Introduction to stochastic processes

Josselin Garnier (Université Paris VII) http://www.proba.jussieu.fr/~garnier

A quick introduction to probability theory

Probability space $(\Omega, \mathcal{A}, \mathbb{P})$

• Goal: Model a random experiment.

Example 1: toss a coin.

Example 2: pick a number between 0 and 1 (matlab function rand).

• Ω : fundamental set (set of all possible realisations).

 \hookrightarrow A realization ω is an element of Ω .

Example 1: $\Omega = \{H, T\}$. Example 2: $\Omega = [0, 1]$.

• \mathcal{A} : σ -algebra on Ω (set of events).

Example 1: $\mathcal{A} = \mathcal{P}(\Omega);$

an event: the result is head, $A = \{H\}$.

Example 2: $\mathcal{A} = \mathcal{B}([0,1]);$

an event: the number is larger than 1/2, A = [1/2, 1].

P: probability (gives the probability of events): function from A to [0,1] such that:
P(Ω) = 1,

- if $(A_j)_{j\geq 1}$ is a numerable family of disjoint sets of \mathcal{A} then $\mathbb{P}(\cup_j A_j) = \sum_j \mathbb{P}(A_j)$. Example 1: $\mathbb{P}(\{H\}) = \mathbb{P}(\{T\}) = \frac{1}{2}$. Example 2: $\mathbb{P}([a,b]) = b - a$ for all $0 \leq a \leq b \leq 1$.

ESNT

Random variable

• Random variable X = random number.

Application $X : \Omega \to \mathbb{R}$.

A realization $X(\omega)$ of a random variable is a real number.

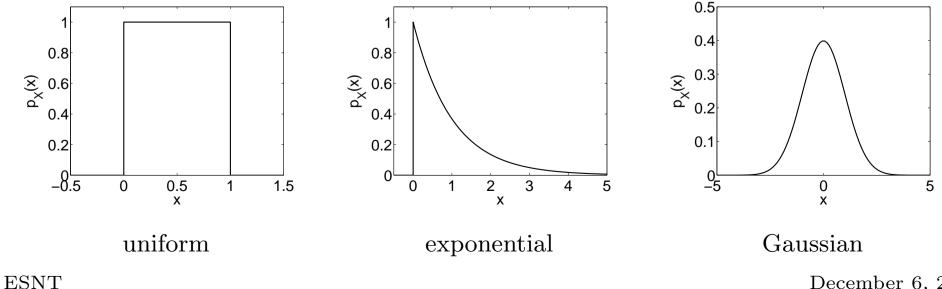
• The distribution of a random variable is characterized by moments of the form $\mathbb{E}[\phi(X)]$ for $\phi \in \mathcal{C}_b(\mathbb{R}, \mathbb{R})$: 0

$$\mathbb{E}[\phi(X)] = \int_{\Omega} \phi(X(\omega)) \mathbb{P}(d\omega)$$

• The distribution of a (continuous) random variable is characterized by the probability density function (pdf) p_X :

$$\mathbb{E}[\phi(X)] = \int_{-\infty}^{\infty} \phi(x) p_X(x) dx$$

• Usual pdfs:



• The mean (expectation) of a random variable X with pdf $p_X(x)$ is

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x p_X(x) dx$$

The variance of a random variable X with pdf p(x) is

$$\operatorname{Var}(X) = \mathbb{E}\left[(X - \mathbb{E}[X])^2\right] = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \int_{-\infty}^{\infty} x^2 p_X(x) dx - \left(\int_{-\infty}^{\infty} x p_X(x) dx\right)^2$$

The variance measures the dispersion of the random variable (around its mean).

• A standard Gaussian random variable X has the pdf

$$p_X(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$$

Its mean is $\mathbb{E}[X] = 0$ and its variance is $\operatorname{Var}(X) = 1$. We write $X \sim \mathcal{N}(0, 1)$.

• A Gaussian random variable X with mean μ and variance σ^2 has the pdf

$$p_X(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

We write $X \sim \mathcal{N}(\mu, \sigma^2)$.

ESNT

Random vector

• *n*-dimensional random vector \mathbf{X} = collection of *n* random variables (X_1, \ldots, X_n) . Application $\mathbf{X} : \Omega \to \mathbb{R}^n$.

A realization $X(\omega)$ of a random vector is a vector in \mathbb{R}^n .

The distribution of a (continuous) random vector is characterized by the pdf $p_{\mathbf{X}}$:

$$\mathbb{E}[\phi(\boldsymbol{X})] = \int_{\mathbb{R}^n} \phi(\boldsymbol{x}) p_{\boldsymbol{X}}(\boldsymbol{x}) d\boldsymbol{x}, \qquad \forall \phi \in \mathcal{C}_b(\mathbb{R}^n, \mathbb{R})$$

The vector $\boldsymbol{X} = (X_1, \ldots, X_n)$ is independent if

$$p_{\boldsymbol{X}}(\boldsymbol{x}) = \prod_{j=1}^{n} p_{X_j}(x_j)$$

or equivalently

$$\mathbb{E}[\phi_1(X_1)\cdots\phi_n(X_n)] = \mathbb{E}[\phi_1(X_1)]\cdots\mathbb{E}[\phi_n(X_n)], \qquad \forall \phi_1,\ldots,\phi_n \in \mathcal{C}_b(\mathbb{R},\mathbb{R})$$

Example: a normalized Gaussian random vector \boldsymbol{X} has the Gaussian pdf

$$p_{\boldsymbol{X}}(\boldsymbol{x}) = \frac{1}{\sqrt{(2\pi)^n}} \exp\left(-\frac{|\boldsymbol{x}|^2}{2}\right)$$

It is a vector of independent random normalized Gaussian variables.

ESNT

Limit theorems

• Law of Large Numbers.

Let $(X_n)_{n\geq 0}$ be independent and identically distributed (i.i.d.) random variables. If $\mathbb{E}[|X_1|] < \infty$, then

$$\bar{X}_n = \frac{1}{n}(X_1 + X_2 + \dots + X_n) \xrightarrow{n \to \infty} m$$
 almost surely, with $m = \mathbb{E}[X_1]$

"The empirical mean converges to the statistical mean".

• Central Limit Theorem. Fluctuations theory. Let $(X_n)_{n\geq 0}$ be i.i.d. random variables. If $\mathbb{E}[X_1^2] < \infty$, then

$$\sqrt{n} \left(\bar{X}_n - m \right) = \sqrt{n} \left(\frac{1}{n} (X_1 + X_2 + \dots + X_n) - m \right) \xrightarrow{n \to \infty} \mathcal{N}(0, \sigma^2) \text{ in law}$$
where
$$\begin{cases}
m = \mathbb{E}[X_1] \\
\sigma^2 = \mathbb{E}[X_1^2] - \mathbb{E}[X_1]^2 = \mathbb{E}[(X_1 - \mathbb{E}[X_1])^2]
\end{cases}$$

"For large n, the error $\bar{X}_n - m$ obeys the Gaussian distribution $\mathcal{N}(0, \sigma^2/n)$."

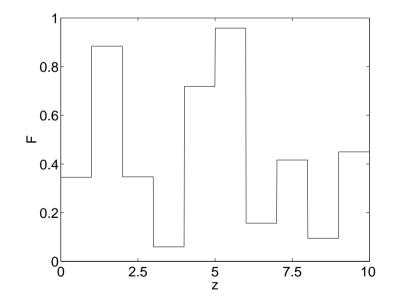
Stochastic processes

Toy model

Let $F(z) \in \mathbb{R}$ be the stepwise constant random process

$$F(z) = \sum_{i=1}^{\infty} F_i \mathbf{1}_{[i-1,i)}(z)$$

where F_i independent random variables $\mathbb{E}[F_i] = \overline{F}$ and $\mathbb{E}[(F_i - \overline{F})^2] = \sigma^2$.



Here F_i are independent with uniform distribution over (0, 1).

Random process

• Random variable X = random number.

A realization of the random variable = a real number.

Distribution of X characterized by moments of the form $\mathbb{E}[\phi(X)]$ where $\phi \in \mathcal{C}_b(\mathbb{R}, \mathbb{R})$.

Stochastic process (μ(x))_{x∈R^d} = random function.
A realization of the process = a function from R^d to R.
Distribution of (μ(x))_{x∈R^d} characterized by moments of the form
E[φ(μ(x₁),...,μ(x_n))], for any n ∈ N*, x₁,..., x_n ∈ R^d, φ ∈ C_b(Rⁿ, R).

Example: Gaussian process.

Gaussian process

• Gaussian process $(\mu(\boldsymbol{x}))_{\boldsymbol{x}\in\mathbb{R}^d}$ characterized by its first two moments $m(\boldsymbol{x}_1) = \mathbb{E}[\mu(\boldsymbol{x}_1)]$ and $R(\boldsymbol{x}_1, \boldsymbol{x}_2) = \mathbb{E}[\mu(\boldsymbol{x}_1)\mu(\boldsymbol{x}_2)].$

Any linear combination $\mu_{\lambda} = \sum_{i=1}^{n} \lambda_i \mu(\boldsymbol{x}_i)$ has Gaussian distribution $\mathcal{N}(m_{\lambda}, \sigma_{\lambda}^2)$ with

$$m_{\lambda} = \sum_{i=1}^{n} \lambda_i \mathbb{E}[\mu(\boldsymbol{x}_i)] \text{ and } \sigma_{\lambda}^2 = \sum_{i,j=1}^{n} \lambda_i \lambda_j \mathbb{E}[\mu(\boldsymbol{x}_i)\mu(\boldsymbol{x}_j)] - m_{\lambda}^2$$

• Simulation: in order to simulate $(\mu(\boldsymbol{x}_1), \ldots, \mu(\boldsymbol{x}_n))$:

- evaluate the mean vector $M_i = \mathbb{E}[\mu(\boldsymbol{x}_i)]$ and the covariance matrix $C_{ij} = \mathbb{E}[\mu(\boldsymbol{x}_i)\mu(\boldsymbol{x}_j)] - \mathbb{E}[\mu(\boldsymbol{x}_i)]\mathbb{E}[\mu(\boldsymbol{x}_j)].$

- generate a random vector $\mathbf{X} = (X_1, \ldots, X_n)$ of *n* independent Gaussian random variables with mean 0 and variance 1.

- compute $\boldsymbol{Y} = \boldsymbol{M} + \mathbf{C}^{1/2} \boldsymbol{X}$. The vector \boldsymbol{Y} has the distribution of $(\mu(\boldsymbol{x}_1), \dots, \mu(\boldsymbol{x}_n))$. Note: the computation of the square root is expensive (use Cholesky method).

Brownian motion

• Brownian motion $(W_z)_{z\geq 0}$ (starting from 0)= real Gaussian process with mean 0 and covariance function

$$\mathbb{E}[W_z W_{z'}] = z \wedge z'$$

The realizations of the Brownian motion are continuous but not differentiable.

The increments of the Brownian motion are independent:

if $z_n \ge z_{n-1} \ge \cdots \ge z_1 \ge z_0 = 0$, then $(W_{z_n} - W_{z_{n-1}}, \dots, W_{z_2} - W_{z_1}, W_{z_1})$ are independent Gaussian random variables with mean 0 and variance

$$\mathbb{E}[(W_{z_j} - W_{z_{j-1}})^2] = z_j - z_{j-1}$$

• Simulation: in order to simulate $(W_h, W_{2h}, ..., W_{nh})$:

- evaluate the covariance matrix $\mathbf{C} = (C_{jl})_{j=,l=1,\ldots,n}$ with $C_{jl} = (j \wedge l)h$.

- generate a random vector $\mathbf{X} = (X_1, ..., X_n)$ of *n* independent Gaussian random variables with mean 0 and variance 1.

- compute $\boldsymbol{Y} = \mathbf{C}^{1/2} \boldsymbol{X}$.

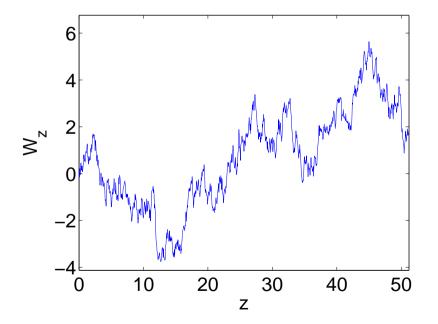
The vector \boldsymbol{Y} has the distribution of $(W_h, W_{2h}, ..., W_{nh})$.

• Simulation: in order to simulate $(W_h, W_{2h}, \ldots, W_{nh})$:

- generate a random vector $\mathbf{X} = (X_1, \dots, X_n)^T$ of *n* independent Gaussian random variables with mean 0 and variance 1.

- compute $Y_j = \sqrt{h} \sum_{i=1}^j X_i$.

The vector \boldsymbol{Y} has the distribution of $(W_h, W_{2h}, \ldots, W_{nh})^T$.



Stationary random process

• $(\mu(\boldsymbol{x}))_{\boldsymbol{x}\in\mathbb{R}^d}$ is stationary if $(\mu(\boldsymbol{x}+\boldsymbol{x}_0))_{\boldsymbol{x}\in\mathbb{R}^d}$ has the same distribution as $(\mu(\boldsymbol{x}))_{\boldsymbol{x}\in\mathbb{R}^d}$ for any $\boldsymbol{x}_0\in\mathbb{R}^d$. Sufficient and necessary condition:

$$\mathbb{E}\big[\phi(\mu(\boldsymbol{x}_1),\ldots,\mu(\boldsymbol{x}_n))\big] = \mathbb{E}\big[\phi(\mu(\boldsymbol{x}_0+\boldsymbol{x}_1),\ldots,\mu(\boldsymbol{x}_0+\boldsymbol{x}_n))\big]$$

for any $n, \boldsymbol{x}_0, \ldots, \boldsymbol{x}_n \in \mathbb{R}^d, \phi \in \mathcal{C}_b(\mathbb{R}^n, \mathbb{R}).$

• Example: Gaussian process $\mu(\boldsymbol{x})$ with mean zero $\mathbb{E}[\mu(\boldsymbol{x})] = 0 \ \forall \boldsymbol{x}$ and covariance function $\mathbb{E}[\mu(\boldsymbol{x}')\mu(\boldsymbol{x}'+\boldsymbol{x})] = c(\boldsymbol{x}).$

• Bochner's theorem: a function $c(\mathbf{x})$ is a covariance function of a stationary process if and only if its Fourier transform $\hat{c}(\mathbf{k})$ is nonnegative.

$$\hat{c}(oldsymbol{k}) = \int_{\mathbb{R}^d} e^{ioldsymbol{k}\cdotoldsymbol{x}} c(oldsymbol{x}) doldsymbol{x}$$

• Spectral representation (of real-valued stationary Gaussian process):

$$\mu(\boldsymbol{x}) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} e^{-i\boldsymbol{k}\cdot\boldsymbol{x}} \sqrt{\hat{c}(\boldsymbol{k})} \hat{n}_{\boldsymbol{k}} d\boldsymbol{k}$$

with \hat{n}_{k} complex white noise, i.e.:

 \hat{n}_{k} complex-valued, Gaussian, $\hat{n}_{-k} = \overline{\hat{n}_{k}}$, $\mathbb{E}[\hat{n}_{k}] = 0$, and $\mathbb{E}[\hat{n}_{k}\overline{\hat{n}_{k'}}] = (2\pi)^{d}\delta(k - k')$. (the representation is formal, one should use stochastic integrals $d\hat{W}_{k} = \hat{n}_{k}dk$).

We have $\hat{n}_{\mathbf{k}} = \int e^{i\mathbf{k}\cdot\mathbf{x}}n(\mathbf{x})d\mathbf{x}$ where $n(\mathbf{x})$ is a real white noise, i.e.: $n(\mathbf{x})$ real-valued, Gaussian, $\mathbb{E}[n(\mathbf{x})] = 0$, and $\mathbb{E}[n(\mathbf{x})n(\mathbf{x}')] = \delta(\mathbf{x} - \mathbf{x}')$. (in 1D, formally, $n(x) = dW_x/dx$). • Spectral representation (of real-valued stationary Gaussian process):

$$\mu(\boldsymbol{x}) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} e^{-i\boldsymbol{k}\cdot\boldsymbol{x}} \sqrt{\hat{c}(\boldsymbol{k})} \hat{n}_{\boldsymbol{k}} d\boldsymbol{k}$$

with \hat{n}_{k} complex white noise, i.e.:

 \hat{n}_{k} complex-valued, Gaussian, $\hat{n}_{-k} = \overline{\hat{n}_{k}}$, $\mathbb{E}[\hat{n}_{k}] = 0$, and $\mathbb{E}[\hat{n}_{k}\overline{\hat{n}_{k'}}] = (2\pi)^{d}\delta(k - k')$. (the representation is formal, one should use stochastic integrals $d\hat{W}_{k} = \hat{n}_{k}dk$).

We have $\hat{n}_{k} = \int e^{i \mathbf{k} \cdot \mathbf{x}} n(\mathbf{x}) d\mathbf{x}$ where $n(\mathbf{x})$ is a real white noise, i.e.: $n(\mathbf{x})$ real-valued, Gaussian, $\mathbb{E}[n(\mathbf{x})] = 0$, and $\mathbb{E}[n(\mathbf{x})n(\mathbf{x}')] = \delta(\mathbf{x} - \mathbf{x}')$. (in 1D, formally, $n(x) = dW_x/dx$).

• Simulation (d = 1): in order to simulate $(\mu(x_1), \ldots, \mu(x_n)), x_j = (j-1)h$:

- compute the covariance vector $\boldsymbol{C} = (c(x_1), \ldots, c(x_n)).$

- generate a random vector $\mathbf{X} = (X_1, \ldots, X_n)$ of *n* independent Gaussian random variables with mean 0 and variance 1.

- filter with the square root of the Fourier transform of C:

$$\boldsymbol{Y} = \mathrm{IDFT} \left(\sqrt{\mathrm{DFT}(\boldsymbol{C})} \times \mathrm{DFT}(\boldsymbol{X}) \right)$$

 $\hookrightarrow \mathbf{Y}$ is a realization of $(\mu(x_1), \ldots, \mu(x_n))$ (in practice, use FFT and IFFT).

Random differential equations and ordinary differential equations

Goal: determine the limit $\lim_{\varepsilon \to 0} X^{\varepsilon}(z)$ where

$$\frac{dX^{\varepsilon}}{dz} = F\left(\frac{z}{\varepsilon}\right)$$

for a fairly general random process $(F(z))_{z\geq 0}$.

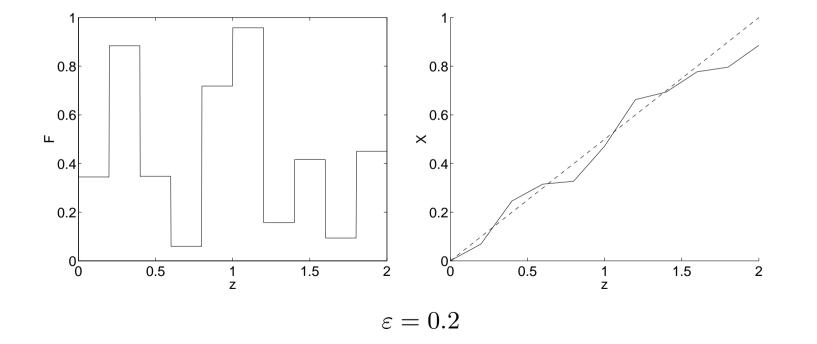
Method of averaging: Toy model

Let $X^{\varepsilon}(z) \in \mathbb{R}$ be the solution of

$$\frac{dX^{\varepsilon}}{dz} = F(\frac{z}{\varepsilon})$$

with $F(z) = \sum_{i=1}^{\infty} F_i \mathbf{1}_{[i-1,i)}(z)$, F_i independent random variables $\mathbb{E}[F_i] = \overline{F}$ and $\mathbb{E}[(F_i - \overline{F})^2] = \sigma^2$.

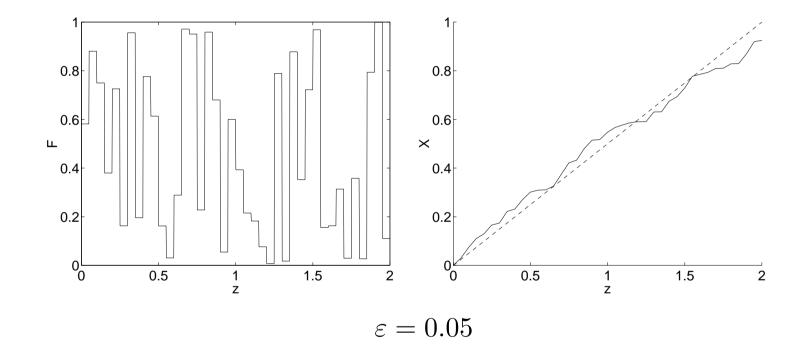
 $(z \mapsto t, \text{ particle in a random velocity field})$

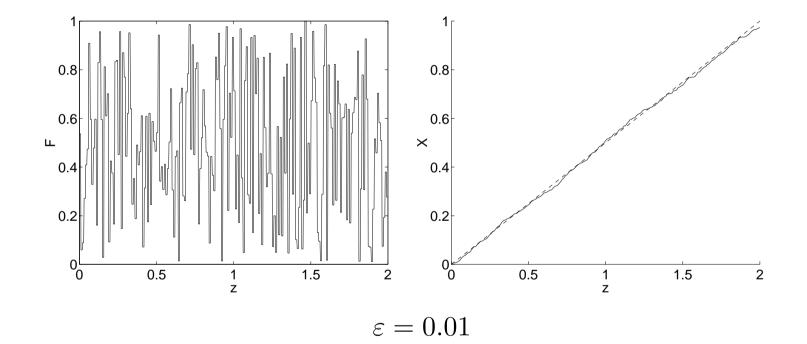


$$\begin{split} X^{\varepsilon}(z) &= \int_{0}^{z} F\left(\frac{s}{\varepsilon}\right) ds = \varepsilon \int_{0}^{\frac{z}{\varepsilon}} F(s) ds = \varepsilon \left(\sum_{i=1}^{\left\lfloor \frac{z}{\varepsilon} \right\rfloor} F_{i}\right) + \varepsilon \int_{\left\lfloor \frac{z}{\varepsilon} \right\rfloor}^{\frac{z}{\varepsilon}} F(s) ds \\ &= \varepsilon \left\lfloor \frac{z}{\varepsilon} \right\rfloor \times \frac{1}{\left\lfloor \frac{z}{\varepsilon} \right\rfloor} \left(\sum_{i=1}^{\left\lfloor \frac{z}{\varepsilon} \right\rfloor} F_{i}\right) + \varepsilon \left(\frac{z}{\varepsilon} - \left\lfloor \frac{z}{\varepsilon} \right\rfloor\right) F_{\left\lfloor \frac{z}{\varepsilon} \right\rfloor} \\ &\varepsilon \to 0 \downarrow \\ z & \text{a.s. } \downarrow (LLN) \\ \mathbb{E}[F_{1}] = \bar{F} \end{split}$$

Thus:

$$X^{\varepsilon}(z) \xrightarrow{\varepsilon \to 0} \bar{X}(z), \qquad \frac{d\bar{X}}{dz} = \bar{F}.$$





Goal: determine the limit $\lim_{\varepsilon \to 0} X^{\varepsilon}(z)$ where

$$\frac{dX^{\varepsilon}}{dz} = F\left(\frac{z}{\varepsilon}\right)$$

for a stationary random process $(F(z))_{z\geq 0}$.

The previous analysis can be extended provided

$$\frac{1}{Z} \int_0^Z F(z) dz \xrightarrow{Z \to \infty} \bar{F}$$

(i.e. F is ergodic)

Next goal: determine the limit $\lim_{\varepsilon \to 0} X^{\varepsilon}(z)$ where

$$\frac{d\boldsymbol{X}^{\varepsilon}}{dz} = \boldsymbol{F}\left(\frac{z}{\varepsilon}, \boldsymbol{X}^{\varepsilon}(z)\right)$$

Method of averaging: Khasminskii theorem

$$\frac{d\boldsymbol{X}^{\varepsilon}}{dz} = \boldsymbol{F}(\frac{z}{\varepsilon}, \boldsymbol{X}^{\varepsilon}), \quad \boldsymbol{X}^{\varepsilon}(0) = \boldsymbol{x}_{0}$$

Assume:

 $\boldsymbol{x} \mapsto \boldsymbol{F}(z, \boldsymbol{x})$ is Lipschitz, $z \mapsto \boldsymbol{F}(z, \boldsymbol{x})$ is stationary and ergodic. Define:

$$ar{m{F}}(m{x}) = \mathbb{E}[m{F}(z,m{x})]$$

Let \bar{X} be the solution of

$$\frac{d\boldsymbol{X}}{dz} = \bar{\boldsymbol{F}}(\bar{\boldsymbol{X}}), \quad \bar{\boldsymbol{X}}(0) = \boldsymbol{x}_0$$

Theorem: for any Z > 0,

$$\sup_{z \in [0,Z]} \mathbb{E} \left[|\boldsymbol{X}^{\varepsilon}(z) - \bar{\boldsymbol{X}}(z)| \right] \stackrel{\varepsilon \to 0}{\longrightarrow} 0$$

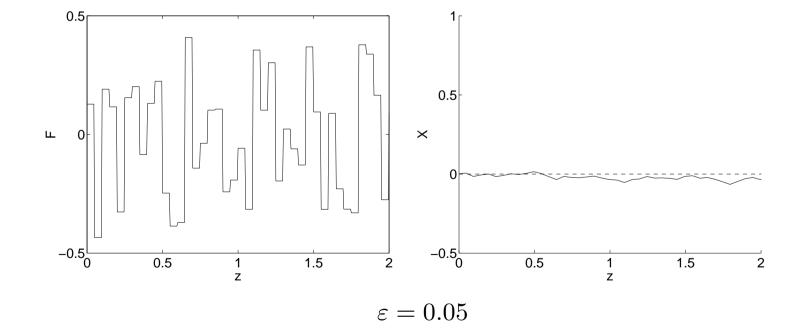
[1] R. Z. Khasminskii, Theory Probab. Appl. 11 (1966), 211-228.

Random differential equations and Brownian motion

Toy model

 $\frac{dX^{\varepsilon}}{dz} = F(\frac{z}{\varepsilon})$

with $F(z) = \sum_{i=1}^{\infty} F_i \mathbf{1}_{[i-1,i)}(z)$, F_i independent random variables $\mathbb{E}[F_i] = \overline{F} = 0$ and $\mathbb{E}[(F_i - \overline{F})^2] = \sigma^2$.



For any $z \in [0, Z]$, we have

$$X^{\varepsilon}(z) \xrightarrow{\varepsilon \to 0} \bar{X}(z), \qquad \frac{dX}{dz} = \bar{F} = 0.$$

No macroscopic evolution is noticeable.

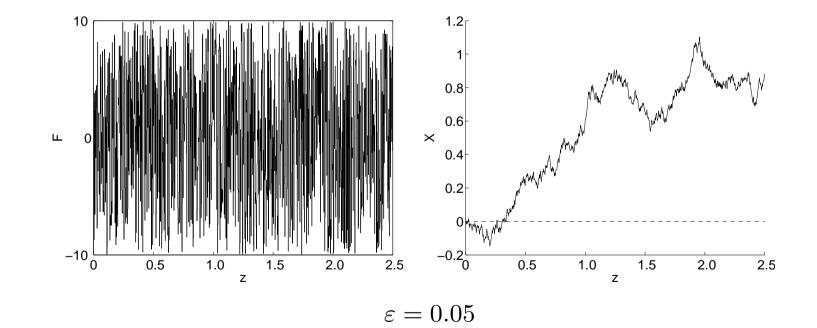
 \rightarrow it is necessary to look at larger z to get an effective behavior

$$z \mapsto \frac{z}{\varepsilon}, \quad \tilde{X}^{\varepsilon}(z) = X^{\varepsilon}(\frac{z}{\varepsilon})$$
$$\frac{d\tilde{X}^{\varepsilon}}{dz} = \frac{1}{\varepsilon}F(\frac{z}{\varepsilon^2})$$

Diffusion-approximation: Toy model

$$\frac{dX^{\varepsilon}}{dz} = \frac{1}{\varepsilon}F(\frac{z}{\varepsilon^2})$$

with $F(z) = \sum_{i=1}^{\infty} F_i \mathbf{1}_{[i-1,i)}(z)$, F_i independent random variables $\mathbb{E}[F_i] = 0$ and $\mathbb{E}[F_i^2] = \sigma^2$.



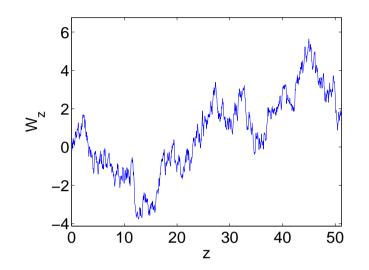
$$\begin{split} X^{\varepsilon}(z) &= \int_{0}^{z} \frac{1}{\varepsilon} F(\frac{s}{\varepsilon^{2}}) ds = \varepsilon \int_{0}^{\frac{z}{\varepsilon^{2}}} F(s) ds = \varepsilon \begin{pmatrix} \left[\frac{z}{\varepsilon^{2}}\right] \\ \sum_{i=1}^{z} F_{i} \end{pmatrix} + \varepsilon \int_{\left[\frac{z}{\varepsilon^{2}}\right]}^{\frac{z}{\varepsilon^{2}}} F(s) ds \\ &= \varepsilon \sqrt{\left[\frac{z}{\varepsilon^{2}}\right]} \times \frac{1}{\sqrt{\left[\frac{z}{\varepsilon^{2}}\right]}} \begin{pmatrix} \left[\frac{z}{\varepsilon^{2}}\right] \\ \sum_{i=1}^{z} F_{i} \end{pmatrix} + \varepsilon \begin{pmatrix} \frac{z}{\varepsilon^{2}} - \left[\frac{z}{\varepsilon^{2}}\right] \end{pmatrix} F_{\left[\frac{z}{\varepsilon^{2}}\right]} \\ &\varepsilon \to 0 \downarrow \\ \sqrt{z} & \text{law} \downarrow (CLT) \\ &\mathcal{N}(0, \sigma^{2}) & 0 \end{split}$$

Thus: $X^{\varepsilon}(z)$ converges in distribution as $\varepsilon \to 0$ to $\bar{X}(z)$ whose distribution is $\mathcal{N}(0, \sigma^2 z)$.

With some more work: The process $(X^{\varepsilon}(z))_{z\geq 0}$ converges in distribution to a Brownian motion $(\sigma W_z)_{z\geq 0}$.

Diffusion processes and stochastic differential equations

Example: Brownian motion



 W_z (issued from 0): zero-mean Gaussian process with covariance $\mathbb{E}[W_z W_{z'}] = z \wedge z'$

Its increments are independent and:

$$\mathbb{E}[(W_{z+h} - W_z)^2] = h$$

Let ϕ be a bounded real function:

$$u(z,x) := \mathbb{E}[\phi(x+W_z)] = \int \frac{1}{\sqrt{2\pi z}} \exp\left(-\frac{w^2}{2z}\right) \phi(x+w) dw$$
$$= \int \underbrace{\frac{1}{\sqrt{2\pi z}} \exp\left(-\frac{(y-x)^2}{2z}\right)}_{p_z(x,y)} \phi(y) dy$$

For x, z fixed, $y \mapsto p_z(x, y)$ is the pdf of the random variable $x + W_z$. $p_z(x, y)$ is the kernel of the heat operator.

ESNT

Example: Brownian motion

• The moment

$$u(z,x) := \mathbb{E}[\phi(x+W_z)] = \int p_z(x,y)\phi(y)dy, \qquad p_z(x,y) = \frac{1}{\sqrt{2\pi z}} \exp\left(-\frac{(y-x)^2}{2z}\right)$$

satisfies the (backward) Kolmogorov equation

$$\frac{\partial u}{\partial z} = \frac{1}{2} \frac{\partial^2 u}{\partial x^2}, \qquad u(z=0,x) = \phi(x)$$

Reciprocal: The partial differential equation

$$\frac{\partial u}{\partial z} = \frac{1}{2} \frac{\partial^2 u}{\partial x^2}, \qquad u(z=0,x) = \phi(x)$$

has the probabilistic representation: $u(z,x) = \mathbb{E}[\phi(x+W_z)].$

The reciprocal is useful for Monte Carlo simulation techniques for solving PDEs.

• The pdf $y \mapsto p_z(x, y)$ of $x + W_z$ satisfies the Fokker-Planck (Kolmogorov forward) equation as a function of z and y:

$$\frac{\partial p_z}{\partial z} = \frac{1}{2} \frac{\partial^2 p_z}{\partial y^2}, \qquad p_{z=0}(x,y) = \delta(y-x)$$

Stochastic differential equations

Let X(z) be the solution of the one-dimensional stochastic differential equation

$$X(z) = x + \int_0^z \sigma(X(s))dW_s + \int_0^z b(X(s))ds$$

Existence and uniqueness ensured provided b and σ are \mathcal{C}^1 with bounded derivatives. X(z) is continuous a.s., is squared integrable, is adapted (depends on $(W_s)_{0 \le s \le z}$).

• Itô integral

$$\int_0^z \phi(X(s)) dW_s = \lim_{\Delta z \to 0} \sum_k \phi(X(z_k)) (W_{z_{k+1}} - W_{z_k}), \qquad 0 = z_0 < z_1 < \dots < z_n = z$$

Good properties: martingale (mean zero), Itô's isometry:

$$\mathbb{E}\left[\left(\int_0^z \phi(X(s))dW_s\right)^2\right] = \int_0^z \mathbb{E}[\phi(X(s))^2]ds$$

• Stratonovich integral:

$$\int_0^z \phi(X(s)) \circ dW_s = \lim_{\Delta z \to 0} \sum_k \frac{\phi(X(z_{k+1})) + \phi(X(z_k))}{2} (W_{z_{k+1}} - W_{z_k})$$

• Relation:

$$\int_{0}^{z} \phi(X(s)) \circ dW_{s} = \int_{0}^{z} \phi(X(s)) dW_{s} + \frac{1}{2} \int_{0}^{z} \sigma(X(s)) \phi'(X(s)) ds$$

December 6, 2011

$$X(z) = x + \int_0^z \sigma(X(s))dW_s + \int_0^z b(X(s))ds$$

• Itô's formula:

$$\phi(X(z)) = \phi(x) + \int_0^z \sigma(X(s))\phi'(X(s))dW_s + \int_0^z b(X(s))\phi'(X(s))ds + \frac{1}{2}\int_0^z \sigma(X(s))^2\phi''(X(s))ds$$

• X(z) is a diffusion process with the generator $Q = \frac{1}{2}\sigma^2(x)\frac{\partial^2}{\partial x^2} + b(x)\frac{\partial}{\partial x}$

• The moment $u(z,x) := \mathbb{E}[\phi(X(z))|X(0) = x]$ satisfies the Kolmogorov equation:

$$\frac{\partial u}{\partial z} = Qu, \qquad u(z=0,x) = \phi(x)$$

• The pdf $y \mapsto p_z(x, y)$ of X(z) (starting from X(0) = x) satisfies the Fokker-Planck equation as a function of z and y:

$$\frac{\partial p_z}{\partial z} = Q^* p_z, \qquad p_{z=0}(x,y) = \delta(x-y)$$

where Q^* is the adjoint operator of Q:

$$Q^*p(y) = \frac{1}{2} \frac{\partial^2}{\partial y^2} \left(\sigma^2(y) p(y) \right) - \frac{\partial}{\partial y} \left(b(y) p(y) \right)$$

December 6, 2011

Diffusion processes

• Let σ and b be $\mathcal{C}^1(\mathbb{R}, \mathbb{R})$ functions with bounded derivatives. Let W_z be a Brownian motion.

The solution X(z) of the 1D stochastic differential equation:

 $dX(z) = \sigma(X(z))dW_z + b(X(z))dz$

is a diffusion process with the generator

$$Q = \frac{1}{2}\sigma^2(x)\frac{\partial^2}{\partial x^2} + b(x)\frac{\partial}{\partial x}$$

• Let $\boldsymbol{\sigma} \in \mathcal{C}^1(\mathbb{R}^n, \mathbb{R}^{n \times m})$ and $\boldsymbol{b} \in \mathcal{C}^1(\mathbb{R}^n, \mathbb{R}^n)$ with bounded derivatives. Let \boldsymbol{W}_z be a *m*-dimensional Brownian motion. The solution $\boldsymbol{X}(z)$ of the stochastic differential equation:

$$d\boldsymbol{X}(z) = \boldsymbol{\sigma}(\boldsymbol{X}(z))d\boldsymbol{W}_z + \boldsymbol{b}(\boldsymbol{X}(z))dz$$

is a diffusion process with the generator

$$Q = \frac{1}{2} \sum_{i,j=1}^{n} a_{ij}(\boldsymbol{x}) \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{i=1}^{n} b_i(\boldsymbol{x}) \frac{\partial}{\partial x_i}$$

with $\mathbf{a} = \boldsymbol{\sigma} \boldsymbol{\sigma}^T$.

ESNT

Random differential equations and stochastic differential equations

Next goal: determine the limit $\lim_{\varepsilon \to 0} X^{\varepsilon}(z)$ where

$$\frac{dX^{\varepsilon}}{dz} = \frac{1}{\varepsilon} F\left(\frac{z}{\varepsilon^2}\right)$$

for a fairly general process $(F(z))_{z\geq 0}$ with $\mathbb{E}[F(z)] = 0$.

Write

$$X^{\varepsilon}(z) = \frac{1}{\varepsilon} \int_{0}^{z} F\left(\frac{s}{\varepsilon^{2}}\right) ds = \varepsilon \sqrt{\frac{z}{\varepsilon^{2}}} \times \frac{1}{\sqrt{\frac{z}{\varepsilon^{2}}}} \int_{0}^{\frac{z}{\varepsilon^{2}}} F(s) ds$$

We know that

$$\begin{split} \mathbb{E}\Big[\frac{1}{\sqrt{\frac{z}{\varepsilon^2}}} \int_0^{\frac{z}{\varepsilon^2}} F\left(s\right) ds\Big] &= 0,\\ \lim_{\varepsilon \to 0} \mathbb{E}\Big[\Big(\frac{1}{\sqrt{\frac{z}{\varepsilon^2}}} \int_0^{\frac{z}{\varepsilon^2}} F\left(s\right) ds\Big)^2\Big] &= \lim_{Z \to \infty} Z\mathbb{E}\left[\Big(\frac{1}{Z} \int_0^Z F(s) ds\Big)^2\right]\\ &= 2\int_0^{\infty} \mathbb{E}[F(0)F(u)] du, \end{split}$$

The Gaussian property of the limit of $X^{\varepsilon}(z)$ is ensured by an invariance principle. Conclusion:

$$\frac{1}{\varepsilon} \int_0^z F\left(\frac{s}{\varepsilon^2}\right) ds \xrightarrow{\varepsilon \to 0} \sqrt{2}\sigma W_z$$

in distribution, where $(W_z)_{z\geq 0}$ is a Brownian motion and

$$\sigma^2 = \int_0^\infty \mathbb{E}[F(0)F(u)]du$$

Next goal: determine the limit $\lim_{\varepsilon \to 0} X^{\varepsilon}(z)$ where

$$\frac{d\boldsymbol{X}^{\varepsilon}}{dz} = \frac{1}{\varepsilon} \boldsymbol{F}\left(\frac{z}{\varepsilon^2}, \boldsymbol{X}^{\varepsilon}(z)\right)$$

when

$$\mathbb{E}[\boldsymbol{F}(z, \boldsymbol{x})] = 0 \quad \forall \boldsymbol{x}$$

Diffusion-approximation

$$\frac{d\boldsymbol{X}^{\varepsilon}}{dz}(z) = \frac{1}{\varepsilon} \boldsymbol{F}\left(\frac{z}{\varepsilon^2}, \boldsymbol{X}^{\varepsilon}(z)\right), \qquad \boldsymbol{X}^{\varepsilon}(0) = \boldsymbol{x}_0 \in \mathbb{R}^d.$$

 \boldsymbol{F} stationary, centered, and ergodic (in z): $\mathbb{E}[\boldsymbol{F}(z, \boldsymbol{x})] = \boldsymbol{0}$.

Theorem: The processes $(\mathbf{X}^{\varepsilon}(z))_{z\geq 0}$ converge in distribution in $\mathcal{C}^{0}([0,\infty), \mathbb{R}^{d})$ to the diffusion process \mathbf{X} with the generator \mathcal{L} :

$$\mathcal{L} = \sum_{i,j=1}^{d} a_{ij}(\boldsymbol{x}) \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{j=1}^{d} b_j(\boldsymbol{x}) \frac{\partial}{\partial x_j}$$

with

$$a_{ij}(\boldsymbol{x}) = \int_0^\infty \mathbb{E} \left[F_i(0, \boldsymbol{x}) F_j(u, \boldsymbol{x}) \right] du$$

$$b_j(\boldsymbol{x}) = \sum_{i=1}^d \int_0^\infty \mathbb{E} \left[F_i(0, \boldsymbol{x}) \partial_{x_i} F_j(u, \boldsymbol{x}) \right] du$$

It means that the pdf $p_z(\boldsymbol{x})$ of $\boldsymbol{X}(z)$ satisfies:

$$\frac{\partial p_z}{\partial z} = \sum_{i,j=1}^d \frac{\partial^2}{\partial x_i \partial x_j} (a_{ij}(\boldsymbol{x}) p_z) - \sum_{j=1}^d \frac{\partial}{\partial x_j} (b_j(\boldsymbol{x}) p_z), \qquad p_{z=0}(\boldsymbol{x}) = \delta(\boldsymbol{x} - \boldsymbol{x}_0)$$

December 6, 2011

Diffusion-approximation - the one-dimensional case

$$\frac{dX^{\varepsilon}}{dz}(z) = \frac{1}{\varepsilon} f\left(\frac{z}{\varepsilon^2}\right) h\left(X^{\varepsilon}(z)\right), \qquad X^{\varepsilon}(0) = x_0 \in \mathbb{R}.$$

f stationary, centered, and ergodic: $\mathbb{E}[f(z)] = 0$.

Theorem: The processes $(X^{\varepsilon}(z))_{z\geq 0}$ converge in distribution in $\mathcal{C}^{0}([0,\infty),\mathbb{R})$ to the diffusion process X with the generator \mathcal{L} :

$$\mathcal{L} = a(x)\frac{\partial^2}{\partial x^2} + b(x)\frac{\partial}{\partial x}$$

with

$$a(x) = \frac{1}{2}\sigma^2 h^2(x), \qquad b(x) = \frac{1}{2}\sigma^2 h(x)h'(x), \qquad \sigma^2 = 2\int_0^\infty \mathbb{E}\left[f(0)f(u)\right] du$$

It means that X(z) is the solution of the SDE

$$dX(z) = \sigma h(X(z))dW_z + b(X(z))dz$$

or

$$dX(z) = \sigma h(X(z)) \circ dW_z$$

Remember that $\int_0^z \frac{1}{\varepsilon} f\left(\frac{s}{\varepsilon^2}\right) ds$ converges in distribution to σW_z . \hookrightarrow the "natural" integral is Stratonovich.