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Quantum Stochastic methods for the N-body
“Nuclear” problem
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m) Exact quantum jump method in real-time (Hubbard-Stratonovich)

m) Approximate quantum jump method for in-medium collisions

m) Phase-space approaches for Fermi systems

m) Applications



A few more words on exact stochastic methods

Given a Hamiltonian
and an initial State

Write H into a
quadratic form
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General strategy

S. Levit, PRC21 (1980) 1594.
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The many-body problem
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® The method is general.
the SSE are deduced easily

mm) extension to Stochastic TDHFB

DL, arXiv nucl-th 0605033

® The mean-field appears naturally
and the interpretation is easier

e the numerical effort can be
reduced by reducing the number
of observables

but...
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. Lacroix, Ann. of Phys. 322 (2007).
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Alternative stochastic methods to treat correlations

Mean-Field
State: Slater det, QP vacuum
information: one-body DOFs

Correlation that built up in time

Ex: BBGKY

Stochastic
unraveling

Replace the initial complex problem by an

ensemble of simpler problem
(mean-field like)

Beyond Hartree-Fock / TDHF

Correct for the improper
Evolution of initial quantum

Fluctuations with
Phase-space approaches




Correlations that built-up
INn time: iIn medium collisions




Markovian limit, quantum-diffusion and stochastic Schrodinger Equation

GOAL: Restarting from an uncorrelated (Slater) state D = |®¢) (®9| we should:

1-have an estimate of D = |U(¢)) (¥ (¢)|
2-interpret it as an average over jumps between “simple” states

Weak coupling approximation : perturbative treatment
Reinhard and Suraud, Ann. of Phys. 216 (1992)
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Residual interaction in the mean-field
interaction picture

Statistical assumption in the Markovian limit :

o

We assume that the residual interaction
can be treated as an ensemble of
two-body interaction:

{ 5’012(5) =0
dv12 (5)5’012(3’) X 5’0122(8)8_(3_3,)2/272



Time-scale and Markovian dynamics

Mean-field time-scale
t HMF ~ cate t+Dt
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. Average time between two collisions
Hypothesis : 7 & At & o0

Average Density Evolution:
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Dissipation: link between Extended TDHF and Lindblad Eq.

One-body density A
. - t At

Master equation AD = —[HyF, D] - a —[dv12, [0v12, D]]
step by step ih 2h°
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Separability of the
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® Dissipation contained in Extended TDHF is included
® The master equation is a Lindblad equation
e Associated SSE DL, PRC73 (2006)




Application to Bose-Einstein condensates

1D bose condensate with gaussian two-body interaction

N-body density: D =|N : a) (N : ¢

SSE on single-particle state :
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Correlations that are here
initially and propagates
can play a major role

A typical example in nuclear physics: deformation Note that phase-space approach
are used in many fields of physics
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Phase-space approach for Fermi systems thtle-b|g bang -
Gelis, Schenke, arxiv 2016

pij (t)

Cold atoms: the truncated
Wigner approach

Sinatra, Lobo, Castin, J. Phys. B 35 (2002)

pij(to)

Lacroix, Ayik, EPJA (Review) 50 (2014)




Introduction on Phase-space methods

What is the idea behind phase-space methods?

Collective energy landscape

]

NB: there are many Phase-space
Methods, especially for Bosons

(see Gardiner, Zoller, Quantum noise)

Wave evolution

AV

Many-classical trajectories

[llustration

Solution 1:
Schroedinger Eq.
d|¢)

-

Ex: Wigner transform

f(r,p,t)

+ dynamical evolution

Classical mechanics
With random initial
fluctuations




V(z) (arb. units)

Discussion with George B. Seattle -2019

Introduction on Phase-space methods

Example: decay properties

Probability to decay?

A .. ‘..' v..

Sampling according to:

, (g—q0)* (p—po)?
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mmm) This works surprisingly well

if “true” quantum effects have a weak effect !



Application to fusion reactions

Stochastic semi-classical treatment of discrete channels

relative dist.
Collective Motion + Coupling 10° ¢
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Application to fusion reactions

Stochastic semi-classical treatment of discrete channels

——
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Esbensen et al, PRL 41 (1978)
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Exporting Phase-space methods to the many-body problem

Complex quantum many-

body systems

Simple quantum problems

Othree-bod

k

Important questions/constraints:

Initial fluctuations should reproduce

How to design the initial fluctuations - in average quantum fluctuations.

Time-dependent Hartree-Fock theory
is a good candidate of “classical like”
limit.

What is the equivalent to classical mechanics ?




What do we call classical for Fermi systems?

Collective phase-space Quantum fluctuations

The dynamics is described
by a set of mean-field
evolutions with random
initial conditions

Ayik, Phys. Lett. B 658, (2008).

Mean-Field theory
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The stochastic mean-field (SMF) concept applied to many-body problem

Collective phase-space Quantum fluctuations

The dynamics is described
by a set of mean-field
evolutions with random
initial conditions

Ayik, Phys. Lett. B 658, (2008).

The average properties of initial sampling should identify with properties of the initial state.

SMF in density matrix space
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Enr/(eN)

Description of large amplitude collective motion with SMF
The case of spontaneous symmetry breaking

Lipkin Model i V
|+> = EJy — 5(J+J+ + J_J_)
- 1
& I p=1 p=2 ) > o = %Z;(CL’PCW_CLPC"”) Jy =5 (J+ = J-)
e e e e e | =) 1

N 1
Jr = ch,pc—m’ J=J, Jo = §(J++J—)
See for instance : Ring and Schuck book p=1
Severyukhin, Bender, Heenen, PRC74 (2006)

N=40 particles
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Description of large amplitude collective motion with SMF
The stochastic mean-field solution

Enr/(eN)

pomy P
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Description of large amplitude collective motion with SMF
The stochastic mean-field solution
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Initial condition
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Fluctuations

Fluctuations

Lacroix, Ayik, Yilmaz, PRC 85 (2012)



Phase-space method applied
in the nuclear physics context

—
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Fission of superfluid 22Fm

N

Identification of main fission paths

At=0.675 zs At=1.8 zs At=1.08 zs

1zs=102%1s m @ m
) > S S&D
> S0 O

Time

EY R KX X

scf aef sef



Fission of superfluid 28Fm: energetic properties

258¢, How do we weight
different paths?

N

Q20/[b]

Some conclusions

[» TKE seems compatible with
experiments

£ 120 A
8 1 NN aef

Fluctuation is missed

=40 - - .
R~ 20|: ’_ij_,_'J *aef scf

Scamps, Simenel, DL, PRC 92 (2015)

[’ Dynamic seems almost adiabatic
up to scission point and then is
Well describe by TDHF-BCS

Remaining problem

[» Fluctuations are underestimated

[’ Weight of each paths?
Mean-field only will never be able to describe completely fission



single-particle energies (MeV)

Describing Fission with SMF

SMEF in density matrix space

=

Py = dijni
PP
0p;50P%

1
503700 [ni(1 = ny) + (1 —ny)].

Range of fluctuation fixed by energy cons.
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How to conceal microscopic deterministic approach and randomness ?

pij(to) Pij (t)ll
Lo J
Constrains:

-Generates a sample of microscopic
trajectories (typically 300)
-Each trajectory is 8-10 days CPU time




How to conceal microscopic deterministic approach and randomness ?

Theory vs experiment

T T T T T T
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Tanimura, Lacroix, Ayik, PRL (2017)

fragment mass



Some informal discussion



Some ongoing discussions

Range of fluctuation fixed by energy cons.
An interesting “ongoing” discussions:

S 1000 : A. Bulgac, et al, Phys. Rev. C 100, 034615.
é g [ e _ S. Ayik and D. Lacroix, arXiv:1909.13761.
§ E* A. Bulgac, arXiv:1910.07644.

:% -1920 _(a) | | | | , 7

m=) Actually, density fluctuations diverges in a small volume
leading to no natural cutoff in momentum space

m=) The method works when the single-particle space is

restricted.
Is our E* criteria the correct one?

@) Another issue is that the method (as often) is Hamiltonian based !
It leads to numerical problem with p® terms

mm)> More generally, the method poses the problem of defining a trajectory in our ptoblems



What are the missing pieces?

Here is an interesting ongoing discussion:

Time-dependent generator coordinate method
for many-particle tunneling
Hasegawa, Hagino, Tanimura, PLB 808 (2020)
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and how to characterize them ?

Phase-space consideration on barrier transmission in a
time-dependent variational approach with
superposed wave packets, A. Ono, PLB 808 (2020)
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+ (p)=20.59 MeV/c
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Figure 1: The momentum distributions for the two Gaussian wave packets
which were used in the initial state in the calculation of Ref. [1]. The gray area
indicates the region that is relevant to quantum tunneling (E < 0.13 MeV and
p>0).

Husimi quasi-probability distribution: exact and TDGCM
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Phase-space characterization
(neutrino systems)

e ) H Qz/2 =\ 2+ -
\-'-'--] ----------------------- et b e — = —B. — = X
Neutron > xéx““vz ” 2B (JA JB) +NJA JB
Star \
/V Equivalent to two coupled
- Neutrino Beam 2 Lipkin models

Full characterization of Phase-space

Exact Husimi distribution

. tlu11 =60
60 1 H

o =0 (@ g, D= 10 ) (©

Semiclassical equivalent Phase-space
\./ ‘\./ \./

0 10 20 30 40 50 60 70
time [u~1]

“True” quantum effects are
pretty small ?

What are true and fake quantum
D. Lacroix et el, in preparation effect?

600 > i h=0 (d) oo > e ()




Thank you



