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Overview

1) Physics scope: (our) applications and energy scales

2) Quantum master equations: why go further?

)
)
3) Reduced dynamics beyond perturbation theory
4) Some applications

)

5) Challenges and limitations - stochastic "gears and pulleys"



1. Physics scope: applications and energy scales

open-system quantum dynamics
iIn condensed matter

photosystem |I:
light-harvesting antenna

superconducting circuit



1. Physics scope: applications and energy scales

* tunneling in solids ~ GHz
* superconducting circuits ~ mK
* biophysics: e.g., photosynthesis meV to eV
* (photo-)chemical reactions meV to eV
* mesoscopic transport zero to eV
 engineering of quantum dynamics dynamic

a.k.a. quantum information processing

environmental effects: likely non-perturbative, non-Markovian



2. Quantum master equations (telegram style)

Fermis Golden Rule: + n(E) = density of states

F(E) o |gis|2n(E) * rate involves temparature

Quantum optical master equation

0 / 1 1
FTide —E[Ho.p] + Z (LRPLL — iLI{/—kP - 59L1Lk)
K

Lindblad operators L, o< /I (E) — transitions and dephasing

Stochastic Schrédinger equations

» quantum state diffusion

: : f
stochastic unraveling of LxpL, — quantum jump methods

p represented by samples |¢) (Y|



2. Quantum master equations

Condition for Golden Rule: narrow lines vs. flat density of states
DOS

environment

DOS DOS
beyond
perturbation

<

driven




3. Reduced dynamics beyond perturbation theory

system-reservoir paradigm

VYWV Q\S“ W = density operator in product space
p = trr W = reduced density operator,

density in system space

NN S

w0

propagation:
RI - p(t) = trr U(t)WoU'(t) = V() po

Interaction picture:
' t ' t

V(t)  =tr {exp> <—i / dt’H|(t’)) (- @ WR) exp. <+L / dt’H|(t’)>}
R h /o h Jo

V(t) may have semigroup properties



3. Reduced dynamics beyond perturbation theory

re-create averages, for separable H;:

~ ~ Z(t) = scalar noise
H\(t) = —ai(t)&(t) —  H(t) = —z(t)a(t)

Gaussian statistics

"de-quantization" condition:

(TE(DE )R = (2()2(1))

noise is now an exact proxy for the reservoir average:

(oo, (4 [ ioas)) = (o0 (-2 [fsros)

... repeat with pair of propagators!



3. Reduced dynamics beyond perturbation theory

ored(t) = (p(t)) — stochastic average over numerical noise

%5:_%[%,&1 +6(0)la. 1 + 4v(t){a. )

stochastic Liouville-von Neumann equation

noise statistics: feparable:

EDEE)) = RelE(DEE))en O() = 91 (1)) (3 (1)
Etw(t)) = Zo(t—t)ImE)EE))en

w(t(t)) = 0 no system properties

v is complex with random phase

J.S. and Hermann Grabert 2002



3. Reduced dynamics beyond perturbation theory

Equivalence to influence functionals (Feynman/Vernon 1963):

as as
o(gs, gi; tr) = /dqi/dqi’ /D[ql]/D[Cb]e%(so[ql]—so[qz])
di qi’

X Fl(q1 + a2)/2, 91 — q2] p(qi, q; ti) ,

Flr, y] = exp (—T)2 /dt/ dt'y(t) [RL(t — t")y(t) + iSL(t — t’)r(t’)]) ,

where L(t — t') = (£(t)&(t"))r is the quantum correlation function
of free reservoir fluctuations.

The influence functional Fr,y] results from the partial trace operation.
It is the characteristic functional of the random functions &(t) and v(t).



A diagrammatic view
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Other unraveling strategies

keep memory
within propagators
g (Diosi, Strunz)
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4. Applications

e free precession of a two-level
pseudospin in an ohmic
environment

e short pulses near t=3 and t=4
interrupt free precession

e higher position of second red
dot indicates revival of co-
herence: outward movement
from origin of Bloch sphere

evidence of non-Markovian dynamics



4. Applications

mean and variance of oscillator
position for friction n=0 (blue)
and for n=0.05 and n=0.1
(magenta and red)

same for varying temperature,
KT =0.1, 1, 2 (blue to red)
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semiclassical quantum dissipation (Morse oscillator)
W. Koch, F. GroBmann, J.S. and J. Ankerhold, PRL 2008



4. Applications

stoch. Liouville eq.

quantum master eq.

no dissipation

without dissipation

0 5 10 15 t 20

parametric control signal after iteration, windowed Fourier transform

optimal control on a quantum oscillator

R. Schmidt, A. Negretti, J. Ankerhold, T. Calarco, J.S., PRL 2010



4. Applications

S(t)
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R. Schmidt, A. Negretti, J. Ankerhold, T. Calarco, J.S., PRL 2010



5. Challenges and limitations - "gears and pulleys"

8
at”

conceptually simple, but expensive:

—+[Ho, 8] + £€(t)[a. 8] + sv(t){q, 0}

d _ tr(M)
— logtrp=1v
It gtrp=

-> close similarity to geometric Brownian motion in the complex plane

-> sample trace has exponentially growing variance (!)

R IqQcharV

logarithmic histogram:
operator norm ||o||

geometric Brownian motion:
almost fat-tailed distribution
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5. Challenges and limitations - "gears and pulleys”

Strategies to keep sample trace "sane":

i) split off a Markovian term from the cross-correlation (&(t)v(t')).
-> growth rate of sample trace is slow/tolerable on the
timescale of the dynamics
-> access to transient dynamics on all relevant timescales,
iIncluding relaxation and dephasing
| —
used in first example (pseudospin) | o,
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5. Challenges and limitations - "gears and pulleys”

Strategies to keep sample trace "sane":

1) hybrid semi-Markovian method: At low temperature, fluctuations
are sluggish, while dynamic response can be fast.
-> Markovian approximation on (&(t)v(t')) only, keep (&(t)&(t'))
as colored noise, now real-valued.
-> constant sample trace

%[5 — %([/—/S,ﬁ] — g(t)[q,ﬁ]) + %[q, {p. 6}

~ quantum analogue of Fokker-Planck equation



5. Challenges and limitations - "gears and pulleys”

Strategies to keep sample trace "sane":

i) split off mean-field part from dynamic response.
-> smaller initial growth of sample trace variance
-> potential instability due to nonlinearity

known to be stable near the limits of:
« harmonic systems
* (semi-) classical systems
« weak coupling N

applied in second example




5. Challenges and limitations - "gears and pulleys"

Strategies to keep sample trace "sane":

iv) eliminate unneeded correlations of type (v(t)v(t')).

B A trat—T)
wie) = <trﬁ<t>'trﬁ<t—7>' tr 5(0) >

p(t) tr p(t) i
<tr[5(t) trp(t — T)> - (tro(t — 7))

o(t
< p(t) > constant 7 (independent of 1)

Q

tro(t — 7)
relative change of tr p -
; g —()
accumulates increments — logtrp = 1v —
dt tr o

with short correlation time

"freeze" growth of variance at a timescale 1



5. Challenges and limitations - "gears and pulleys”

A cartoon conclusion

master equation + SSE stochastic Liouville equation
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rooted in F.G.R. based on Gaussian statistics



Outlook:

ad ii): refine semi-Markovian dynamics

ad iv): seek a more efficient way to
eliminate spurious correlations




