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A quick introduction to probability theory
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Probability space ({2, A, P)

e Goal: Model a random experiment.
Example 1: toss a coin.

Example 2: pick a number between 0 and 1 (matlab function rand).

e (2: fundamental set (set of all possible realisations).

— A realization w is an element of (2.
Example 1: Q= {H,T}.
Example 2: Q = |0, 1].
o A: o-algebra on 2 (set of events).
Example 1: A = P(Q);
an event: the result is head, A = {H}.
Example 2: A = B(|0, 1]);
an event: the number is larger than 1/2, A =[1/2,1].
e P: probability (gives the probability of events): function from A to [0, 1] such that:
-P(QQ) =1,
- if (A;);>1 is a numerable family of disjoint sets of A then P(U;A4;) = > . P(A4;).
Example 1: P({H}) =P({T}) = 3.
Example 2: P([a,b]) =b—aforall 0 <a <b< 1.
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Random variable

e Random variable X = random number.
Application X : Q2 — R.

A realization X (w) of a random variable is a real number.

e The distribution of a random variable is characterized by moments of the form
E[¢p(X)] for ¢ € Cp(R,R):

E[¢(X)] = / H(X ()P (dw)

e The distribution of a (continuous) random variable is characterized by the
probability density function (pdf) px:

E[¢(X)] = / " p(@)px (2)da

e Usual pdfs:
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e The mean (expectation) of a random variable X with pdf px(x) is

E[X] = / xpx (x)dx
The variance of a random variable X with pdf p(x) is

Var(X) = E[(X - EIX])?] =BIX*) ~EIX]" = | a*px(@)da— ( [

— o0 — o0

O O

TPx (:I:)d:l:) i

The variance measures the dispersion of the random variable (around its mean).

e A standard Gaussian random variable X has the pdf

2

px(z) = \/12—7Te><p ( — %)

Its mean is E[X| = 0 and its variance is Var(X) = 1.
We write X ~ N(0,1).

e A Gaussian random variable X with mean p and variance o has the pdf

1 (x — p)*

px(z) = Nore eXp ( - W)

We write X ~ N (i, 0?).
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Random vector

e n-dimensional random vector X = collection of n random variables (Xi,..., X,).
Application X : Q — R".
A realization X (w) of a random vector is a vector in R™.

The distribution of a (continuous) random vector is characterized by the pdf px:
Elp(X)] = | o(x)px(z)dx, V¢ € Co(R",R)
R’)’L

The vector X = (X1,...,X,) is independent if
px(z) = | [ px; ()
71=1

or equivalently

E[¢1(X1) - édn(Xn)] = E[¢1(X1)] - E[on(Xn)], Vdi,...,¢n € Co(R,R)

Example: a normalized Gaussian random vector X has the Gaussian pdf

rx(z) = ﬁeXp(— %)

It is a vector of independent random normalized Gaussian variables.

ESNT December 6, 2011



Limit theorems

e Law of Large Numbers.
Let (X,)n>0 be independent and identically distributed (i.i.d.) random variables. If
E[|X1|] < oo, then

= 1 mn O .
X, =—(X1+ X2+ ...+ X,,) =5 m almost surely, with m = E[X|]
n

”The empirical mean converges to the statistical mean”.

e Central Limit Theorem. Fluctuations theory.
Let (X,)n>o0 be ii.d. random variables. If E[X{] < oo, then

1

m = E[X1]
o® = E[X7] - E[X1]* = E[(X1 — E[X1])’]

”For large n, the error X,, — m obeys the Gaussian distribution A(0,0?/n).”

where
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Stochastic processes
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Toy model

Let F(z) € R be the stepwise constant random process

=1

where F; independent random variables E[F;] = F and E[(F; — F)?] = 0.
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Here F; are independent with uniform distribution over (0, 1).
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Random process

e Random variable X = random number.
A realization of the random variable = a real number.
Distribution of X characterized by moments of the form E[¢(X)] where ¢ € Cy (R, R).

e Stochastic process (p(x)),cre = random function.

A realization of the process = a function from R? to R.

Distribution of (u(x)),cra characterized by moments of the form
Elp(u(x1), ..., pw(xn))], for any n € N*, z1,..., 2, € RY ¢ € C(R™, R).

Example: Gaussian process.
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Gaussian process

e Gaussian process (p()),cra characterized by its first two moments
m(x1) = E[p(z1)] and R(z1, ©2) = E[p(z)p(2)).

Any linear combination py = >."_  \;u(x;) has Gaussian distribution N (my,o3) with

my = ZA@-E[M(%)] and ox = Y  NAE[p(z)p(z;)] — m3

i,7=1

e Simulation: in order to simulate (u(x1),...,u(x,)):

- evaluate the mean vector M; = E[u(x;)] and the covariance matrix

Cij = Elp(xs)u(e;)] — Elp(z:) | Elu(x;)].

- generate a random vector X = (X1,...,X,) of n independent Gaussian random

variables with mean 0 and variance 1.
- compute Y = M 4+ C'/2X . The vector Y has the distribution of (u(x1), ..., u(x.)).

Note: the computation of the square root is expensive (use Cholesky method).
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Brownian motion

e Brownian motion (W}).>¢ (starting from 0)= real Gaussian process with mean 0

and covariance function

EW. W] =zAz2

The realizations of the Brownian motion are continuous but not differentiable.

The increments of the Brownian motion are independent:
ionZZn—l2"'22122:0:0,then (WZ - Zn_]_7"‘7W22_WZ]_7W21) are

n

independent Gaussian random variables with mean 0 and variance

]E[(sz — sz_l)Q} = Zj — Zkj—1

e Simulation: in order to simulate (W}, Wap, ..., Wyn):

- evaluate the covaraince matrix C = (C};)j=i=1,....n with C;; = (j A l)h.

- generate a random vector X = (X1, ..., X,,) of n independent Gaussian random
variables with mean 0 and variance 1.

- compute Y = Ccl?Xx.

The vector Y has the distribution of (W}, Wap,, ..., Whn).
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e Simulation: in order to simulate (Wp, Wap, ..., Whp) :
- generate a random vector X = (X1,...,X,)" of n independent Gaussian random

variables with mean 0 and variance 1.
- compute Y; = VA Y ), X;.

The vector Y has the distribution of (W, Wap, .. ., th)T.

0 10 20 30 40 50
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Stationary random process

o (1u(x))pepa is stationary if (u(x + xo)),cre has the same distribution as (u(x))era
for any o € R

Sufficient and necessary condition:

E[p(u(@1), ..., m(wn))] = E[¢(u(mo + @1), ..., p(xo + Tn))]

for any n, xo,...,x, € R% ¢ € C(R™,R).

e Example: Gaussian process u(x) with mean zero E[u(x)] = 0 Vo and covariance

function E[u(x )u(x' + x)] = c(x).

e Bochner’s theorem: a function c(x) is a covariance function of a stationary process

if and only if its Fourier transform ¢(k) is nonnegative.

o(k) = /R () de
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e Spectral representation (of real-valued stationary Gaussian process):

1 —ik® AT
u(x) = ) /]Rd e V E(k)nkdk

with ng, complex white noise, i.e.:

fir, complex-valued, Gaussian, A—g = ik, E [ig] = 0, and E [Arfg ] = (27)%0(k — k).
(the representation is formal, one should use stochastic integrals AWy = Nedk).

We have g, = [ € *n(x)dx where n(x) is a real white noise, i.e.:

n(x) real-valued, Gaussian, E [n(x)] = 0, and E [n(x)n(z')] = é(x — =').

(in 1D, formally, n(x) = dW, /dx).
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e Spectral representation (of real-valued stationary Gaussian process):

1 —ik-x
u(x) = @) /Rd e ¢(k)nedk

with N, complex white noise, i.e.:
fir, complex-valued, Gaussian, A_g = ik, E [ig] = 0, and E [Arhg ] = (27)%0(k — k).

(the representation is formal, one should use stochastic integrals AWy = Nedk).

We have fix, = [ e"**n(x)dx where n(zx) is a real white noise, i.e.:
n(x) real-valued, Gaussian, E [n(x)] = 0, and E [n(x)n(z')] = é(x — =').
(in 1D, formally, n(x) = dW, /dx).

e Simulation (d = 1): in order to simulate (u(x1),...,u(xn)), z; = (J — 1)h:

- compute the covariance vector C = (¢(x1), ..., c(xn)).

- generate a random vector X = (X1, .. ,Xn) of n independent Gaussian random
variables with mean 0 and variance 1.

- filter with the square root of the Fourier transform of C-

Y = IDFT(4/DFT(C) x DFT(X))

— Y is a realization of (u(x1),...,u(xy)) (in practice, use FFT and IFFT).
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Random differential equations and ordinary differential equations
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Goal: determine the limit lim._,o X°(2) where

dX* z
- (3
dz g

for a fairly general random process (F'(2)).>0-
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Method of averaging: Toy model
Let X°(z) € R be the solution of

dX*® Z
— F'(—
dz (8)

with F(z) = >.°2, Filji_1,,(2), F; independent random variables E[F;] = F and
E[(F; — F)?] = o°.

(z — t, particle in a random velocity field)
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: [£] :
X" (2) :/o F(S)ds:s:/() F(s)ds =¢ (;F —I—s/[; F(s)ds

[£]

R 120 TR PR

e—0J4 a.s. J

: a.s. | (LLN) 0
E[Fy] = F
Thus: _
X°(2) =9 X(2) % _F
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Goal: determine the limit lim._,o X°(2) where

dX¢® z
()
dz £

for a stationary random process (F'(2)).>o.

The previous analysis can be extended provided
1 z L—00 +
— F(z)dz — F
Z Jo

(i.e. F'is ergodic)
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Next goal: determine the limit lim._,0 X°(z) where

dX°® z
- (Ex)
dz g (2)
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Method of averaging: Khasminskii theorem

dX°® z
= F(=. X° X°(0) =
X -rCE XY, X0 =a

Assume:

x — F(z,x) is Lipschitz,

z — F(z,) is stationary and ergodic.
Define:

Let X be the solution of

Theorem: for any Z > 0,

sup E[|X%(2) — X(2)]] =30
z€[0,Z7]

[1] R. Z. Khasminskii, Theory Probab. Appl. 11 (1966), 211-228.



Random differential equations and Brownian motion
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Toy model

dX®
dz
with F(z) = Y2, Fili—1,,)(2), F; independent random variables E[F;] = F = 0 and
E[(F; — F)?*] = o°.

= F()
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For any z € [0, Z], we have

cm0 o X
X¢(2) =5 X(2), ‘2— — F =0.
Z

No macroscopic evolution is noticeable.

— it is necessary to look at larger z to get an effective behavior

Z ~ Z
— 2, X)) =X°(2
so 2 X = x5
dX¢ 1 Z

— (=
dz £ (82)
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Diffusion-approximation: Toy model

dxc 1_,, =z
Sy

dz £ (82)
with F'(z) = > .~ Filj;_1,,)(2), F; independent random variables E[F;] = 0 and

E[F?] = o°.
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g2 z
=]\ = )
e—>01J law § (CLT) a.s. |
aw
0
Ve N(0,0%)

Thus: X°(2) converges in distribution as ¢ — 0 to X (z) whose distribution is

N(0,0°2).

With some more work: The process (X°(2)).>0 converges in distribution to a

Brownian motion (oW, ).>o.
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Diffusion processes and stochastic differential equations
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Example: Brownian motion

W (issued from 0): zero-mean Gaussian process

with covariance E[W,W,/] = z A 2/

Its increments are independent and:

E[(Watn — W2)*] = h

0 10 20 30 40 50
Z

Let ¢ be a bounded real function:

uea) = Eipla+w) = [ }exp(—lg—j)quw)dw

Nor> exp( )fb(y)dy
Tz
P2 (,y)

For x, z fixed, y — p.(x,y) is the pdf of the random variable = + W..
pz(x,y) is the kernel of the heat operator.
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Example: Brownian motion

e The moment

U,(Z,CE) — E[(b(%’ + Wz)] — /pz(aj,y)¢(y)dy, pz($,y) — 1 exp (—M)

satisfies the (backward) Kolmogorov equation

Ou _ 107 o 0,2) = g(a)

0z 2022
Reciprocal: The partial differential equation

ou 10°%u
92 292 u(z =0,z) = ¢()
has the probabilistic representation: u(z,x) = El¢(xz + W3)].

The reciprocal 1s useful for Monte Carlo simulation techniques for solving PDFEs.

e The pdf y — p.(x,y) of x + W, satisfies the Fokker-Planck (Kolmogorov forward)

equation as a function of z and y:

Op. 10%p.
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Stochastic differential equations

Let X (z) be the solution of the one-dimensional stochastic differential equation

X(z)=z+ /OZ o(X(s))dWs + /OZ b(X(s))ds

Existence and uniqueness ensured provided b and o are C* with bounded derivatives.

X (z) is continuous a.s., is squared integrable, is adapted (depends on (Ws)o<s<z)-

e [t0 integral
/ (X (s)dWs = lim Y (X (2k)(Wayyy —Wa),  0=20<z21 < <zn=2
0 k

Good properties: martingale (mean zero), [t6’s isometry:

B[( [ sxenaw.)] = [ Elo(x(s)as
e Stratonovich integral:

fw&mmng%z¢ () 4 6OKG)

e Relation:
/O H(X(5)) 0 AW, = / H(X(5))dW, +;/OZU(X(S>>¢’(X(S>>CZS
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X(z) =x+ /OZ o(X(s))dWs + /OZ b(X (s))ds

e [t0’s formula:

L o

2
e X (z) is a diffusion process with the generator Q = 50 (a:)% + b(x)%

e The moment u(z,z) := E[¢(X (2))| X (0) = x| satisfies the Kolmogorov equation:

ou

9n Qu, u(z = 0,z) = ¢(z)

e The pdf y — p.(z,y) of X(2) (starting from X (0) = x) satisfies the Fokker-Planck

equation as a function of z and y:

B~ Qe pemoley) = b~ y)
where Q* is the adjoint operator of Q):

Q@) = 557 (@ WP) ~ 5 (W)
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Diffusion processes

e Let o and b be C*(R,R) functions with bounded derivatives.
Let W, be a Brownian motion.
The solution X (z) of the 1D stochastic differential equation:

dX (2) = o(X(2))dWs + b(X (2))dz

is a diffusion process with the generator

1, O o

o Let o € C'(R™,R"™™) and b € C'(R™,R™) with bounded derivatives.
Let W, be a m-dimensional Brownian motion.

The solution X (z) of the stochastic differential equation:
dX(z) =0 (X (2))dW, + b(X(z))dz

is a diffusion process with the generator

1 — o> - 0

i,j=1 i=1

with a = oo L.
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Random differential equations and stochastic differential equations
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Next goal: determine the limit lim._,0 X°(z) where

dX* 1 z
-Lr(3)
dz € g2

for a fairly general process (F'(z)).>0 with E[F'(z)] = 0.
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Write

We know that

The Gaussian property of the limit of X°(z) is ensured by an invariance principle.
Conclusion:

1/ F(%)dsgjﬂawz
e Jo g

in distribution, where (W},).>¢ is a Brownian motion and

o = /Ooo E[F(0)F(u)]du
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Next goal: determine the limit lim._,0 X°(z) where

dX* 1 z
- lr(xe)
dz € g2 (2)

when
E[F(z,2)] =0 Vx
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Diffusion-approximation

djis (2) = éF (52’X€( )) X (0) =xo € RY.

F stationary, centered, and ergodic (in z): E[F(z,x)] = 0.

Theorem: The processes (X°(2)).>0 converge in distribution in C°(]0,00),R%) to the
diffusion process X with the generator L:

2 d

0
L= Z aij(x 8:1:18333 +ij(w)8—a:j
1,7=1 =1
with
aij(x) = / E[F;(0,x)Fj(u,x)] du

bi(x) = Z/ F.(0, @)0,. F; (u, )] du

It means that the pdf p.(x) of X (z) satisfies:

8pz 82 d o )
5 Z 207, (aij()p=) g 8— ), pz=o(x) = d(x — x0)

’Lj—
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Diffusion-approximation - the one-dimensional case

=112 nx @), x@=wnck

f stationary, centered, and ergodic: E[f(z)] = 0.

Theorem: The processes (X°(z)).>0 converge in distribution in C°([0,00),R) to the

diffusion process X with the generator L:

L= a(az)% + b(w)({%
with
a(z) = %a%?(x), b(z) = %JQh(x)h/(x), o = Q/OOOE £(0) £ (w)] du

It means that X (z) is the solution of the SDE
dX(z) = ch(X(z))dW, + b(X(2))dz
or
dX(z) = och(X(z)) o dW,

Remember that foz é f (8%) ds converges in distribution to cWW..

— the "natural” integral is Stratonovich.
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