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Ouline of the talk
Quest for a methodology

• Symmetry breaking in nuclear physics
• Nuclear EDFs and extensions for the GCM
• Requirements, problems and what to avoid
• Some ideas to tackle the issue

Other technical problems

• Sign of the norm (pfaffian variations)
• Overlap for multiquasiparticle configurations

Other approaches

• Mapping to exactly solvable models for pairing



Symmetry breaking
Spontaneus symmetry breaking is a extremely fruitful concept
to understand nuclear structure phenomenology
• Nuclear superfluidity (Particle number, BCS like w.f.)
• Rotational bands (Rotational symmetry)
• Octupole bands (Parity)
• Translational invariance

1 Intrinsic wave functions treated at the mean field level
2 Coupling between symmetry related degrees of freedom

(Euler angles in rotational symmetry) and intrinsic
(deformed) states can be neglected to some extent ...

3 Exact symmetry restoration required for a more precise
description (correlation energy, selection rules)



Effective interactions
Bare nucleon-nucleon
Bare nucleon-nucleon interaction well known at long distances.
At short distances the repulsive core is less known. Three body
forces are more or less understood.

Short range in-medium correlations
Short range in-medium correlations (Pauli blocking) ”cancel
out” the repulsive core and yield a smooth effective in medium
interaction

Effective interactions
Handling of short range correlations requires Brueckner-like
methods which are extremely hard to implement in finite nuclei.
The smooth effective in-medium interaction is replaced by
phenomenological effective interactions like Skyrme, Gogny or
RFM



Skyrme/Gogny
Non-relativistic Skyrme like/Gogny
Central part, spin-orbit, Coulomb and a phenomenological
density dependent term.
• Skyrme: Zero range central part δ(~r −~r ′) + gradient terms
• Gogny: Finite range central part exp(−(~r −~r ′)2/µ2)

Density dependent term (strongly repulsive)

VDD(ρ) = t3δ(~r1 −~r2)ρα(
1
2

(~r1 +~r2))

α is usually non-integer

EDF: Replace E [Φ〉] = 〈Φ|H|Φ〉+ VDD[〈Φ|ρ|Φ〉] by a functional
E [ρ] (modern Skyrme, BCP, etc)

This is not DFT !



Restoring symmetries
PNP as an example

|ΨN〉 =
1

2π

∫ 2π

0
dϕe−iϕ(N̂−N)|Φ〉

Projected Energy ?
In a pure hamiltonian framework the overlap 〈ϕ0|H|ϕ1〉 is
required to compute the projected energy.

How to deal with density dependent interactions ?

E [|Φ0〉, |Φ1〉] = 〈Φ0|H|Φ1〉+ VDD[???]

or general EDF ?.



Transition density prescription
Hamiltonian overlap
GWT says that

〈Φ0|Ĥ|Φ1〉
〈Φ0|Φ1〉

has the same functional form as the energy but in terms of the
transition density and pairing tensors

ρ01kl =
〈Φ0|c+

l ck |Φ1〉
〈Φ0|Φ1〉

κ01kl =
〈Φ0|clck |Φ1〉
〈Φ0|Φ1〉

...

Prescription
For the calculation of energy overlaps use

〈Φ0|H|Φ1〉+ VDD[ρ01]

for DD interactions or E [ρ01, κ01, κ10] for EDF



Consistency checks
The transition density prescription has the right limit when
|Φ1〉 → |Φ0〉 but

• ρ01, etc are, in general, complex quantities (non-hermitian
VDD!!). Need to make sure the final energy is real

• breaks (spatial) symmetries (rotational, parity). Make sure
energy is a scalar under symmetry transformation

• Consistent with the underlying mean field (definition of
chemical potentials)

The same should be used for configuration mixing (GCM in
nuclear physics)

• Consistent with RPA in the small amplitude limit of
configuration mixing



Also to be considered
Generalizations
• Statistical admixtures (finite temperature)
• Odd-A systems and multiquasiparticle excitations

Problems
• When 〈Φ0|Φ1〉 = 0 the transition density ρ01 diverges.

However, physical quantities are well defined, because
strict enforcement of the Pauli principle yields to the
cancelation of divergencies. Similar to self-energy
problem. Solved (partially) by some people in the
audience.
Specially bad for multiquasiparticle excitations

• Definition of ρα01 for non integer α and complex ρ01
(Riemman sheets) eiϕ/α, eiϕ/α+2π/α, ...



Real energies

• The transition density is in general a complex quantity but

E =

∫
dqdq′f ∗(q)f (q′)〈q|Ĥ|q′〉

E∗ =

∫
dqdq′f (q)f ∗(q′)〈q|Ĥ|q′〉∗

and

〈q|Ĥ|q′〉∗ = 〈q′|Ĥ†|q〉 Ĥ†[ρq,q′ ] = Ĥ[ρq′,q]

Therefore
E = E∗

R. R-G, J.L.E, L.M.R.; Nuclear Physics A709 (2002) 201



Symmetry requirements (AMP)
For rotational invariant (scalar) hamiltonians we have

• 〈ΨIM |Ĥ|ΨI′M′〉 = δII′δMM′〈ΨIM |Ĥ|ΨIM〉

• 〈ΨIM |Ĥ|ΨIM〉 = 〈ΨI |Ĥ|ΨI〉

|ΨIM〉 = 2I+1
8π2

∑
K gK

∫
dΩDI∗

MK (Ω)R̂(Ω)|Φ〉 =
∑

K gK P̂ I
MK |Φ〉

This is a consequence of [R̂(Ω), Ĥ] = 0 as it implies

〈Φ|R̂†(Ω′)HR̂(Ω)|Φ〉 = 〈Φ|HR̂(Ω′ − Ω)|Φ〉

and therefore

〈Φ|P I
MK
†
HP I′

M′K ′ |Φ〉 = 〈Φ|HP I
MK
†
P I′

M′K ′ |Φ〉 = δII′δMM′〈Φ|HP I′
KK ′ |Φ〉



For DD interactions we should have

〈Φ|R̂†(Ω′)HDD[Ω′,Ω]R̂(Ω)|Φ〉 = 〈Φ|HDD[0,Ω′ − Ω]R̂(Ω′ − Ω)|Φ〉

that holds because

R̂†(Ω′)ρ(~R,Ω′,Ω)R̂(Ω) = ρ(~R,0,Ω′ − Ω)R̂(Ω′ − Ω)

with

ρ(~R,Ω′,Ω) =
〈Φ|R̂†(Ω′)ρ̂(~R))R̂(Ω)|Φ〉
〈Φ|R̂†(Ω′)R̂(Ω)|Φ〉

R. R-G, J.L.E, L.M.R.; Nuclear Physics A709 (2002) 201



Mean field chemical potential

1 At the mean field level and when a symmetry is broken the
routhian 〈Ĥ − λN̂〉 is minimized with the constraint
〈N̂〉 = N.

2 The chemical potential λ is determined by the condition of
having the gradient of the Routhian H ′ perpendicular to the
gradient of the constraint

λ =
〈Ĥ∆N̂〉
〈∆N̂2〉

3 Deduced from minimizing the particle number projected
energy evaluated in an approximate way (the Kamlah
expansion)



Mean field chemical potential

EN =
〈Φ|HPN |Φ〉
〈Φ|PN |Φ〉

=

∫
dϕh(ϕ)e−iNϕ∫
dϕn(ϕ)e−iNϕ

n(ϕ)
h(ϕ)

= 〈Φ| 1
H eiN̂ϕ|Φ〉

Kamlah expansion

h(ϕ) =
∑M

m=0 hm Îmn(ϕ) with Î = −i∂ϕ − 〈N〉.

For M=1 we have EN
M=1 = 〈Φ|(H − h1(N̂ − N))|Φ〉 with

h1 =
Îh(ϕ)|ϕ=0

〈∆N̂2〉
=
〈Ĥ∆N̂〉
〈∆N̂2〉

The minimum of EN
M=1 with the constraint 〈Φ|N̂|Φ〉 = N is equivalent

to minimizing 〈Φ|(H − h1N̂)|Φ〉



Mean field chemical potential

1 For density dependent forces the chemical potential is
computed in the same way but we have an extra
rearrangement term

〈(Ĥ + ∂Γ̂)∆N̂〉 − λ〈∆N̂2〉 = 0 ∂Γ̂ =
∑

ij

〈δH
δρ
ϕ∗i ϕj〉c†i cj

2 To get h1 = λ for EDFs we must have

h1 =
Îh(ϕ)|ϕ=0

〈∆N̂2〉
=
〈(Ĥ + ∂Γ̂)∆N̂〉
〈∆N̂2〉



RPA

The RPA equation can be derived as a special limit of the Time
Dependent Mean Field (HF or HFB) equations.

For Density Dependent forces (Blaizot&Gogny) the interaction
matrix elements entering the RPA equation are given by the
second derivative

δ2E
δρijδρkl

Rearrangement terms ! that is, derivatives of the DD interaction
have to be considered in the RPA matrix elements



The RPA can also be derived from the GCM (*)

• |Z〉 = exp(
∑

µν Zµνα+
µα

+
ν )|ψ0〉 and |Ψ〉 =

∫
dZf (Z)|Z〉

• Expand 〈Z′|Ĥ|Z〉/〈Z′|Z〉 up to second order
• Assume Gaussian overlaps 〈Z′|Z〉 ∝ exp(−Z′∗Z)

• Introduce the above in the Hill-Wheeler equation
• After some manipulations the RPA equation is obtained

and the only way to get the same rearrangement terms as in
the standard derivation of the RPA is to have a density
dependent term depending upon Z′∗ and Z.

(*) Jancovici&Schiff, Brink &Weiguny



Symmetry preserving density ?
Some people claim it is better to use symmetry preserving
densities in the DD term

1 Very appealing in doing projection as it preserves the
symmetries in the interaction.

2 Let us consider, for simplicity, parity projection. Intrinsic
wave functions have an octupole moment Q3 different from
zero. The projector to good parity p is given by

P̂p = 1 + pΠ

3 The correlated density to be used is the one projected to
positive parity

ρProj =
〈Ψ|(1 + Π)ρ̂(1 + Π)|Ψ〉
〈Ψ|(1 + Π)(1 + Π)|Ψ〉

Such that ρProj(−~r) = ρProj(~r)



An example
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2 ρProj (~r) ≈ ρ(~r) + ρ(−~r)

3 Integrand decreases

4 t3 ≈ 1400 MeV

Meaningless prescription!

L.M.Robledo, Jour of Phys G37, 064020 (2010)
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A proposal

Inspired by the RPA use the expansion to second order of
VDD(ρ) instead of VDD(ρ01).
In the evaluation of 〈Φ|VDD(ρ(ϕ))eiϕN |Φ〉 replace VDD(ρ(ϕ)) by

VDD(ρ) +
δVDD

δρ

δρ

δϕ
ϕ+

1
2
δ2VDD

δρ2
δ2ρ

δϕ2ϕ
2

Advantages

1 No diverging density in VDD

2 No ”non-integer root of complex number” problem

Self-energy still remains through the HFB density ρ
Work in progress !



Other proposals

• Obtain the equivalent of the Slater approximation but for
overlaps of the Coulomb interaction (Density Matrix
Expansion ?) to better understand the problem

• Use “local expressions” like the Kamlah expansion
(supplemented with topGOA ideas) to get rid of difficulties
(think of LN and PNP).

• Use Skyrme or Gogny to derive the parameters of simpler
models like the Pairing+Quadrupole or exactly solvable
pairing models which are free from patogolies



Multiquasiparticle overlaps
A natural way to incorporate correlations is to consider linear
combinations of multi- quasiparticle excitations

|Ψ〉 = C0|ϕ〉+
∑
i,j

Ci,jβ
+
i β

+
j |ϕ〉+

∑
i,j,k ,l

Ci,j,k ,lβ
+
i β

+
j β

+
k β

+
l |ϕ〉+ . . .

This can also be extended to ”odd” systems (one, three, five
quasiparticle excitations, ...)
An alternative to ”cranking” wave functions (PSM) using axial
intrinsic configurations.
Requires the evaluation of Multicuasiparticle overlaps like

〈ϕ|βiβjβkβlc+
mc+

n cpcqβ
+
r β

+
s β

+
t β

+
u |ϕ〉

that can be evaluated with the standard Wick’s theorem ...



... by considering 11 !! (10 395 ) contractions
(the combinatorial explosion )

things get worse if we consider instead

〈ϕ|βiβjβkβlc+
mc+

n cpcqβ̃
+
r β̃

+
s β̃

+
t β̃

+
u |ϕ̃〉

with different HFB vacuums and quasiparticle operators
because that requires the use of the Generalized Wick’s
theorem (GWT) with its more involved contractions

In 1 a new way to evaluate those overlaps, free from the
combinatorial explosion, has been obtained. It makes use of a
limiting procedure on the contractions provided by the
Statistical Wick’s theorem.

1Generalized Wick’s theorem for multiquasiparticle overlaps as a limit of
Gaudin’s theorem, S. Perez-Martin and L.M. Robledo, Phys. Rev. C76,
064314 (2007)



Statistical Wick’s (Gaudin’s) theorem
Same as the standard Wick’s theorem but for statistical
averages

Tr [D̂Ô]

Tr [D̂]
=
∑

Contractions

here Ô is a product of creation and annihilation operators.

Ô = β+
k1
βk2βk3 . . . β

+
kN−1

βkN

Contractions: as in the standard Wick’s theorem but replacing
mean values by statistical traces.

Tr [D̂βkβl ]

Tr [D̂]

Tr [D̂β+
k βl ]

Tr [D̂]

Tr [D̂β+
k β

+
l ]

Tr [D̂]



The Generalized Wick’s Theorem (GWT) for overlaps has also
its counterpart by considering

Tr [D̂T̂ Ô]

Tr [D̂T̂ ]
=
∑

Contractions

where T̂ is the operator carrying out the required canonical
transformation (the exponential of a one-body operator)
The contractions are

Tr [D̂T̂ βkβl ]

Tr [D̂T̂ ]

Tr [D̂T̂ β+
k βl ]

Tr [D̂T̂ ]

Tr [D̂T̂ β+
k β

+
l ]

Tr [D̂T̂ ]



Mean values can be expressed as the limit

lim
pµ→0

Tr [D̂Ô]

Tr [D̂]
= lim

pµ→0

1

Z
(〈Ô〉 +

∑
µ

pµ〈βµÔβ+
µ〉 +

1

2

∑
µν

pµpν〈βµβν Ôβ+
ν β

+
µ〉 + . . .) = 〈Ô〉

The idea is valid for overlaps

lim
pµ→0

Tr [D̂T̂ Ô]

Tr [D̂T̂ ]
=

lim
pµ→0

1

Z̄
(〈ÔT̂ 〉 +

∑
µ

pµ〈βµÔT̂ β+
µ〉 +

1

2

∑
µν

pµpν〈βµβν ÔT̂ β+
ν β

+
µ〉 + . . .) =

〈ÔT̂ 〉
〈T̂ 〉

=
〈ϕ|Ô|ϕ̄〉
〈ϕ|ϕ̄〉



Also for multiquasiparticle mean values

〈βµβνÔβ+
ν β

+
µ 〉 = lim

[p→∞]

Tr [D̂Ô]

Tr [D̂]

where lim[p→∞] means pµ and pν tend to∞ and the other p′s
tend to zero.

and multiquasiparticle overlaps

〈ϕ|βµβνÔβ̃+
ν β̃

+
µ |ϕ̃〉 = lim

[p→∞]

Tr [D̂ÔT̂ ]

Tr [D̂T̂ ]

Notice
that the above trace is expressed by the sum of the
contractions of Ô ! and not of the whole operator βµβνÔβ̃+

ν β̃
+
µ



Fortunately the general limit lim[p→∞] with pµ1 , . . . ,pµN going to
∞ and the others to zero can be ”easily” performed for the
contractions. The expression are ”simple” and can be found in
the reference paper.

Then,
to compute the general overlap

〈ϕ|βµ1 . . . βµN Ôβ̃+
µN
. . . β̃+

µ1
|ϕ̃〉

we need to evaluate
Tr [D̂ÔT̂ ]

Tr [D̂T̂ ]

(only the contractions corresponding to Ô (three for a two body
operator)) and then perform the limit on the contractions.



nice ... but wait ! I want to compute

〈ϕ|βµ1 . . . βµN Ôβ̃νN
+ . . . β̃ν1

+|ϕ̃〉

no problem! notice the existence of the unitary operator

T̂µν = exp(−iπ/2(β+
µ − β+

ν )(βµ − βν))

transforming βµ into βν and viceversa ....
Things get a little bit more involved but

The formulas for the contractions have a closed and concise
form and are free from the combinatorial explosion

See G.F. Bertsch’s talk for another approach



Phase of HFB overlaps
The sign (or phase) of 〈ϕ0|ϕ1〉 for arbitrary HFB-like wave
functions cannot be obtained from the standard formula
(Onishi) 〈ϕ0|ϕ1〉 =

√
det(1 + M+N)

In triaxial AMP one needs of the order of 108−10 overlaps

Previously

• Neergard’s method: M+N has double degenerate
eigenvalues ci . Then 〈ϕ0|ϕ1〉 =

∏
i(1 + ci) where the

product runs over half the eigenvalues
• Continuity argument: 〈ϕ(q))|ϕ(q′ + ∆q)〉 from
〈ϕ(q))|ϕ(q′)〉 and 〈ϕ(q)|ϕ(q)〉 = 1

Difficulties
• Neergard’s requires eigenvalues of general matrices; no

equivalent result exists for Tr [D̂]

• Continuity requires a lot of ”inteligence” when the overlap
is close to zero and/or there are may collective variables.



Recently a new formula to evaluate the overlap has been
obtained 2

The formula relies on the powerful concept of Fermion
Coherent States |z〉 parametrized in terms of the
anticommuting elements zk and z∗k of a Grassmann algebra
and given by the conditions

ak |z〉 = zk |z〉

and
〈z|a+

k = z∗k 〈z|

The coherent states satisfy a closure relation

1 =

∫
dµ(z)|z〉〈z|

2Sign of the overlap of Hartree-Fock-Bogoliubov wave functions, L.M.
Robledo, PHYS REV C 79, 021302(R) (2009)



Introducing the HFB wave functions in the Thouless
parametrization

|φi〉 = exp

(
1
2

∑
kk ′

M(i)
kk ′a

+
k a+

k ′

)
|0〉

with the skew-symmetric

M(i) = (ViU−1
i )∗

the evaluation of the overlap proceeds as

〈φ0|φ1〉 =

∫
dµ(z)〈0|e

1
2
∑

kk′ M
(0) ∗
kk′ ak′ak |z〉

× 〈z|e
1
2
∑

kk′ M
(1)

kk′a
+
k a+

k′ |0〉



〈φ0|φ1〉 =

∫
dµ(z)e

1
2
∑

kk′ M
(0) ∗
kk′ zk′zk e

1
2
∑

kk′ M
(1)

kk′z
∗
k z∗k′

Introducing

Mµ′µ =

(
M(1)

k ′k −1k ′k

1k ′k −M(0) ∗
k ′k

)
and zµ = (z∗k ′ , zk ′) then

〈φ0|φ1〉 =

∫ ∏
k

(dz∗k dzk ) e
1
2
∑
µµ′ zµ′Mµ′µzµ

which is a Gaussian integral well known in QFT.

〈φ0|φ1〉 = sNpf(M) = sNpf

(
M(1) −1

1 −M(0) ∗

)
where sN = (−1)N(N+1)/2



pfA is the Pfaffian of the skew-symmetric matrix A.

• It is similar to the determinant
for a 2×2 matrix R =

(
0 r12
−r12 0

)
we obtain pf(R) = r12

for a 4×4 matrix R =


0 r12 r13 r14
−r12 0 r23 r24
−r13 −r23 0 r34
−r14 −r24 −r34 0


pf(R) = r12r34 − r13r24 + r14r23

• pf(T tRT ) = det(T )pf(R)

• Minor-like expansion formula
• pf(R) =

√
det(R)

• The numerical evaluation of the Pfaffian is straightforward
by using Householder (orthogonal) transformations to
bring the matrix in tridiagonal form.

• FORTRAN, Mathematica and Python routines available
(see my web page)



The advantages of the present approach are
• Calculation of eigenvalues avoided
• Can be extended to the evaluation of traces of density

matrix operators.
• Numerical evaluation of the Pfaffian straightforward and

fast
• Fully occupied levels (v=1) can be easily handled to avoid

in a very clean way the indeterminacies that appear in this
case(∗)

• Empty levels (v=0) can also be handled reducing
computational burden even more(∗)

See G.F. Bertsch’s talk for generalizations

(∗) L.M.Robledo, Phys Rev C84, 014307 (2011)



Mapping to simpler models

The idea
Use effective interactions valid in the whole Nuclide Chart to
compute the nuclear mean field and use it to obtain parameters
of simpler models like the Pairing+Quadrupole or exactly
soluble pairing models.

We have implemented this idea(∗) to map to the hyperbolic
pairing model of the Richardson family of exactly integrable
models. The two parameters of the model are fitted to
reproduce the single particle pairing gaps ∆i obtained with
mean field calculations.

(∗) Exactly solvable pairing Hamiltonian for heavy nuclei, J. Dukelsky, S. Lerma, L.M. Robledo, R.

Rodriguez-Guzman, S.M.A. Rombouts



Equivalent to the px + ipy model

H =
∑

i

εi

(
c†i ci + c†

i
ci

)
(1)

−2G
∑
ii ′

√
(α− εi) (α− εi ′)c

†
i c†

i
ci
′ci ′ ,

exact energies Eβ obtained by solving∑
i

si

ηi − Eβ
−
∑
β′(6=β)

1
Eβ′ − Eβ

=
Q
Eβ
, (2)

Parameters G and α fitted to reproduce ∆i for each nucleus
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Conclusions

There is still a lot of work to do before having a consistent
framework for symmetry restoration and configuration mixing in
the nuclear EDF ...

I you want to contribute

Let the (dark side of the)
force be with you ...
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