF and FHF potentials,

∑
q $EP(F)

qµ (R) #
VDCFHF(R) − VFHF(R).

We can similarly define the dynamical contribution to this
net PKE by taking the difference between the DC-TDHF and
DCFHF localization measures

$EP(D)
qµ (R) = h̄2

2m

∑

sµ

∫
d3r

×
[
DDC−TDHF

qsµ
(r, R) − DDCFHF

qsµ
(r, R)

]
, (14)
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FIG. 3. [(a)–(d)] Nucleus-nucleus potentials in 40,48Ca + 40,48Ca and 16O + 208Pb computed from FHF, DCFHF, and DC-TDHF methods.
[(e)–(h)] Neutron and proton contributions to the Pauli repulsion from Eq. (13) in the frozen approximation (thick lines). Replacing the DCFHF
Pauli energy by the FHF one with Thomas-Fermi approximation of the kinetic energy in Eq. (13) leads to results represented by thin lines.
[(i)–(l)] Additional dynamical contributions to the Pauli repulsion computed from Eq. (14). The line marked by RB indicates the (DC-TDHF)
barrier peak for each system. The dotted horizontal lines show the location of zero PKE difference.

assumption that Pauli repulsion can be neglected when the
density in the neck is small compared to saturation density.

To get a deeper insight into the spatial distribution of the
Pauli repulsion, we plot the difference of the NLF computed
from FHF and DCFHF in Figs. 1(e), 1(f), 2(e), and 2(f). As
expected, this difference is mostly found around the neck re-
gion as it is due to the symmetrization process which tends to
delocalize the neck nucleons. As a result, the Pauli repulsion
is mostly occurring in the neck region. Note, however, that in
the asymmetric 16O +208Pb reaction, the spatial distribution
of the Pauli repulsion also extends away from the neck. This
distribution is also found be different for neutrons and pro-
tons. Quantitative comparisons between neutron and proton
repulsion are discussed in the next section.

B. Pauli repulsion from potentials and NLF

Pauli repulsion is a contribution to the bare nucleus-
nucleus potential which becomes important at short distance
when the nuclei overlap. The FHF and DCFHF potentials
are represented by solid and dashed lines, respectively, in
Figs. 3(a)–3(d) for the 40,48Ca + 40,48Ca and 16O + 208Pb sys-
tems. The Pauli repulsion included in DCFHF induces a
widening of the barrier as well as a small increase of its
height, up to ≈1.6 MeV in 16O + 208Pb. To a large extent, this
increase of the barrier height is compensated by dynamical
polarization effects accounted for in the DC-TDHF potential
[dotted lines in Fig. 3(a)–3(d)]. Indeed, coupling effects in

these systems lower the average DC-TDHF barrier by few
MeV. Nevertheless, the widening of the barrier due to Pauli
repulsion is still present, indicating that it plays an important
role in the inner barrier region.

The NLF method allows us to decompose the Pauli
repulsion into proton and neutron contributions. This decom-
position would make sense, however, only if the resulting
Pauli energy does not strongly depend on the choice of the
spin quantization axis µ in the region of interest. This depen-
dence is studied in Fig. 4 for 40Ca + 40Ca by comparing µ = z
and x spin quantization axes. Although the difference reaches
≈10% at very short distances, it remains small in the region
studied in Fig. 3, which is physically relevant for sub-barrier
fusion reactions down to ≈20% below the barrier. We have
chosen the spin projection axis to be the z axis (perpendicular
to the collision axis x) in all the following calculations. In
general, except at small distances (where the frozen density
distributions become unphysical), we do not see any signifi-
cant dependence on the choice of the spin projection axis.

Before we study in more detail the proton and neutron
contributions to the Pauli repulsion, we need to verify that the
NLF method gives the expected Pauli repulsion. A compar-
ison between Pauli repulsion calculations from the potential
difference V DCFHF − V FHF and using the NLF method in
the frozen approximation [Eq. (13)] is shown in Fig. 5 for
40Ca + 40Ca. The overall agreement between both methods
is good, although the NLF method slightly overestimates the
Pauli repulsion in the barrier region (see inset of Fig. 5). It
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FIG. 3. [(a)–(d)] Nucleus-nucleus potentials in 40,48Ca + 40,48Ca and 16O + 208Pb computed from FHF, DCFHF, and DC-TDHF methods.
[(e)–(h)] Neutron and proton contributions to the Pauli repulsion from Eq. (13) in the frozen approximation (thick lines). Replacing the DCFHF
Pauli energy by the FHF one with Thomas-Fermi approximation of the kinetic energy in Eq. (13) leads to results represented by thin lines.
[(i)–(l)] Additional dynamical contributions to the Pauli repulsion computed from Eq. (14). The line marked by RB indicates the (DC-TDHF)
barrier peak for each system. The dotted horizontal lines show the location of zero PKE difference.

assumption that Pauli repulsion can be neglected when the
density in the neck is small compared to saturation density.

To get a deeper insight into the spatial distribution of the
Pauli repulsion, we plot the difference of the NLF computed
from FHF and DCFHF in Figs. 1(e), 1(f), 2(e), and 2(f). As
expected, this difference is mostly found around the neck re-
gion as it is due to the symmetrization process which tends to
delocalize the neck nucleons. As a result, the Pauli repulsion
is mostly occurring in the neck region. Note, however, that in
the asymmetric 16O +208Pb reaction, the spatial distribution
of the Pauli repulsion also extends away from the neck. This
distribution is also found be different for neutrons and pro-
tons. Quantitative comparisons between neutron and proton
repulsion are discussed in the next section.

B. Pauli repulsion from potentials and NLF

Pauli repulsion is a contribution to the bare nucleus-
nucleus potential which becomes important at short distance
when the nuclei overlap. The FHF and DCFHF potentials
are represented by solid and dashed lines, respectively, in
Figs. 3(a)–3(d) for the 40,48Ca + 40,48Ca and 16O + 208Pb sys-
tems. The Pauli repulsion included in DCFHF induces a
widening of the barrier as well as a small increase of its
height, up to ≈1.6 MeV in 16O + 208Pb. To a large extent, this
increase of the barrier height is compensated by dynamical
polarization effects accounted for in the DC-TDHF potential
[dotted lines in Fig. 3(a)–3(d)]. Indeed, coupling effects in

these systems lower the average DC-TDHF barrier by few
MeV. Nevertheless, the widening of the barrier due to Pauli
repulsion is still present, indicating that it plays an important
role in the inner barrier region.

The NLF method allows us to decompose the Pauli
repulsion into proton and neutron contributions. This decom-
position would make sense, however, only if the resulting
Pauli energy does not strongly depend on the choice of the
spin quantization axis µ in the region of interest. This depen-
dence is studied in Fig. 4 for 40Ca + 40Ca by comparing µ = z
and x spin quantization axes. Although the difference reaches
≈10% at very short distances, it remains small in the region
studied in Fig. 3, which is physically relevant for sub-barrier
fusion reactions down to ≈20% below the barrier. We have
chosen the spin projection axis to be the z axis (perpendicular
to the collision axis x) in all the following calculations. In
general, except at small distances (where the frozen density
distributions become unphysical), we do not see any signifi-
cant dependence on the choice of the spin projection axis.

Before we study in more detail the proton and neutron
contributions to the Pauli repulsion, we need to verify that the
NLF method gives the expected Pauli repulsion. A compar-
ison between Pauli repulsion calculations from the potential
difference V DCFHF − V FHF and using the NLF method in
the frozen approximation [Eq. (13)] is shown in Fig. 5 for
40Ca + 40Ca. The overall agreement between both methods
is good, although the NLF method slightly overestimates the
Pauli repulsion in the barrier region (see inset of Fig. 5). It
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FIG. 3. [(a)–(d)] Nucleus-nucleus potentials in 40,48Ca + 40,48Ca and 16O + 208Pb computed from FHF, DCFHF, and DC-TDHF methods.
[(e)–(h)] Neutron and proton contributions to the Pauli repulsion from Eq. (13) in the frozen approximation (thick lines). Replacing the DCFHF
Pauli energy by the FHF one with Thomas-Fermi approximation of the kinetic energy in Eq. (13) leads to results represented by thin lines.
[(i)–(l)] Additional dynamical contributions to the Pauli repulsion computed from Eq. (14). The line marked by RB indicates the (DC-TDHF)
barrier peak for each system. The dotted horizontal lines show the location of zero PKE difference.

assumption that Pauli repulsion can be neglected when the
density in the neck is small compared to saturation density.

To get a deeper insight into the spatial distribution of the
Pauli repulsion, we plot the difference of the NLF computed
from FHF and DCFHF in Figs. 1(e), 1(f), 2(e), and 2(f). As
expected, this difference is mostly found around the neck re-
gion as it is due to the symmetrization process which tends to
delocalize the neck nucleons. As a result, the Pauli repulsion
is mostly occurring in the neck region. Note, however, that in
the asymmetric 16O +208Pb reaction, the spatial distribution
of the Pauli repulsion also extends away from the neck. This
distribution is also found be different for neutrons and pro-
tons. Quantitative comparisons between neutron and proton
repulsion are discussed in the next section.

B. Pauli repulsion from potentials and NLF

Pauli repulsion is a contribution to the bare nucleus-
nucleus potential which becomes important at short distance
when the nuclei overlap. The FHF and DCFHF potentials
are represented by solid and dashed lines, respectively, in
Figs. 3(a)–3(d) for the 40,48Ca + 40,48Ca and 16O + 208Pb sys-
tems. The Pauli repulsion included in DCFHF induces a
widening of the barrier as well as a small increase of its
height, up to ≈1.6 MeV in 16O + 208Pb. To a large extent, this
increase of the barrier height is compensated by dynamical
polarization effects accounted for in the DC-TDHF potential
[dotted lines in Fig. 3(a)–3(d)]. Indeed, coupling effects in

these systems lower the average DC-TDHF barrier by few
MeV. Nevertheless, the widening of the barrier due to Pauli
repulsion is still present, indicating that it plays an important
role in the inner barrier region.

The NLF method allows us to decompose the Pauli
repulsion into proton and neutron contributions. This decom-
position would make sense, however, only if the resulting
Pauli energy does not strongly depend on the choice of the
spin quantization axis µ in the region of interest. This depen-
dence is studied in Fig. 4 for 40Ca + 40Ca by comparing µ = z
and x spin quantization axes. Although the difference reaches
≈10% at very short distances, it remains small in the region
studied in Fig. 3, which is physically relevant for sub-barrier
fusion reactions down to ≈20% below the barrier. We have
chosen the spin projection axis to be the z axis (perpendicular
to the collision axis x) in all the following calculations. In
general, except at small distances (where the frozen density
distributions become unphysical), we do not see any signifi-
cant dependence on the choice of the spin projection axis.

Before we study in more detail the proton and neutron
contributions to the Pauli repulsion, we need to verify that the
NLF method gives the expected Pauli repulsion. A compar-
ison between Pauli repulsion calculations from the potential
difference V DCFHF − V FHF and using the NLF method in
the frozen approximation [Eq. (13)] is shown in Fig. 5 for
40Ca + 40Ca. The overall agreement between both methods
is good, although the NLF method slightly overestimates the
Pauli repulsion in the barrier region (see inset of Fig. 5). It
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FIG. 3. [(a)–(d)] Nucleus-nucleus potentials in 40,48Ca + 40,48Ca and 16O + 208Pb computed from FHF, DCFHF, and DC-TDHF methods.
[(e)–(h)] Neutron and proton contributions to the Pauli repulsion from Eq. (13) in the frozen approximation (thick lines). Replacing the DCFHF
Pauli energy by the FHF one with Thomas-Fermi approximation of the kinetic energy in Eq. (13) leads to results represented by thin lines.
[(i)–(l)] Additional dynamical contributions to the Pauli repulsion computed from Eq. (14). The line marked by RB indicates the (DC-TDHF)
barrier peak for each system. The dotted horizontal lines show the location of zero PKE difference.

assumption that Pauli repulsion can be neglected when the
density in the neck is small compared to saturation density.

To get a deeper insight into the spatial distribution of the
Pauli repulsion, we plot the difference of the NLF computed
from FHF and DCFHF in Figs. 1(e), 1(f), 2(e), and 2(f). As
expected, this difference is mostly found around the neck re-
gion as it is due to the symmetrization process which tends to
delocalize the neck nucleons. As a result, the Pauli repulsion
is mostly occurring in the neck region. Note, however, that in
the asymmetric 16O +208Pb reaction, the spatial distribution
of the Pauli repulsion also extends away from the neck. This
distribution is also found be different for neutrons and pro-
tons. Quantitative comparisons between neutron and proton
repulsion are discussed in the next section.

B. Pauli repulsion from potentials and NLF

Pauli repulsion is a contribution to the bare nucleus-
nucleus potential which becomes important at short distance
when the nuclei overlap. The FHF and DCFHF potentials
are represented by solid and dashed lines, respectively, in
Figs. 3(a)–3(d) for the 40,48Ca + 40,48Ca and 16O + 208Pb sys-
tems. The Pauli repulsion included in DCFHF induces a
widening of the barrier as well as a small increase of its
height, up to ≈1.6 MeV in 16O + 208Pb. To a large extent, this
increase of the barrier height is compensated by dynamical
polarization effects accounted for in the DC-TDHF potential
[dotted lines in Fig. 3(a)–3(d)]. Indeed, coupling effects in

these systems lower the average DC-TDHF barrier by few
MeV. Nevertheless, the widening of the barrier due to Pauli
repulsion is still present, indicating that it plays an important
role in the inner barrier region.

The NLF method allows us to decompose the Pauli
repulsion into proton and neutron contributions. This decom-
position would make sense, however, only if the resulting
Pauli energy does not strongly depend on the choice of the
spin quantization axis µ in the region of interest. This depen-
dence is studied in Fig. 4 for 40Ca + 40Ca by comparing µ = z
and x spin quantization axes. Although the difference reaches
≈10% at very short distances, it remains small in the region
studied in Fig. 3, which is physically relevant for sub-barrier
fusion reactions down to ≈20% below the barrier. We have
chosen the spin projection axis to be the z axis (perpendicular
to the collision axis x) in all the following calculations. In
general, except at small distances (where the frozen density
distributions become unphysical), we do not see any signifi-
cant dependence on the choice of the spin projection axis.

Before we study in more detail the proton and neutron
contributions to the Pauli repulsion, we need to verify that the
NLF method gives the expected Pauli repulsion. A compar-
ison between Pauli repulsion calculations from the potential
difference V DCFHF − V FHF and using the NLF method in
the frozen approximation [Eq. (13)] is shown in Fig. 5 for
40Ca + 40Ca. The overall agreement between both methods
is good, although the NLF method slightly overestimates the
Pauli repulsion in the barrier region (see inset of Fig. 5). It
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FIG. 3. [(a)–(d)] Nucleus-nucleus potentials in 40,48Ca + 40,48Ca and 16O + 208Pb computed from FHF, DCFHF, and DC-TDHF methods.
[(e)–(h)] Neutron and proton contributions to the Pauli repulsion from Eq. (13) in the frozen approximation (thick lines). Replacing the DCFHF
Pauli energy by the FHF one with Thomas-Fermi approximation of the kinetic energy in Eq. (13) leads to results represented by thin lines.
[(i)–(l)] Additional dynamical contributions to the Pauli repulsion computed from Eq. (14). The line marked by RB indicates the (DC-TDHF)
barrier peak for each system. The dotted horizontal lines show the location of zero PKE difference.

assumption that Pauli repulsion can be neglected when the
density in the neck is small compared to saturation density.

To get a deeper insight into the spatial distribution of the
Pauli repulsion, we plot the difference of the NLF computed
from FHF and DCFHF in Figs. 1(e), 1(f), 2(e), and 2(f). As
expected, this difference is mostly found around the neck re-
gion as it is due to the symmetrization process which tends to
delocalize the neck nucleons. As a result, the Pauli repulsion
is mostly occurring in the neck region. Note, however, that in
the asymmetric 16O +208Pb reaction, the spatial distribution
of the Pauli repulsion also extends away from the neck. This
distribution is also found be different for neutrons and pro-
tons. Quantitative comparisons between neutron and proton
repulsion are discussed in the next section.

B. Pauli repulsion from potentials and NLF

Pauli repulsion is a contribution to the bare nucleus-
nucleus potential which becomes important at short distance
when the nuclei overlap. The FHF and DCFHF potentials
are represented by solid and dashed lines, respectively, in
Figs. 3(a)–3(d) for the 40,48Ca + 40,48Ca and 16O + 208Pb sys-
tems. The Pauli repulsion included in DCFHF induces a
widening of the barrier as well as a small increase of its
height, up to ≈1.6 MeV in 16O + 208Pb. To a large extent, this
increase of the barrier height is compensated by dynamical
polarization effects accounted for in the DC-TDHF potential
[dotted lines in Fig. 3(a)–3(d)]. Indeed, coupling effects in

these systems lower the average DC-TDHF barrier by few
MeV. Nevertheless, the widening of the barrier due to Pauli
repulsion is still present, indicating that it plays an important
role in the inner barrier region.

The NLF method allows us to decompose the Pauli
repulsion into proton and neutron contributions. This decom-
position would make sense, however, only if the resulting
Pauli energy does not strongly depend on the choice of the
spin quantization axis µ in the region of interest. This depen-
dence is studied in Fig. 4 for 40Ca + 40Ca by comparing µ = z
and x spin quantization axes. Although the difference reaches
≈10% at very short distances, it remains small in the region
studied in Fig. 3, which is physically relevant for sub-barrier
fusion reactions down to ≈20% below the barrier. We have
chosen the spin projection axis to be the z axis (perpendicular
to the collision axis x) in all the following calculations. In
general, except at small distances (where the frozen density
distributions become unphysical), we do not see any signifi-
cant dependence on the choice of the spin projection axis.

Before we study in more detail the proton and neutron
contributions to the Pauli repulsion, we need to verify that the
NLF method gives the expected Pauli repulsion. A compar-
ison between Pauli repulsion calculations from the potential
difference V DCFHF − V FHF and using the NLF method in
the frozen approximation [Eq. (13)] is shown in Fig. 5 for
40Ca + 40Ca. The overall agreement between both methods
is good, although the NLF method slightly overestimates the
Pauli repulsion in the barrier region (see inset of Fig. 5). It
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FIG. 3. [(a)–(d)] Nucleus-nucleus potentials in 40,48Ca + 40,48Ca and 16O + 208Pb computed from FHF, DCFHF, and DC-TDHF methods.
[(e)–(h)] Neutron and proton contributions to the Pauli repulsion from Eq. (13) in the frozen approximation (thick lines). Replacing the DCFHF
Pauli energy by the FHF one with Thomas-Fermi approximation of the kinetic energy in Eq. (13) leads to results represented by thin lines.
[(i)–(l)] Additional dynamical contributions to the Pauli repulsion computed from Eq. (14). The line marked by RB indicates the (DC-TDHF)
barrier peak for each system. The dotted horizontal lines show the location of zero PKE difference.

assumption that Pauli repulsion can be neglected when the
density in the neck is small compared to saturation density.

To get a deeper insight into the spatial distribution of the
Pauli repulsion, we plot the difference of the NLF computed
from FHF and DCFHF in Figs. 1(e), 1(f), 2(e), and 2(f). As
expected, this difference is mostly found around the neck re-
gion as it is due to the symmetrization process which tends to
delocalize the neck nucleons. As a result, the Pauli repulsion
is mostly occurring in the neck region. Note, however, that in
the asymmetric 16O +208Pb reaction, the spatial distribution
of the Pauli repulsion also extends away from the neck. This
distribution is also found be different for neutrons and pro-
tons. Quantitative comparisons between neutron and proton
repulsion are discussed in the next section.

B. Pauli repulsion from potentials and NLF

Pauli repulsion is a contribution to the bare nucleus-
nucleus potential which becomes important at short distance
when the nuclei overlap. The FHF and DCFHF potentials
are represented by solid and dashed lines, respectively, in
Figs. 3(a)–3(d) for the 40,48Ca + 40,48Ca and 16O + 208Pb sys-
tems. The Pauli repulsion included in DCFHF induces a
widening of the barrier as well as a small increase of its
height, up to ≈1.6 MeV in 16O + 208Pb. To a large extent, this
increase of the barrier height is compensated by dynamical
polarization effects accounted for in the DC-TDHF potential
[dotted lines in Fig. 3(a)–3(d)]. Indeed, coupling effects in

these systems lower the average DC-TDHF barrier by few
MeV. Nevertheless, the widening of the barrier due to Pauli
repulsion is still present, indicating that it plays an important
role in the inner barrier region.

The NLF method allows us to decompose the Pauli
repulsion into proton and neutron contributions. This decom-
position would make sense, however, only if the resulting
Pauli energy does not strongly depend on the choice of the
spin quantization axis µ in the region of interest. This depen-
dence is studied in Fig. 4 for 40Ca + 40Ca by comparing µ = z
and x spin quantization axes. Although the difference reaches
≈10% at very short distances, it remains small in the region
studied in Fig. 3, which is physically relevant for sub-barrier
fusion reactions down to ≈20% below the barrier. We have
chosen the spin projection axis to be the z axis (perpendicular
to the collision axis x) in all the following calculations. In
general, except at small distances (where the frozen density
distributions become unphysical), we do not see any signifi-
cant dependence on the choice of the spin projection axis.

Before we study in more detail the proton and neutron
contributions to the Pauli repulsion, we need to verify that the
NLF method gives the expected Pauli repulsion. A compar-
ison between Pauli repulsion calculations from the potential
difference V DCFHF − V FHF and using the NLF method in
the frozen approximation [Eq. (13)] is shown in Fig. 5 for
40Ca + 40Ca. The overall agreement between both methods
is good, although the NLF method slightly overestimates the
Pauli repulsion in the barrier region (see inset of Fig. 5). It
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Conclusions
- Microscopic predictions (no free parameters)
- FHF, DCFHF, and DC-TDHF to isolate Pauli repulsion and dynamics
- Applications to 16O+208Pb
- Pauli repulsion inside the fusion barrier => Deep sub-barrier fusion hindrance
- Isovector dynamics (transfer)
- NLF => Pauli energy
- Pauli repulsion in the neck
- Different dynamical effects for protons and neutrons



Open questions -
One expects Pauli repulsion to disapear at
high energy .

How to account for this Energy dependence

- Capture can be into resonant states of

the compound nucleus
.

Pb : No resonances observed in TDHF like calculations
How to include resonances in a microscopic way ?

- Ideally ,
We want to avoid N - N potentials .

Pb : TDHF trajectories only fuse at E) Up
( no many - body tunneling )

How to get a mean - field like description
including tunneling ?

- Currently ,

✓
☐ c. + ☐ up

from E ? Vp
Pb : no guarantee that tunneling dynamics is the same
Does it account for the correct dynamics at ECC VB ?

- Pairing could also impact the dynamics
Pb : Ambiguity w.at .

the relative gauge
angle between the 2 HFB vaccine

Is BCS enough or do we need full TDHFB


