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Solving the nuclear many body problem

In order to give a proper description of the nuclear system we need:

1. Theoretical

framework = A good interaction or energy density functional (EDF) that describes the

dynamics of the constituent nucleons.

= A good method -adapted to the corresponding interaction/EDF- for
solving the quantum many body problem.
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In order to give a proper description of the nuclear system we need:

1. Theoretical
framework = A good interaction or energy density functional (EDF) that describes the

dynamics of the constituent nucleons.

Some considerations:

e Both mean field (SR-EDF) and beyond mean field (MR-EDF) methods use
intrinsic many-body auxiliary wave functions.

e Density matrices (normal and abnormal) and spatial densities are written in
terms of these auxiliary wave functions.

e All the observables and variational procedures in EDF methods are
expressed in terms of density matrices and spatial densities.

® The usual EDF methods consist in determining first the “best” auxiliary many

body wave functions and, afterwards, in including more correlations.
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@ Recent 3D AMP implementations

Skyrme: M. Bender, P-H. Heenen, Phys. Rev. C 78,024309 (2008)
- Particle number and angular momentum restoration of intrinsic
LN states.

Relativistic: ].M.Yao et al., Phys. Rev. C 81,04431 (2010)
- Angular momentum restoration of intrinsic HFB states.

Gogny: T.R.R,, J.L. Egido, Phys. Rev C 81,064323 (2010)
- Particle number and angular momentum restoration of PN-VAP
states.

CEA-Saclay, Sept 201 | 3D angular momentum and particle number restored calculations Tomas R. Rodriguez



1. Theoretical
framework

Theoretical Framework

e Initial intrinsic states: PN-VAP SEN-Z [@(5,7)]‘ =
O=>7

N,Z o <q)|ﬁ2pr}5Z‘q>> N,Z 5 o $
EN18) = = N ey TP () Aaao(BIQu0l®) = Agy, (21Qa0]2)

e Intermediate Particle Number and Angular Momentum Projected
states

21 + 1
IME;NZ: 67) = = [ Dl (Q)RQ)PY PZ|0(5,7)a0
e Final GCM states  |JM; NZo) = Z INZ" )
KB~y
Ml 7 I;NZonrI;NZ I'NZso
> (Mibvrsry — BV Ny ) Fiéigray =0
K//B/,y/
Nigicgy = (IMK;NZ;ByIMK'; NZ;8'y)
Hiyorgy = (IMK;NZ; By|Hop| IMK'; NZ; 8'') + epp 2 [8(8,7), @ (8',7)]



1. Theoretical
framework

Theoretical Framework

e Initial intrinsic states: PN-VAP SEN-Z [@(5,7)]‘ =
O=>7

(D|Hap PN P2|®) Nz A .
EN2 (@] = (G| PV 2| D) +eph (D) = Ao (P|Q20|P) — Aoy (P|Q22]P)

e Intermediate Particle Number and Angular Momentum Projected
states

21 + 1
IME;NZ: 67) = = [ Dl (Q)RQ)PY PZ|0(5,7)a0
e Final GCM states  |JM; NZo) = Z INZ" )
KB~y
Ml 7 I;NZonrI;NZ I'NZso
> (Mibvrsry — BV Ny ) Fiéigray =0
K//B/,y/
Nigicgy = (IMK;NZ;ByIMK'; NZ;8'y)
Hiyorgy = (IMK;NZ; By|Hop| IMK'; NZ; 8'') + epp 2 [8(8,7), @ (8',7)]



Theoretical Framework

e Initial intrinsic states: PN-VAP SENZ [@(ﬂ,y)]‘ —
O=30
I. Theoretical N,Z <@|ﬁ2bﬁNﬁz ?) N,Z A A
E 52| = —— : — = d
framework [ ] <(I)’PN1T)Z|(I)> +€pp ((I)) )\QQO <(I)‘Q20|(I)> q22 <(I)‘Q22| >

e Intermediate Particle Number and Angular Momentum Projected

states
21 + 1 ~ AN A
IMK; NZ; ) = + /D Q)R(Q)PY 221®(8,7))dN
e Final GCM states  |JM; NZo) = Z INZ" )
KB~y
Ml 7 I;NZonrI;NZ I'NZso
> (Mibvrsry — BV Ny ) Fiéigray =0
K//B/,y/
Nigscrgy = UMK;NZ; By IMK'; NZ; B'')
Hiyorgy = (IMK;NZ; By|Hop| IMK'; NZ; 8'') + epp 2 [8(8,7), @ (8',7)]



1. Theoretical
framework

Theoretical Framework

e Initial intrinsic states: PN-VAP SEN-Z [@(5,7)]‘ =
O=>7

N,Z o <q)|ﬁ2pr}5Z‘q>> N,Z 5 o $
EN18) = = N ey TP () Aaao(BIQu0l®) = Agy, (21Qa0]2)

e Intermediate Particle Number and Angular Momentum Projected
states

21 + 1
IME;NZ: 67) = = [ Dl (Q)RQ)PY PZ|0(5,7)a0
e Final GCM states  |JM; NZo) = Z INZ" )
KB~y
Ml 7 I;NZonrI;NZ I'NZso
> (Mibvrsry — BV Ny ) Fiéigray =0
K//B/,y/
Nigicgy = (IMK;NZ;ByIMK'; NZ;8'y)
Hiyorgy = (IMK;NZ; By|Hop| IMK'; NZ; 8'') + epp 2 [8(8,7), @ (8',7)]



Theoretical Framework

& Effective nucleon-nucleon interaction:

I. Theoretical Gogny force (D1S) that is able to describe properly many phenomena along
framework the whole nuclear chart.
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AXxial calculations **Mg

1. Theoretical
framework

First step: Particle
Number Projection
(before the variation) of HFB-
type wave functions.
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Theoretical Framework

AXxial calculations **Mg

1. Theoretical
framework

Second step: Simultaneous
Particle Number and
Angular Momentum
Projection
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Theoretical Framework

AXxial calculations **Mg

I. Theoretical
framework Third step: Configuration mixing

within the framework of the Generator
Coordinate Method (GCM).

VE RIS v
p

Configuration mixing
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BB’ BB’
B/
N2 = (@(B)|P, PN P?|®(B))
HINZ = (@(B)|Hap Pl PV P?|0(8") + 5N [8(8), ®'(8')]

Hill-Wheeler-Griffin equations

- Energy spectrum
- Observables (mass, radius, B(E2), etc.)
- “Collective w.f.”




Theoretical Framework

Triaxiality in nuclei

1. Theoretical

framework .
e Gamma bands and gamma softness in the low energy spectra

e Shape coexistence and/or shape transitions in transitional regions
e Impact of triaxiality in the mass

e Impact of triaxiality in the fission barriers

e Triaxiality at high spin
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First step: Particle Number Projection (before the variation) of HFB-type
wave functions.
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Theoretical Framework

Second step: Simultaneous Particle Number and Angular Momentum
Projection

1. Theoretical
framework

S$2=(16,16,32)
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Theoretical Framework

Second step: Simultaneous Particle Number and Angular Momentum
Projection
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Theoretical Framework

Second step: Simultaneous Particle Number and Angular Momentum
Projection

: 21 + 1 A AN A
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PES without K-mixing
depend on the
orientation of the
reference frame!




Theoretical Framework

Triaxial calculations **Mg

1. Theoretical

Rtk Second step: Simultaneous

Particle Number and

Angular Momentum

Projection

IMEGNZ; 67) = 22 [ Dl () R@)PY B2 |(8,7))d0

IM; NZ;By) = ZgéM;NWuMK; NZ; 87)

- Minimum displaced to triaxial shapes.

- Projection onto odd | angular momentum

-Softening of PES with increasing I.

- Difference between triaxial minimum and

axial saddle point of
~ 0.7 MeV (0%)
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Theoretical Framework

Third step: Configuration mixing within the framework of the Generator
Coordinate Method (GCM). K and deformation mixing

Selection of the mesh. Resolution.
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Third step: Configuration mixing within the framework of the Generator
Coordinate Method (GCM). K and deformation mixing

Selection of the mesh. Resolution.

150° 30° 150° 30°

180° ‘.; A‘A 0° 1800 0°

-12 -08 -04 0 04 08 1.2 -12 -08 -04 0 04 08 1.2

VAP-PN 7o

0O 02 04 06 08 1

B



Theoretical Framework

Third step: Configuration mixing within the framework of the Generator
Coordinate Method (GCM). K and deformation mixing

1. Theoretical

I'NZ,o . !
framework |IM;NZU>:ZfK57 IMK; NZ; )
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I:NZ I;NZ;o nrI;NZ I'NZjo
Z (HKB,YK/B/,Y/ N E NKB,YK/B/,Y/) K/B/,.Y/ — O
K/B/,Y/

Convergence of the GCM states

-. N S

- Plateau condition as a function
of natural states.

- Orthogonalization
requirements.




- Axial ground state rotational band well
described with axial calculations in this nucleus

Theoretical Framew

Third step: Configuration

mixing within the framework of - Overall qualitative agreement between
I. Theoretical the Generator Coordinate experirnental data and triaxial calculations
framework Method (GCM) K and (energles and B(EZ))

deformation mixing

- Second band associated to a gamma band

- Too high energies for the second and third
band heads (lack of time reversal symmetry
broken -cranking- states)

44

E, (MeV

Triaxial Experiment



Theoretical Framework

Third step: Configuration

mixing within the framework of
I. Theoretical the Generator Coordinate
framework Method (GCM) K and

deformation mixing
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- Axial ground state rotational
band

- Second band associated to a
gamma band
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Theoretical Framework

Third step: Configuration

mixing within the framework of
I. Theoretical the Generator Coordinate
framework Method (GCM) K and

deformation mixing

IM;NZo) =) fis2°|IMK; NZ; By)
KB~
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(HKB'YK/B/'VI - E NKB,YK/I&/,Y/) fK’ﬁ"y’ — 0
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- Axial ground state rotational
band

Problem: Computational time for triaxial ca
& (~1 month per nucleus in 100 nodes)

-Third band with shape mixing 0@00
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Theoretical Framework

Recipe for cooking triaxial calculations

1. Theoretical
framework

® Check the interval of deformations and the number of oscillator shells
with axial calculations.

e Use a high resolution mesh in the triaxial plane.

e Check the number of integration points in the Euler angles studying the

corresponding known mean values. Use rotated states to improve the
convergence.

e Check the convergence of the final GCM calculations (plateau condition
and orthonormalization requirements).



Applications

Skyrme: M. Bender, P-H. Heenen, Phys. Rev. C 78, 024309 (2008)
- Particle number and angular momentum restoration of intrinsic

LN states.
2. Applications

Relativistic: J.M.Yao et al,, Phys. Rev. C 81,04431 (2010)
- Angular momentum restoration of intrinsic HFB states.

Gogny: T.R.R,, ].L. Egido, Phys. Rev C 81,064323 (2010)
- Particle number and angular momentum restoration of PN-VAP
states.

Relativistic: |.M.Yao et al., Phys. Rev. C 83,014308 (201 I), Phys. Rev. C 84,024306 (201 I)
Gogny: T.R.R.and J.L.E., Journal of Physics: Conference Series INPC (2010),
Phys. Lett. B submitted, Phys. Rev. C submitted.
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AXxial calculations '%¢Xe

2. Applications v AXIAL calculations

v Two minima almost degenerated in
the potential energy surface

v’ The collective wave function of the
ground state is distributed in these
two minima (shape coexistence)

v  TRIAXIAL calculations?
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The need of triaxiality: '%6Xe as an example

Triaxial calculations '*°Xe in a reduced
configuration space (seven shells)
v TRIAXIAL calculations

T.R.R and J.L. Egido, Journal of Physics: Conference Series (201 1)

2. Applications

v One single minimum in Y=30° and
saddle points in the axial
configurations

v PES very soft in the Y degree of
freedom

Vv After GCM, there is not

coexistence of prolate and oblate
configurations for the ground state,
just a triaxial state.
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The need of triaxiality: '%6Xe as an example

Triaxial calculations '%¢Xe

v TRIAXIAL calculations

Vv’ Triaxial calculations are able to
describe qualitatively the experimental
data

v’ Branching ratios for the B(E2)
nicely reproduced.

2. Applications
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2. Applications

Triaxial calculations 8%Zr

Motivation

[ stable nucleus
B p-nucleus

B waiting point

232 34 36 38 40 42 44

H. Schatz et al., Phys. Rep. 294, 167 (1998)

v’ N=Z neutron deficient
nuclei are the waiting points
for rp-process nucleosynthesis

v Small proton capture cross
sections and large beta half-lives

v Nuclear structure of these nuclei
determines the parameters relevant to

this process (masses, beta decay half-
lives and branching ratios, ...)
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Triaxial calculations 8%Zr
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v’ N=Z neutron deficient
nuclei are the waiting points
for rp-process nucleosynthesis

v Small proton capture cross
sections and large beta half-lives

v Nuclear structure of these nuclei
determines parameters relevant to
this process (masses, beta decay half-
lives and branching ratios, ...)

v Shape coexistence appears in most
of these nuclei

v To which extent the appearance of
“shape-isomeric” states affects the
decay of these nuclei?
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Triaxial calculations 8%Zr
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Triaxial calculations 8Zr

Motivation

v’ N=Z neutron deficient
nuclei are the waiting points
for rp-process nucleosynthesis

207r - 8Y+et oblate €,=-0.383

2. Applications Ty=3.13 s

v Small proton capture cross

sections and large beta half-lives
spherical €,=0.0

T1/2:3.06 S
v Nuclear structure of these nuclei

determines parameters relevant to
this process (masses, beta decay half-
lives and branching ratios, ...)

>
2
=
=
50
=
5}
B
9]
=
O

prolate €,=0.383
T1/2=6. 86's

v Shape coexistence appears in most
of these nuclei

S = N W A NN NO =N W R N =D W R W

v Different GT strength distribution
depending on the shape of the mother
nucleus.

2 3 4 5
Excitation Energy [MeV]

P. Moller et al., At. Data Nucl. Data Tables 66,131 (1997)




2. Applications

Triaxial calculations 8Zr

Motivation

There are very few experimental data information of this nucleus:

- Ground state band energies (almost rotational)
(CJ. Lister et al, Phys. Rev. Lett. 59, 1270 (1987) and S. M. Fischer et al., Phys. Rev. Lett. 87, 132501 (2001))

- B* half-life (4.1 s)

(J.]- Ressler et al., Phys. Rev. Lett. 84,2104 (2000))

S S U U G S VD VO S S Sy N Whi' SR W VR A S e

500 1000 1500
Energy (xeV)

FIG. 1. Gamma-ray spectra of the ground state cascades in
N = Z nuclei: (a) "“Kr (2a-gated yyy data, sum of yy
gates with one transition below and one transition above J = 14,
production cross section ~120 ub); (b) ™Sr (A/Q = 76/24
and dE /dx gated ¥y data, sum of y gates for transitions below
J = 10, ~20 ub); (c) ¥Zsr (A/Q = 80/25 and dE /dx gated y
singles, ~10 ub).

S. M. Fischer et al., Phys. Rev. Lett. 87, 132501 (2001)

.8

J.]J. Ressler et al., Phys. Rev.
Lett. 84,2104 (2000)

Number of remaining Zr atoms
o
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FIG. 4. Number of remaining Zr atoms as a function of time.
The straight line represents a 4.1-s decay line, while the shaded
arcas show the range of error —4.9 s as an upper limitand 3.5 s
as a lower, The inset shows the background-corrected counts
per 0.5 s.




Triaxial calculations 8Zr

Motivation

There are very few experimental data information of this nucleus:
2. Applications

- Grot
(CJ. Lister «

- B*h

(J.J- Ressler

80Zr:
v RELEVANT IN NUCLEOSYNTHESIS

v RELEVANT IN NUCLEAR STRUCTURE




a0 Triaxial calculations 80

First step: Particle Number Projection
CONTENTS wave functions. )

| . Theoretical
framework

SE™ [‘5(577)]‘ =0 EVZ3]= @lﬁ%p;.

3. Conclusions and
outlook

CEA-Saclay, Sept 2011 3D angular momentum and particle number restored calculations Tomas R. Rodriguez



2. Applications

Triaxial calculations 8Zr

First step: Particle Number Projection (before the variation) of HFB-type
wave functions.

N.Z & o , (®|Hop PN PZ|®) , - -
OE [<I>(6m)]‘¢:¢—0 ENZ[9] = <<1>r21§NPZ4<1>> €D (B) = Aqa (21Q20] @) — gy (@] Q2| @)

0

e Symmetry corresponding to
the different orientation of the
axes

* All configurations are
included between ye[0°,60°]
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2. Applications

Triaxial calculations 8Zr

First step: Particle Number Projection (before the variation) of HFB-type
wave functions.
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2. Applications

Triaxial calculations 89Zr (83 states, 9 shells)

First step: Particle Number Projection (before the variation) of HFB-type
wave functions.

(®|Hap PN PZ|®) - :
+ Ejl\)[’lg((b) il >‘CI20 <(I)’Q20’(I)> _ )‘CI22 <(I)‘Q22‘(I)>

NZ [ < N,Zrg:1
SE [<I>(5,v)}| =0 B e

e Up to five minima in the potential energy

surface.
2 3 4 5 6 7 8 9 10 « Absolute minimum corresponds to spherical

60 configuration (N=40 spherical gap)
e Other minima related to the filling in and out of
g2, p1/2, fs;2 and dsj2 orbits.



2. Applications

Triaxial calculations 89Zr (83 states, 9 shells)

Second step: Simultaneous Particle Number and Angular Momentum
Projection

IMK;NZ; Bv) = 22%1 /D{\jK(Q)}?(Q)PNPZ@(B,y))dQ > |IM;NZ;By) =) g " FPYIMK; NZ; By)
: K

B I W oo enesy wheneser

rotational invariance is restored.

01 2 3 4 5 6 7 8 9 10 « Absolute minima corresponds to deformed
configuration ~0.55
e Barriers between the minima are less than 1
MeV. Mixing?




Triaxial calculations 89Zr (83 states, 9 shells)

Second step: Simultaneous Particle Number and Angular Momentum
Projection

IMK; NZ; Bv) = ZIH /D 0PN PZ|0(8,y))d = [IM;NZ;By) = ZQIMNZBW\IMK;NZ;B’ﬂ

Relevance of angular momentum projection

(Similar feature as in 32Mg, see R. Rodriguez-Guzman et al., Nucl. Phys. A 709, 201 (2002))
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Triaxial calculations 89Zr (83 states, 9 shells)

Final step: Configuration mixing within the framework of the Generator
Coordinate Method (GCM). K and deformation mixing

IM;NZo) =Y fig | IMK; NZ; Bv)
KB~
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1stexc. B0 y-
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Triaxial calculations 89Zr (83 states, 9 shells)

Final step: Configuration mixing within the framework of the Generator
Coordinate Method (GCM). K and deformation mixing

IM;NZo) =Y fig | IMK; NZ; Bv)
KBy

RIS el 1 e o e s

-Several rotational bands and gamma bands partners associated to the different minima of
the potential energy surfaces.

- Axial ground state rotational band in agreement with the experimental levels
(relevance of beyond-mean-field effects).

- Two triaxial rotational bands.

- Four excited 0" minima within a range of ~2.25 MeV = MULTISHAPE COEXISTENCE

- However, these levels are not thermally populated in astrophysical conditions (T~100 keV)

- Electromagnetic transitions are much faster than beta decay half-lives = NO INFLUENCE

in the rp process nucleosynthesis

\v) o 0O 02 04 06 08 0 02 04 06 08
Exp g.s. y-g.s. 1stexc. y-1stexc. 2nd exc. y-2nd exc. 3rdexc.  4th exc. By B




Conclusions and outlook

v/ Current phenomenological Energy Density Functional methods
including triaxial shapes provide a very good description and physical
insight of many phenomena in nuclei along the whole nuclear chart.

v/ It is a competitive alternative and/or complement to shell model

3. Conclusions calculations.
and outlook

v/ Computational time is still a problem.

v/ Some improvements have to be performed yet:
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