
Projection Methods Applied to 
Electronic Structure Theory

Gustavo E. Scuseria

Restoring Symmetries    CEA-Saclay

 

13 Sep 11



Outline
• The Quantum Chemistry Perspective:

–
 
Important

 
Goal: Describing static/strong correlation 

“black-box”
 

with mean-field computational cost.
– All results presented here are for molecules.
– Solids (infinite systems)

 
are a different beast !

• The Method:
–

 
Symmetry breaking and restoration (Sheik & Ring) 
generalized from number

 
to triaxial

 
spin projection

–
 

Other discrete symmetries like point group
 

and 
complex conjugation

 
broken and restored

• The Solution:
– MR wavefunction

 
whose energy

 
is a

 
DMFT

– Solvable by diagonalization
– Old projection problems

 
revisited with new vistas



What is static/strong
 

correlation in 
in finite

 
electronic structure systems?

•
 
It is all about exact

 
and near-degeneracies

•
 
A single-determinant RHF

 
wavefunction  (with correct

 symmetries) becomes a very poor descriptor of the 
electronic structure as the orbital energy gap closes

•
 
Static correlation examples:

–

 

Closed-shell H2

 

H + H

 

near dissociation: 
σg

 

/σu

 

MOs

 

become degenerate
(LEFT-RIGHT

 

correlation, a nonlocal effect; entanglement)
–

 

Heavy atoms

 

due to AO near degeneracies (eg, Be atom) 
(ANGULAR

 

static correlation)
–

 

Solid State Physics

 

“definition”

 

of strong correlation: 
•

 

When traditional Kohn-Sham DFT

 

fails miserably
•

 

Correlations that are not weak

 

and are not captured by BS MF



UHF at dissociation : right energy but wrong

 

wavefunction
(linear combination of a singlet and a triplet)

H2 

 
H + H: Prototype of left-right

 
static correlation

At dissociation, the symmetry-correct RHF

 

orbitals (σg

 

and σu

 

) become degenerate

UHF: spontaneously breaks symmetry
Gap opens and degeneracy is lifted

RHF: symmetry adapted solution

FCI: “quantum fluctuations”

 

restore symmetry
and lower the energy significantly. Smooth curve.
No “recoupling”

 

issues.

Correct dissociation



Angular
 

Static Correlation
•

 
Related to near degeneracies

 
in atoms as opposed to 

molecular dissociation

•
 
Prototype case:
4-electron series; 2s/2p

 
near-degeneracy:

Li-, Be, B+, C2+, N3+

 

…

•
 
When Z∞

 
, atomic levels with same n

 
but different L

 become nearly-degenerate (“angular”
 

degeneracy)

•
 
Correlation energy diverges linearly as -0.01173 Z

•
 
Crucially important in 3d, 4f, 5f

 
electrons



Dynamic
 

Correlation
•

 
“Weak” as opposed to “strong (static)”

 
correlation

•
 
Has strong

 
basis set dependence because of electron-

 electron cusp (static
 

correlation has weak basis set 
dependence)

•
 
Ubiquitous in the 2e-series:  He,  Li+, Be2+…

•
 
When Z∞

 
, correlation energy goes to a constant 

(~44 mEH

 

) independent of Z

•
 
Treatable by perturbation

 
or coupled-cluster

 
theories

•
 
Essentially a solved problem albeit with O(M6)

 computational cost



How to deal with static correlation ?
•

 
Unrestricted

 
formalism

 
yielding spin-

 
and space-

 symmetry breaking
 

has been the standard way of 
dealing with static correlation

 
in a computationally 

inexpensive manner

•
 
Symmetry breaking in finite

 
systems is artifactual

There are no phase transitions
 

in finite systems!

•
 
Of course CAS/FCI

 
captures static correlation but has 

combinatorial cost. Other methods like DMRG
 

are O(M6)

•
 
Exchange hole localization

 
in DFT

 
incorporates static

 correlation
 

but this introduces self-interaction error

•
 
Downside of breaking

 
symmetries is that the correct

 quantum numbers are hard
 

to recover



Static Correlation Method 
Wish List



 
Should preserve space

 
and spin

 
symmetries (and other 

Hamiltonian symmetries like N
 

and K)



 
Should have low-computational cost (mean-field)

 instead of CASSCF or FCI
 

combinatorial blowup



 
Should be applicable to large systems where FCI is 
impractical



 
Should smoothly connect

 
the dissociation limit with 

the equilibrium region (no “phase transitions”)



 
Should be size consistent (EAB

 

= EA

 

+ EB

 

when RAB∞)



Symmetry Breaking: Spontaneous vs. Deliberate

• Why does spontaneous

 

symmetry breaking occur in HF?

• Schrodinger’s equation is linear

 

in Ψ
 

: H

 

Ψ
 

= E
 

Ψ
but HF

 

is cubic:

 

F(|Ψi

 

|2) Ψi = Єi

 

Ψi

• New solutions appear that break symmetry and have lower energies. 
They are like phase transitions

 

but they are not physical.

• “Quantum fluctuations”

 

smoothen this “phase transition” in finite

 systems. The correct wavefunction is multireference

 

in nature.

• When symmetries are not spontaneously

 

broken, we can break them 
deliberately

 

and then restore

 

them



Symmetry Breaking & Restoration
•

 
When SSB occurs:

 
Projection After Variation

“Phase transitions”
 

are enhanced rather than eliminated !
Not good.

•
 
Much better:

 
Variation

 
After

 
Projection

 
(DSB + opt)

The reference wavefunction is deformed on purpose
and then optimized with projection operators included
E=<0| P†

 

H P |0>,  δE=0

•
 
Heavily traveled road in the 60s, mostly forgotten now !

•
 
New vista: borrow the tools developed in the nuclear 
physics community and apply them in quantum chemistry



Projected Quasiparticle Theory 
Gustavo Scuseria, 

Carlos Jimenez-Hoyos, Tom Henderson, 
Kousik

 

Samanta, Jason Ellis

J. Chem. Phys. in press

(available at arXiv.org>cond-matt>str-e:1106.0956)



(I)
 
Geminals and AGP

• Geminal = Two-particle wavefunction:

 

g(1,2)

• Antisymmetrized Geminal Power: same geminal on every pair:
AGP = Α

 

[ g(1,2) g(3,4) g(5,6) …]

• AGP

 

has the ability to smoothly connect HF

 

with a fully entangled 
wavefunction depending on the geminal “rank”

 

and occupations

• Write geminal in NO

 

basis (geminal & 1pdm NO

 

basis are the same)
g(1,2) = Σi

 

wi

 

Ψi

 

*(1)  Ψi

 

(2);   wi

 

= geminal

 

occ;

 

ni

 

= 1pdm

 

occ

• If rank

 

of g

 

is N

 

(electron

 

number)  ni

 

= 1, 0  

 

HF

• If rank

 

of g

 

is

 

M (orbital basis)

 

and wi

 

= 1/M

 

 “extreme AGP”

 a fully entangled wavefunction with all ni

 

equal 

• AGP

 

is the simplest wavefunction that spans the disentangled

 

to fully 
entangled limits



(II)
 
HFB theory in one slide

•

 

Consider transformations mixing Fermion

 

creation & annihilation operators

β†
i

 

= Σij

 

( Uji

 

a†
j

 

+ Vji

 

aj

 

)

•

 

The quasiparticle

 

determinant    |HFB> = Πi=1,M/2

 

β†
i

 

|vac>
dwells in Fock

 

space and breaks particle number symmetry.

•

 

The U and V

 

matrices are the eigenvectors of the HFB

 

Hamiltonian:

H = [  F     ∆

 

]

 

F =  F(ρ)    Fock Hamiltonian
[-∆*

 

-F* ]

 

∆

 

= ∆(κ)   Pairing Hamiltonian

•

 

The regular ρ= VVT

 

and anomalous  κ= -U*VT

 

density matrices form an 
idempotent quasiparticle density  matrix R

R = [   ρ κ ]

 

ρij

 

= < a†
j

 

ai

 

>
[ -κ*

 

I-

 

ρ* ]

 

κij

 

= < a†
j

 

a†
i

 

>

•

 

At SCF

 

convergence   [H,R] = 0

•

 

HFB theory ignored in q-chem

 

because

 

HFBHF for repulsive

 

1/r12

 

>0



(III)
 
Projection Operators

Spin Projection Operators:

• Löwdin

 

(1955)
PS

 

= πS’≠S

 

[Ŝ2

 

–

 

s’(s’+1)] / [s(s+1) -

 

s’(s’+1)]

• Peierls

 

& Yoccoz

 

(1957), Percus

 

& Rotenberg (1962), Villars (1966)

PS

 

= (s + ½)  ∫
 

dβ

 

sinβ

 

ds

 

(β)  eiβŜy

Number Projection Operator:

• Bayman

 

(1960)
PN

 

= 1/2π

 

∫
 

dφ

 

eiφ(Ň-n)

In all cases, P= P†= P2

Integral representation of P totally ignored in q-chem

 

!
Lowdin’s

 

version of spin-projection: totally ignored in nuc-phys !



(IV) BCS, HFB, PBCS, PHFB & AGP
• BCS

 

wavefunction: |BCS

 

> = πi=1,M

 

( ui

 

+ vi

 

ai
†

 

ai’
†) |vac

 

>
• Contains determinants of different number of electrons (Fock space)
• BCS

 

is HFB

 

in the Natural Orbital (NO)

 

basis (where 1pdm

 

is diagonal)

• Pairing:  Ψi

 

and Ψi’

 

are “paired”

 

spin-orbitals:
“Singlet”

 

pairing: spatial part of Ψi

 

and Ψi’

 

is the same
“Unrestricted”

 

pairing: spatial part is different but still α

 

and β

 

spin
“General”

 

pairing: each orbital is a linear combination of α

 

and β

 

spins
Ψ

 

orbitals can be real

 

or complex

• Number projected BCS: use projector operator to remove all determinants 
that do not contain the correct number of electrons

• AGP

 

= number-PHFB

 

or number-PBCS
• AGP

 

is exact

 

for one electron pair (He

 

atom, H2

 

)
• All

 

previous variational AGP

 

calculations are singlet-paired
• Heavily explored in the 80s…

 

but abandoned in q-chem
• AGP

 

evaluation had

 

steep cost: combinatorial to O(M5)



PHFB Basics (I)
• Given a symmetry

 

A = A†

 

and  [H,A] = 0

• Build a unitary

 

operator

 

U = eiφÂ

 

where  φ Є R

• Given a “deformed”

 

broken

 

symmetry

 

reference

 

state

 

|HFB>

• U

 

creates a manifold of states:  |φ

 

>= U |HFB> = eiφÂ |HFB>

that are all degenerate in energy

 

(“Goldstone manifold”)

< φ

 

| H | φ

 

> = <HFB| e-iφÂ H eiφÂ |HFB> = <HFB| H |HFB>

but interact among themselves <HFB| H eiφÂ |HFB> ≠

 

0
they are non-orthogonal

 

coherent

 

states

• Build a projection operator PA

 

= 1/2π

 

∫

 

dφ

 

eiφ(Â-a)

and extract the component with desired eigenvalue a



PHFB Basics (II)
• Use the variational theorem to minimize the energy E

 

(variation-after-

 
projection) while discretizing

 

P

 

over a gauge grid {φ}

<HFB| P†

 

H P |HFB>   <HFB| H P |HFB>
E = ----------------

 

= --------------

 

= ∫dφ

 

C(φ) <HFB| H |HFB(φ)>
<HFB| P†

 

P |HFB>     <HFB| P |HFB>

P here is PN

 

PS

 

... etc. all Hermitean, idempotent & commuting

• Key result: the energy E above is a

 

density matrix functional !

E = Tr h γ

 

+ ½

 

Tr v Γ

 

γ

 

is 1pdm

 

Γ

 

is 2pdm

Γ

 

= ∫dφ

 

C(φ) [ ρ(φ) Λ

 

ρ(φ) + κ(φ)

 

κ(φ)

 

]

γ

 

= Tr Γ

[ Recall:

 

ΓCPMFT

 

= ρ

 

Λ

 

ρ

 

–

 

κ κ ]

Note factorization of 2pdm

 

over the gauge grid



PHFB Bullets

• The PHFB

 

energy

 

can be written as a functional of the HFB

 

unprojected 
quasiparticle density matrices ρ(φ) and κ(φ)

• PHFB

 

is the regular HFB

 

energy functional but it includes an integration
over the gauge grid

• The energy minimization yields an eigenvalue problem with an effective 
1e Hamiltonian (HFB-style, twice the HF

 

size). Orbitals and geminal 
coefficients are optimized simultaneously. Fully variational.

• For number-projection, the result of this minimization is an AGP 
wavefunction

 

obtained with mean-field (HF) computational cost

• Only ~6-10

 

points per symmetry are needed in the quadrature
• Excellent

 

agreement with previous AGP energies
• 5-6 grid points are enough for μEh

 

accuracy



More PHFB details
• Model is exact (FCI) for 1e and 2e systems

• No DFT
 

dirty laundry: no minima at fractional charges, 
no self-interaction error

• We break and restore all
 

molecular symmetries: 
number, spin

 
(S2

 

and S3

 

), complex conjugation, spatial

• Details vary as a function of symmetry
• Note that SO(3)

 
is isomorphic to SU(2)

• The model can accommodate UHF and GHF-type 
orbitals

 
either real or

 
complex and we can optimize 

these wavefunctions fully variationally



Complex
 

Conjugation restoration



 
The exact eigenfunctions

 
|Ψ> of a real

 
Hamiltonian H in a 

real
 

N-particle Hilbert space {|α>} can be chosen to be real

o Note, however, that an arbitrary phase factor can be 
introduced

that does not change expectation values of observables



 
A mean-field wavefunction does not need to be real



 
We form a broken-symmetry state |

 
Φ> where each quasi-

 particle orbital is complex and has its own phase

 ie'





 
Restoration of complex conjugation symmetry can be 
achieved by solving the eigenvalue problem

in the basis of non-orthogonal states {|
 

Φ>,  K|
 

Φ>}



 
The two states {|θ>, |θ’>} that one gets out of the eigenvalue 
problem are eigenfunctions

 
of K:

SCEHC 

''ˆ

ˆ




ix

ix

eK

eK





Complex
 

Conjugation restoration



Projected Hartree-Fock (PHF)



 
Spin projection (VAP)

 
: an OLD

 
problem in q-chem



 
Spin projection is VERY

 
important to describe the 

dissociation of molecules into separate fragments:

o Broken-symmetry states display “phase transitions”
 that are smoothed-out with spin projection (VAP)

o In the absence of spin-orbit coupling or magnetic 
interactions, S and MS

 

are good quantum numbers:





SMS

SSS

3

2

ˆ
)1(ˆ





 
The energy expression used in PHF

 
is akin to the PHFB

 
one:

|Φ> is restricted to be a HF
 

Slater determinant in Hilbert(N)



 
The required matrix elements are simple to evaluate:

(Blaizot

 

and Ripka)

o P|Φ>  is related to  |Φ> by a Thouless
 

transformation
o A canonical transformation can be defined such that

P|Φ>  is a right vacuum
<Φ|  is a left vacuum

o Wick’s theorem can be applied









P
PH

PP
PHP

E ˆ
ˆˆ

ˆˆ
ˆˆˆ

†

†

Projected Hartree-Fock (PHF)



Projected Hartree-Fock
Bogoliubov

 

(PHFB)Projected

 

Hartree-Fock (PHF)

 CRC )(det)(ˆ †  NR 

Overlap matrix elements:

C -

 

orbital coefficients
detN –

 

NxN

 

determinant

Note that:

• There is no phase problem!
• It is numerically robust as it is always 

an NxN

 

determinant.

 
 

 T
1**

)()(

)(

det
det

)(ˆ









RZRZ

UVZ

ZZI
ZZI
*

*












M

MR

Overlap matrix elements:

U,V –

 

quasiparticle orbital coefficients
detM –

 

MxM

 

determinant

Note that:

• Phase issue!  (extensively discussed)
• Numerically difficult when

which prevents the use of large basis 
sets (M>>N)

1           ,1 
k

k

k

k

u
v

u
v



Acronym Soup
Acronyms are composed of two parts: 

Symmetry                       QP determinant deformation
--------

 

-----------------------
N: number

 

R: restricted (closed-shell)
S: spin

 

U: unrestricted (spin-polarized)
K: complex conjugation

 

G: general (non-collinear)
Ci

 

: inversion (spatial)

 

complex orbitals

Examples:
--------
NRHFB is singlet-paired number-PBCS

 

(= AGP) 
NUHFB

 

is number-projected spin-polarized UAGP
SNUHFB

 

is NUHFB

 

+ spin projection (collinear spin)
SNGHFB

 

is the triaxial

 

(noncollinear) spin projection
KSNGHFB

 

adds complex conjugation to SNGHFB

Same thing without “B” at acronym end for PHF

 

instead of PHFB



LiH: single-bond dissociation

NRHFB: singlet-paired PBCS

 

= regular AGP



Ethylene double-bond dissociation

NUHFB: broken symmetry without spin restoration = UAGP



Ethylene rotational barrier

Note smoothness of NRHFB

 

(=AGP)

 

compared to CAS



NUHFB:  AGP

 

with unrestricted orbitals



KNRHFB &

 

KNUHFB: examples of complex conjugation restoration



SNUHFB: example of collinear spin projection



KSNUHFB: all symmetries broken & restored ~ FCI

 

quality



All curves together



SUHF

 

&

 

SGHF: collinear and noncollinear spin restoration



KRHF

 

&

 

KUHF: complex conjugation symmetry restoration



KSUHF

 

&

 

KSGHF: add K

 

to S



All curves together



Summary

• Projection Problem:
Variational solution to <0|P†

 

H P|0>, where: 
– P

 

are projection operators (spin, number, etc.)
– |0>

 

is a symmetry broken Slater determinant

• Solution: 
– Energy is a density matrix functional
–

 
Projectors are discretized

 

over a manifold of degenerate 
non-orthogonal Slater determinants

– Solved via diagonalization

• Computational Cost:
 

mean-field, Ng

 

*HF

• Optimization Problems Solved:
– Coleman’s AGP

 

optimization (“Coulson’s

 

challenge”)
– Löwdin

 

& Mayer’s EHF

 

method (abandoned in late 70s)
– Goddard’s GF method (proposed in 1968)
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