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Microscopic theory of LACM
 Open problems in GCM

 Adiabatic time-dependent Hartree-Fock (ATDHF(B))

 choice of optimal generator coordinates
 for low-lying excitation,  quadrupole moments, q20 and q22, pairing gaps Δn,Δp
 How about for fission and fusion ? 

 
 reliability of collective mass with real generator coordinates
     complex generator coordinates ( collective momenta ) are necessary to obtain
     correct mass for center of motion (Ring-Schuck)

 adiabatic approximation to collective motion
 goal: determination of collective coordinate
 collective path, Collective Hamiltonian, mass

 TDHF(B)
 semi-classical, need requantization for quantum process
 small-amplitude limit: (Q)RPA



H(q, p) =
p2

2M(q)
+ V (q)

|φ(q)�

Overview of ATDHF (1)
Adiabatic approximation to time-dependent variational principle (TDVP)

: Slater determinant

3. determine collective path and collective Hamiltonian

1. introduce of a few collective variables (reduction of d.o.f) 
                    (q: collective coordinate, p:collective momentum)

2. expand TDVP in terms of collective momenta (adiabatic exp.)

Versions of ATDHF theories
Villars, Nucl. Phys. A285, 269 (1977)
Baranger and Veneroni, Ann. Phys. 114, 123 (1978), Ring-Schuck
Goeke and Reinhard, Ann. Phys. 112, 328 (1978)
Rowe and Basserman, Can. Phys. 54, 1941 (1976)
Marumori, Prog. Theor. Phys. 57, 112 (1977)
A. Bulgac, A. Klein and N.R. Walet, Phys. Rev. C40 (1989), 945.
M.J. Giannoni and P. Quentin, Phys. Rev. C21 (1980), 2060, C21 (1980), 2076.
J. Dobaczewski and J. Skalski, Nucl. Phys. A369 (1981), 123.
Klein, Walet, Dang (Ann.Phys. 208, 90 (1991))

                                …………………
a review

G. Do Dang, A. Klein and N.R. Walet Phys. Rep. 335 (2000), 93.



Overview of ATDHF (2)

Goeke, Reinhard, Rowe NPA359,408 (1981)

 How should the collective variables be introduced ?

canonical variable conditions, Yamamura,Kuriyama,Iida(PTP71,109(1984))

 To which order in collective momentum should the variational principle be 
expanded ? 

2nd order term should be included to satisfy the RPA boundary condition,
Mukherjee and Pal (PLB100,457(1982), NPA373,289(1982))

 Local harmonic approach works well (Rowe-Basserman, Marumori)



ϕ̇ =
∂H

∂n
ṅ = −

∂H

∂ϕ
= 0

 TDVP
Self-consistent collective coordinate (SCC) method

(q,p) :collective coordinates and momenta
(φ,n): angle in gauge space, number fluctuation

fluctuation part of number operators

SCC equation I: equation of collective submanifold

collective subspace (path)

SCC equation II: canonical variable condition

SCC equation III: collective Hamiltonian S: arbitrary function of q,p,φ,n

Marumori et al., Prog. Theor. Phys. 64, 1294  (1980).
Matsuo et al., Prog.Theor.Phys. 76 (1986) 372.

TDHFB state

q̇ =
∂H

∂p
ṗ = −

∂H

∂q

classical eq. of motion



 one of the solutions of SCC method
 expansion of the basic equations of SCC up to 2nd order in p.

Adiabatic SCC method
Matsuo et al. Prog. Theor. Phys. 103(2000) 959.

adiabatic approximation

(a(q),a+(q)):quasiparticle operators locally 
defined with  a(q)|φ(q)> = 0Collective Hamiltonian

Collective potential

(collective mass)-1

chemical potential

p=n=0

Thouless th.



moving-frame HFB equation

moving-frame QRPA (quasiparticle RPA) equations

Moving-frame Hamiltonian

from 1st and 2nd order

from 0th order

equation of collective path expanded up to 2nd order in p

Adiabatic SCC method

canonical variable conditions

expanded up to 1st order in p



�φ(q)|Q̂(q − δq)|φ(q)� = δq

�φ(q)|∂Q̂
∂q

|φ(q)� = −1

�φ(q)|Q̂(q)|φ(q)� = 0

Algorithm to construct the collective path

 self-consistency between moving-frame HFB and moving-frame QRPA

Moving-frame HFB equation

  Moving-frame QRPA equations

the constrained operator in the moving-frame Hamiltonian changes as a 
function of q  (cf. constrained HFB)

1. HFB and QRPA (solutions at q=0, QRPA mode with lowest frequency is chosen)
2. solve moving frame HFB at q=q using Q(q-dq) (or combinations of operators) 
   as an initial guess of Q(q)
3. solve moving frame QRPA and update Q(q) (lowest freq. C(q) )

constraints: neutron and proton numbers, and 

4. repeat 2. and 3. until the solution converges.



�φ(q)|Q̂(q − δq)|φ(q)� = δq

Moving-frame HFB eq. Moving-frame QRPA　eq.

Double iteration for each q

Algorithm to construct the collective path

HFB state (oblate)

HFB state (prolate)

moving-frame HFB state (vibrating state)
δq

Small amplitude vibrational mode around moving-frame HFB state 

large-amplitude shape vibration
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 local direction of collective coordinate is determined by moving-frame QRPA mode

|φ(q=0)>

|φ(q=δq)>



1-dim collective path

 P+Q model, 2-major shells model space, parameters simulate Skyrme-HFB(SIII)

one-dimensional collective path (q) in TDHB manifold mapped onto the (β,γ) plane

68Se 70Se 72Se 
NH et al., Phys. Rev. C80, 014305 (2009)oblate-prolate shape coexistence

moving-frame QRPA frequency squared B(q)C(q)=ω2(q)



Collective Hamiltonian 
68Se 70Se 72Se 

B-1(q) = 1 MeV

vibrational collective mass

rotational moments of inertia

Thouless-Valatin MOI for moving-frame 
HFB states

V (q)

M(s(q))

Ji(q)



ASCC for multi-dimensional collective subspace

Collective Hamiltonian

moving-frame HFB equation

moving-frame QRPA equations

Matsuo et al. Prog. Theor. Phys. 103(2000) 959.Collective variables



Bohr Mottelson collective Hamiltonian

 Generalized Bohr-Mottelson collective Hamiltonian

V(β, γ)

D(β, γ)

J(β, γ)

collective potential

vibrational collective mass

rotational moment of inertia

 Zero-point energy term is absent if one derives collective Hamiltonian 
from TDHF.

recent review: Próchniak and Rohoziński, J. Phys. G 36 123101 (2009)

Hcoll =Tvib + Trot + V (β, γ).

Tvib =
1

2
Dββ(β, γ)β̇

2 +Dβγ(β, γ)β̇γ̇ +
1

2
Dγγ(β, γ)γ̇

2,

Trot =
1

2

3�

k=1

Jk(β, γ)ω
2
k



Microscopic derivations of functions in 5D collective Hamiltonian

Constrained Hartree-Fock-Bogoliubov equation

Local QRPA equations (for large-amplitude vibration)

 QRPA on top of CHFB state
 Hamiltonian used in QRPA contains constraint terms
 calculations at different (β,γ) is individual. easy to parallelize. 

V(β, γ)

D(β, γ)

J(β, γ)

Local  QRPA equations for rotation

ASCC for two-dimensional collective subspace (q1,q2,p1,p2)

 one-to-one correspondence between (q1,q2) and (β,γ)
 |φ(q1,q2)>~|φ(β,γ)>
 curvature term omitted
 moving-frame Hamiltonian → CHFB Hamiltonian

NH et al., PRC82, 064313(2010)
collective potential

vibrational mass

rotational moment of inertia



Hvib =
1

2

�

α=1,2

q̇α
2(β, γ)

Derivation of D(β,γ) from local normal mode

criterion to choose two LQRPA modes:
 at each (β,γ) point, choose a pair which gives smallest W(β,γ)
(displacement in β-γ direction is largest)

Kinetic energy of two LQRPA modes

vib. part of metric

(q1,q2) <->  (β,γ)
scaled in collective mass = 1
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LQRPA phonon operator

W (β, γ) = {Dββ(β, γ)Dγγ(β, γ)− [Dβγ(β, γ)]
2}β−2



Choice of collective LQRPA modes (68Se) 
LQRPA frequencies squared

 3,600 points in (β,γ) plane

vibrational part of metric

16



Application to oblate-prolate shape coexistence (68Se)

collective potential vibrational mass rotational mass

V (β, γ) Dββ(β, γ)

Dβγ(β, γ)/β

D1(β, γ)

D2(β, γ)

D3(β, γ)Dγγ(β, γ)/β
2

NH et al., PRC82, 064313(2010)



Effect of time-odd component
Ratio to Inglis-Belyaev vibrational/rotational mass

 time-odd component generated by quadrupole-pairing
 LQRPA MOI: 1~1.5 times larger than Inglis-Belyaev values
 Deformation dependence is different between LQRPA and IB

vibrational mass rotational mass



Excitation energy of 68Se

 Time-odd mean field contribution lowers
     excitation energies.

 large-amplitude γ-dynamics

 02
+ , 23

+ states: large-amplitude γ vibration
     coupling with β-vibration
 effective charge (en, ep) = (0.4, 1.4)

EXP：Fischer et al., Phys.Rev.C67 (2003) 064318.
        B(E2;21

+→01
+) Obertelli et al, Phys.Rev.C80 (2009)031304(R)

wave functions
squared  x β4



Shape fluctuations in 0+ states of 30Mg and 32Mg

30Mg: ground state: spherical ? 
           “deformed” 1st excited 0+ state found at 1789 keV
           W. Schwerdtfeger et al.
           Phys. Rev. Lett. 103, 012501 (2009)

32Mg: ground state deformed ?
           “spherical” 1st excited 0+ state found at 1058 keV
           K. Wimmer et al., 
           Phys. Rev. Lett. 105, 252501 (2010)

Quantum correlation beyond mean-field (HFB) + small-amplitude vibration (QRPA)
plays essential role in low-lying states (large-amplitude collective motion)

What about shape mixing?
        Do spherical and prolate shapes mix in 30Mg and 32Mg ?
Simple two-level model does hold ? |0> = a|sph> + b|def>

NH et al., submitted to PRC, arXiv:1109.2060.



Calculation Details (Mg)

 Microscopic Hamiltonian (Pairing + Quadrupole Model)
Single-particle + pairing (Monopole, Quadrupole) + quadrupole (ph) force

 Single-particle model space
 harmonic oscillator two major shells (sd + pf)
 Parameters in microscopic Hamiltonian

 adjusted to simulate the Skyrme HFB (HFBTHO, SkM*) 
                                  with surface pairing (V0=-374 MeV fm-3, 60MeV cut off)
               which reproduce experimental Δn = 1.34 MeV of 30Ne 
For each nucleus,
 single-particle energies:

 Skyrme canonical energies after effective mass scaling (m*/m=0.79)
 pairing interaction strengths:

                 adjusted to reproduce Skyrme pairing gaps at spherical points
 quadrupole interaction strength:

 adjusted to reproduce deformation of Skyrme HFB states 
 quadrupole pairing strength G2:

 self-consistent value Sakamoto and Kishimoto PLB245 (1990) 321
 effective charges (en, ep) = (0.5, 1.5)
 mesh: (β, γ) mesh with 60x60 points (0<β<βmax, βmax=0.5 for 30Mg, 0.6 for others)



Potential energy surfaces

 30Mg   : extremely soft in β direction
 32Mg   : spherical and prolate shape coexistence
 34,36Mg: prolate, soft in γ direction



Ground bands

30Mg: Niedermaier et al. PRL94 (2005) 172501
32Mg: Motobayashi et al. PLB346 (1995) 9
34Mg: Iwasaki et al. PLB522 (2001) 227.

B(E2)30Mg: Deacon et al. PRC82(2010) 034305
32Mg: Takeuchi et al. PRC79 (2009) 054319
34Mg: Yoneda et al. PLB499 (2001) 233
36Mg: Gade et al. PRL99 (2007) 072502
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Shape changes and shape mixing in ground bands
 vibrational wave functions squared of yrast states

32Mg

 Gradual shape change from spherical to prolate in isotopic chain
 30Mg,32Mg: shape transition around 0+ ~ 4+

34Mg

�
dβdγ

�

K

|ΦαIK(β, γ)|2|G(β, γ)| 12 = 1

30Mg

transition from 30Mg to 34Mg in 01+ 
state

shape fluctuation is largest in 
01+ state of 32Mg

change of structure in yrast band of 
30Mg and 32Mg

β-vibrational 02+ and 23+ in 34Mg

01+

21+

02+

22,3+



Properties of K=0 excited band

 K=0 excited band: well deformed, deviation from rotor is largest at 32Mg

 The calculation reproduce experimental 0+ energy. Shell model and beyond 
    mean-field calculations predict higher energies for 02+ energy of 32Mg (1.4 – 3.1 MeV)

 B(E2) ratio (right figure) should be one
   if 0+ and 2+ states of the same band have same intrinsic structure 

 Shape mixing properties changes between 32Mg and 34Mg

energies of excited K=0 band B(E2) ratio between K=0 bands
B(E2;02+->21+)/B(E2;01+->22,3+)
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spherical peak disappears in probability density, due to β4 factor in G(β,γ)
 For 30Mg, the shape coexistence picture with spherical ground 

and deformed excited states holds. (shape mixing is small.)
 For 32Mg  large-amplitude quadrupole fluctuation dominates both 

in ground and excited 0+ states.

 Collective wave function



Hcoll =
1

2
Mβ(β)β̇

2 +
1

2

2�

i=1

Ji(β)ω
2
i + V (β)
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Skyrme CHFB+LQRPA
K. Yoshida and NH et al., Phys. Rev. C83, 061302 (2011)

Code:
 2D lattice (axially symmetric)

 12.25 fm x 12 fm (0.5 fm mesh)
 Yoshida and Giai, Phys. Rev. C78, 064316 (2008)

Collective Hamiltonian for axial deformation (3D)

calculated from Skyrme-LQRPA 

calculated from Skyrme-CHFB

Skyrme HFB (SkM*) + volume pairing  t0=-200 MeV fm-3



Collectivity of neutron-rich Cr isotopes

Collective wave function

SM1: Kaneko et al., PRC78, 064312 (2008)
SM2: Lenzi, et al., PRC82, 054301 (2010)

vibrational collective mass



Summary

 determination of collective coordinates (1D collective path)

adiabatic self-consistent collective coordinate (ASCC) method

applications to Se isotopes

 Derivation of inertial functions in 5D collective Hamiltonian

constrained HFB + local QRPA  (2D ASCC)

time-odd contribution in the vibrational and rotational collective masses

applications to various phenomena
shape coexistence in Se and Kr
shape phase transition around 32Mg and 64Cr
γ-soft dynamics around 26Mg

formulation using Skyrme EDF


