Introduction to stochastic processes

Josselin Garnier (Université Paris VII)
http://www.proba.jussieu.fr/~garnier

A quick introduction to probability theory

Probability space $(\Omega, \mathcal{A}, \mathbb{P})$

- Goal: Model a random experiment.

Example 1: toss a coin.
Example 2: pick a number between 0 and 1 (matlab function rand).

- Ω : fundamental set (set of all possible realisations).
\hookrightarrow A realization ω is an element of Ω.
Example 1: $\Omega=\{H, T\}$.
Example 2: $\Omega=[0,1]$.
- \mathcal{A} : σ-algebra on Ω (set of events).

Example 1: $\mathcal{A}=\mathcal{P}(\Omega) ;$
an event: the result is head, $A=\{H\}$.
Example 2: $\quad \mathcal{A}=\mathcal{B}([0,1])$;
an event: the number is larger than $1 / 2, A=[1 / 2,1]$.

- $\mathbb{P}:$ probability (gives the probability of events): function from \mathcal{A} to $[0,1]$ such that:
- $\mathbb{P}(\Omega)=1$,
- if $\left(A_{j}\right)_{j \geq 1}$ is a numerable family of disjoint sets of \mathcal{A} then $\mathbb{P}\left(\cup_{j} A_{j}\right)=\sum_{j} \mathbb{P}\left(A_{j}\right)$.

Example 1: $\mathbb{P}(\{H\})=\mathbb{P}(\{T\})=\frac{1}{2}$.
Example 2: $\mathbb{P}([a, b])=b-a$ for all $0 \leq a \leq b \leq 1$.

Random variable

- Random variable $X=$ random number.

Application $X: \Omega \rightarrow \mathbb{R}$.
A realization $X(\omega)$ of a random variable is a real number.

- The distribution of a random variable is characterized by moments of the form $\mathbb{E}[\phi(X)]$ for $\phi \in \mathcal{C}_{b}(\mathbb{R}, \mathbb{R})$:

$$
\mathbb{E}[\phi(X)]=\int_{\Omega} \phi(X(\omega)) \mathbb{P}(d \omega)
$$

- The distribution of a (continuous) random variable is characterized by the probability density function (pdf) p_{X} :

$$
\mathbb{E}[\phi(X)]=\int_{-\infty}^{\infty} \phi(x) p_{X}(x) d x
$$

- Usual pdfs:

uniform

exponential

Gaussian

- The mean (expectation) of a random variable X with $\operatorname{pdf} p_{X}(x)$ is

$$
\mathbb{E}[X]=\int_{-\infty}^{\infty} x p_{X}(x) d x
$$

The variance of a random variable X with $\operatorname{pdf} p(x)$ is

$$
\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=\int_{-\infty}^{\infty} x^{2} p_{X}(x) d x-\left(\int_{-\infty}^{\infty} x p_{X}(x) d x\right)^{2}
$$

The variance measures the dispersion of the random variable (around its mean).

- A standard Gaussian random variable X has the pdf

$$
p_{X}(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right)
$$

Its mean is $\mathbb{E}[X]=0$ and its variance is $\operatorname{Var}(X)=1$.
We write $X \sim \mathcal{N}(0,1)$.

- A Gaussian random variable X with mean μ and variance σ^{2} has the pdf

$$
p_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

We write $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.

Random vector

- n-dimensional random vector $\boldsymbol{X}=$ collection of n random variables $\left(X_{1}, \ldots, X_{n}\right)$. Application $\boldsymbol{X}: \Omega \rightarrow \mathbb{R}^{n}$.
A realization $\boldsymbol{X}(\omega)$ of a random vector is a vector in \mathbb{R}^{n}.
The distribution of a (continuous) random vector is characterized by the pdf $p_{\boldsymbol{X}}$:

$$
\mathbb{E}[\phi(\boldsymbol{X})]=\int_{\mathbb{R}^{n}} \phi(\boldsymbol{x}) p_{\boldsymbol{X}}(\boldsymbol{x}) d \boldsymbol{x}, \quad \forall \phi \in \mathcal{C}_{b}\left(\mathbb{R}^{n}, \mathbb{R}\right)
$$

The vector $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)$ is independent if

$$
p_{\boldsymbol{X}}(\boldsymbol{x})=\prod_{j=1}^{n} p_{X_{j}}\left(x_{j}\right)
$$

or equivalently

$$
\mathbb{E}\left[\phi_{1}\left(X_{1}\right) \cdots \phi_{n}\left(X_{n}\right)\right]=\mathbb{E}\left[\phi_{1}\left(X_{1}\right)\right] \cdots \mathbb{E}\left[\phi_{n}\left(X_{n}\right)\right], \quad \forall \phi_{1}, \ldots, \phi_{n} \in \mathcal{C}_{b}(\mathbb{R}, \mathbb{R})
$$

Example: a normalized Gaussian random vector \boldsymbol{X} has the Gaussian pdf

$$
p_{\boldsymbol{X}}(\boldsymbol{x})=\frac{1}{\sqrt{(2 \pi)^{n}}} \exp \left(-\frac{|\boldsymbol{x}|^{2}}{2}\right)
$$

It is a vector of independent random normalized Gaussian variables.

Limit theorems

- Law of Large Numbers.

Let $\left(X_{n}\right)_{n \geq 0}$ be independent and identically distributed (i.i.d.) random variables. If $\mathbb{E}\left[\left|X_{1}\right|\right]<\infty$, then

$$
\bar{X}_{n}=\frac{1}{n}\left(X_{1}+X_{2}+\ldots+X_{n}\right) \xrightarrow{n \rightarrow \infty} m \text { almost surely, with } m=\mathbb{E}\left[X_{1}\right]
$$

"The empirical mean converges to the statistical mean".

- Central Limit Theorem. Fluctuations theory.

Let $\left(X_{n}\right)_{n \geq 0}$ be i.i.d. random variables. If $\mathbb{E}\left[X_{1}^{2}\right]<\infty$, then

$$
\sqrt{n}\left(\bar{X}_{n}-m\right)=\sqrt{n}\left(\frac{1}{n}\left(X_{1}+X_{2}+\ldots+X_{n}\right)-m\right) \xrightarrow{n \rightarrow \infty} \mathcal{N}\left(0, \sigma^{2}\right) \text { in law }
$$

where $\left\{\begin{array}{l}m=\mathbb{E}\left[X_{1}\right] \\ \sigma^{2}=\mathbb{E}\left[X_{1}^{2}\right]-\mathbb{E}\left[X_{1}\right]^{2}=\mathbb{E}\left[\left(X_{1}-\mathbb{E}\left[X_{1}\right]\right)^{2}\right]\end{array}\right.$
"For large n, the error $\bar{X}_{n}-m$ obeys the Gaussian distribution $\mathcal{N}\left(0, \sigma^{2} / n\right)$."

Stochastic processes

Toy model

Let $F(z) \in \mathbb{R}$ be the stepwise constant random process

$$
F(z)=\sum_{i=1}^{\infty} F_{i} \mathbf{1}_{[i-1, i)}(z)
$$

where F_{i} independent random variables $\mathbb{E}\left[F_{i}\right]=\bar{F}$ and $\mathbb{E}\left[\left(F_{i}-\bar{F}\right)^{2}\right]=\sigma^{2}$.

Here F_{i} are independent with uniform distribution over $(0,1)$.

Random process

- Random variable $X=$ random number.

A realization of the random variable $=$ a real number.
Distribution of X characterized by moments of the form $\mathbb{E}[\phi(X)]$ where $\phi \in \mathcal{C}_{b}(\mathbb{R}, \mathbb{R})$.

- Stochastic process $(\mu(\boldsymbol{x}))_{\boldsymbol{x} \in \mathbb{R}^{d}}=$ random function.

A realization of the process $=$ a function from \mathbb{R}^{d} to \mathbb{R}.
Distribution of $(\mu(\boldsymbol{x}))_{\boldsymbol{x} \in \mathbb{R}^{d}}$ characterized by moments of the form
$\mathbb{E}\left[\phi\left(\mu\left(\boldsymbol{x}_{1}\right), \ldots, \mu\left(\boldsymbol{x}_{n}\right)\right)\right]$, for any $n \in \mathbb{N}^{*}, \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n} \in \mathbb{R}^{d}, \phi \in \mathcal{C}_{b}\left(\mathbb{R}^{n}, \mathbb{R}\right)$.
Example: Gaussian process.

Gaussian process

- Gaussian process $(\mu(\boldsymbol{x}))_{\boldsymbol{x} \in \mathbb{R}^{d}}$ characterized by its first two moments $m\left(\boldsymbol{x}_{1}\right)=\mathbb{E}\left[\mu\left(\boldsymbol{x}_{1}\right)\right]$ and $R\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)=\mathbb{E}\left[\mu\left(\boldsymbol{x}_{1}\right) \mu\left(\boldsymbol{x}_{2}\right)\right]$.
Any linear combination $\mu_{\lambda}=\sum_{i=1}^{n} \lambda_{i} \mu\left(\boldsymbol{x}_{i}\right)$ has Gaussian distribution $\mathcal{N}\left(m_{\lambda}, \sigma_{\lambda}^{2}\right)$ with

$$
m_{\lambda}=\sum_{i=1}^{n} \lambda_{i} \mathbb{E}\left[\mu\left(\boldsymbol{x}_{i}\right)\right] \quad \text { and } \quad \sigma_{\lambda}^{2}=\sum_{i, j=1}^{n} \lambda_{i} \lambda_{j} \mathbb{E}\left[\mu\left(\boldsymbol{x}_{i}\right) \mu\left(\boldsymbol{x}_{j}\right)\right]-m_{\lambda}^{2}
$$

- Simulation: in order to simulate $\left(\mu\left(\boldsymbol{x}_{1}\right), \ldots, \mu\left(\boldsymbol{x}_{n}\right)\right)$:
- evaluate the mean vector $M_{i}=\mathbb{E}\left[\mu\left(\boldsymbol{x}_{i}\right)\right]$ and the covariance matrix
$C_{i j}=\mathbb{E}\left[\mu\left(\boldsymbol{x}_{i}\right) \mu\left(\boldsymbol{x}_{j}\right)\right]-\mathbb{E}\left[\mu\left(\boldsymbol{x}_{i}\right)\right] \mathbb{E}\left[\mu\left(\boldsymbol{x}_{j}\right)\right]$.
- generate a random vector $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)$ of n independent Gaussian random variables with mean 0 and variance 1 .
- compute $\boldsymbol{Y}=\boldsymbol{M}+\mathbf{C}^{1 / 2} \boldsymbol{X}$. The vector \boldsymbol{Y} has the distribution of $\left(\mu\left(\boldsymbol{x}_{1}\right), \ldots, \mu\left(\boldsymbol{x}_{n}\right)\right)$. Note: the computation of the square root is expensive (use Cholesky method).

Brownian motion

- Brownian motion $\left(W_{z}\right)_{z \geq 0}$ (starting from 0$)=$ real Gaussian process with mean 0 and covariance function

$$
\mathbb{E}\left[W_{z} W_{z^{\prime}}\right]=z \wedge z^{\prime}
$$

The realizations of the Brownian motion are continuous but not differentiable.
The increments of the Brownian motion are independent: if $z_{n} \geq z_{n-1} \geq \cdots \geq z_{1} \geq z_{0}=0$, then ($W_{z_{n}}-W_{z_{n-1}}, \ldots, W_{z_{2}}-W_{z_{1}}, W_{z_{1}}$) are independent Gaussian random variables with mean 0 and variance

$$
\mathbb{E}\left[\left(W_{z_{j}}-W_{z_{j-1}}\right)^{2}\right]=z_{j}-z_{j-1}
$$

- Simulation: in order to simulate $\left(W_{h}, W_{2 h}, \ldots, W_{n h}\right)$:
- evaluate the covaraince matrix $\mathbf{C}=\left(C_{j l}\right)_{j=, l=1, \ldots, n}$ with $C_{j l}=(j \wedge l) h$.
- generate a random vector $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)$ of n independent Gaussian random variables with mean 0 and variance 1 .
- compute $\boldsymbol{Y}=\mathbf{C}^{1 / 2} \boldsymbol{X}$.

The vector \boldsymbol{Y} has the distribution of $\left(W_{h}, W_{2 h}, \ldots, W_{n h}\right)$.

- Simulation: in order to simulate $\left(W_{h}, W_{2 h}, \ldots, W_{n h}\right)$:
- generate a random vector $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)^{T}$ of n independent Gaussian random variables with mean 0 and variance 1 .
- compute $Y_{j}=\sqrt{h} \sum_{i=1}^{j} X_{i}$.

The vector \boldsymbol{Y} has the distribution of $\left(W_{h}, W_{2 h}, \ldots, W_{n h}\right)^{T}$.

Stationary random process

- $(\mu(\boldsymbol{x}))_{\boldsymbol{x} \in \mathbb{R}^{d}}$ is stationary if $\left(\mu\left(\boldsymbol{x}+\boldsymbol{x}_{0}\right)\right)_{\boldsymbol{x} \in \mathbb{R}^{d}}$ has the same distribution as $(\mu(\boldsymbol{x}))_{\boldsymbol{x} \in \mathbb{R}^{d}}$ for any $\boldsymbol{x}_{0} \in \mathbb{R}^{d}$.
Sufficient and necessary condition:

$$
\mathbb{E}\left[\phi\left(\mu\left(\boldsymbol{x}_{1}\right), \ldots, \mu\left(\boldsymbol{x}_{n}\right)\right)\right]=\mathbb{E}\left[\phi\left(\mu\left(\boldsymbol{x}_{0}+\boldsymbol{x}_{1}\right), \ldots, \mu\left(\boldsymbol{x}_{0}+\boldsymbol{x}_{n}\right)\right)\right]
$$

for any $n, \boldsymbol{x}_{0}, \ldots, \boldsymbol{x}_{n} \in \mathbb{R}^{d}, \phi \in \mathcal{C}_{b}\left(\mathbb{R}^{n}, \mathbb{R}\right)$.

- Example: Gaussian process $\mu(\boldsymbol{x})$ with mean zero $\mathbb{E}[\mu(\boldsymbol{x})]=0 \forall \boldsymbol{x}$ and covariance function $\mathbb{E}\left[\mu\left(\boldsymbol{x}^{\prime}\right) \mu\left(\boldsymbol{x}^{\prime}+\boldsymbol{x}\right)\right]=c(\boldsymbol{x})$.
- Bochner's theorem: a function $c(\boldsymbol{x})$ is a covariance function of a stationary process if and only if its Fourier transform $\hat{c}(\boldsymbol{k})$ is nonnegative.

$$
\hat{c}(\boldsymbol{k})=\int_{\mathbb{R}^{d}} e^{i \boldsymbol{k} \cdot \boldsymbol{x}} c(\boldsymbol{x}) d \boldsymbol{x}
$$

- Spectral representation (of real-valued stationary Gaussian process):

$$
\mu(\boldsymbol{x})=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} e^{-i \boldsymbol{k} \cdot \boldsymbol{x}} \sqrt{\hat{c}(\boldsymbol{k})} \hat{n}_{\boldsymbol{k}} d \boldsymbol{k}
$$

with $\hat{n}_{\boldsymbol{k}}$ complex white noise, i.e.:
$\hat{n}_{\boldsymbol{k}}$ complex-valued, Gaussian, $\hat{n}_{-\boldsymbol{k}}=\overline{\hat{n}_{\boldsymbol{k}}}, \mathbb{E}\left[\hat{n}_{\boldsymbol{k}}\right]=0$, and $\mathbb{E}\left[\hat{n}_{\boldsymbol{k}} \overline{\hat{n}_{\boldsymbol{k}^{\prime}}}\right]=(2 \pi)^{d} \delta\left(\boldsymbol{k}-\boldsymbol{k}^{\prime}\right)$. (the representation is formal, one should use stochastic integrals $d \hat{W}_{\boldsymbol{k}}=\hat{n}_{\boldsymbol{k}} d \boldsymbol{k}$). We have $\hat{n}_{\boldsymbol{k}}=\int e^{i \boldsymbol{k} \cdot \boldsymbol{x}} n(\boldsymbol{x}) d \boldsymbol{x}$ where $n(\boldsymbol{x})$ is a real white noise, i.e.: $n(\boldsymbol{x})$ real-valued, Gaussian, $\mathbb{E}[n(\boldsymbol{x})]=0$, and $\mathbb{E}\left[n(\boldsymbol{x}) n\left(\boldsymbol{x}^{\prime}\right)\right]=\delta\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)$. (in 1D, formally, $n(x)=d W_{x} / d x$).

- Spectral representation (of real-valued stationary Gaussian process):

$$
\mu(\boldsymbol{x})=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} e^{-i \boldsymbol{k} \cdot \boldsymbol{x}} \sqrt{\hat{c}(\boldsymbol{k})} \hat{n}_{\boldsymbol{k}} d \boldsymbol{k}
$$

with $\hat{n}_{\boldsymbol{k}}$ complex white noise, i.e.:
$\hat{n}_{\boldsymbol{k}}$ complex-valued, Gaussian, $\hat{n}_{-\boldsymbol{k}}=\overline{\hat{n}_{\boldsymbol{k}}}, \mathbb{E}\left[\hat{n}_{\boldsymbol{k}}\right]=0$, and $\mathbb{E}\left[\hat{n}_{\boldsymbol{k}} \overline{\hat{n}_{\boldsymbol{k}^{\prime}}}\right]=(2 \pi)^{d} \delta\left(\boldsymbol{k}-\boldsymbol{k}^{\prime}\right)$.
(the representation is formal, one should use stochastic integrals $d \hat{W}_{\boldsymbol{k}}=\hat{n}_{\boldsymbol{k}} d \boldsymbol{k}$).
We have $\hat{n}_{\boldsymbol{k}}=\int e^{i \boldsymbol{k} \cdot \boldsymbol{x}} n(\boldsymbol{x}) d \boldsymbol{x}$ where $n(\boldsymbol{x})$ is a real white noise, i.e.:
$n(\boldsymbol{x})$ real-valued, Gaussian, $\mathbb{E}[n(\boldsymbol{x})]=0$, and $\mathbb{E}\left[n(\boldsymbol{x}) n\left(\boldsymbol{x}^{\prime}\right)\right]=\delta\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)$.
(in 1D, formally, $n(x)=d W_{x} / d x$).

- Simulation $(d=1)$: in order to simulate $\left(\mu\left(x_{1}\right), \ldots, \mu\left(x_{n}\right)\right), x_{j}=(j-1) h$:
- compute the covariance vector $\boldsymbol{C}=\left(c\left(x_{1}\right), \ldots, c\left(x_{n}\right)\right)$.
- generate a random vector $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)$ of n independent Gaussian random variables with mean 0 and variance 1 .
- filter with the square root of the Fourier transform of \boldsymbol{C} :

$$
\boldsymbol{Y}=\operatorname{IDFT}(\sqrt{\mathrm{DFT}(\boldsymbol{C})} \times \operatorname{DFT}(\boldsymbol{X}))
$$

$\hookrightarrow \boldsymbol{Y}$ is a realization of $\left(\mu\left(x_{1}\right), \ldots, \mu\left(x_{n}\right)\right)$ (in practice, use FFT and IFFT).

Random differential equations and ordinary differential equations

Goal: determine the limit $\lim _{\varepsilon \rightarrow 0} X^{\varepsilon}(z)$ where

$$
\frac{d X^{\varepsilon}}{d z}=F\left(\frac{z}{\varepsilon}\right)
$$

for a fairly general random process $(F(z))_{z \geq 0}$.

Method of averaging: Toy model

Let $X^{\varepsilon}(z) \in \mathbb{R}$ be the solution of

$$
\frac{d X^{\varepsilon}}{d z}=F\left(\frac{z}{\varepsilon}\right)
$$

with $F(z)=\sum_{i=1}^{\infty} F_{i} \mathbf{1}_{[i-1, i)}(z), F_{i}$ independent random variables $\mathbb{E}\left[F_{i}\right]=\bar{F}$ and $\mathbb{E}\left[\left(F_{i}-\bar{F}\right)^{2}\right]=\sigma^{2}$.
($z \mapsto t$, particle in a random velocity field)

$$
\varepsilon=0.2
$$

$$
\begin{aligned}
& X^{\varepsilon}(z)=\int_{0}^{z} F\left(\frac{s}{\varepsilon}\right) d s=\varepsilon \int_{0}^{\frac{z}{\varepsilon}} F(s) d s=\varepsilon\left(\sum_{i=1}^{\left[\frac{z}{\varepsilon}\right]} F_{i}\right)+\varepsilon \int_{\left[\frac{z}{\varepsilon}\right]}^{\frac{z}{\varepsilon}} F(s) d s \\
&=\varepsilon\left[\frac{z}{\varepsilon}\right] \times \frac{1}{\left[\frac{z}{\varepsilon}\right]}\left(\sum_{i=1}^{\left[\frac{z}{\varepsilon}\right]} F_{i}\right)+\varepsilon\left(\frac{z}{\varepsilon}-\left[\frac{z}{\varepsilon}\right]\right) F_{\left[\frac{z}{\varepsilon}\right]} \\
& \begin{array}{c}
\text { a.s. } \downarrow \\
z \rightarrow 0 \downarrow \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\mathbb{E}\left[F_{1}\right]=\bar{F} . \downarrow(L L N)
\end{array}
\end{aligned}
$$

Thus:

$$
X^{\varepsilon}(z) \xrightarrow{\varepsilon \rightarrow 0} \bar{X}(z), \quad \frac{d \bar{X}}{d z}=\bar{F} .
$$

Goal: determine the $\operatorname{limit} \lim _{\varepsilon \rightarrow 0} X^{\varepsilon}(z)$ where

$$
\frac{d X^{\varepsilon}}{d z}=F\left(\frac{z}{\varepsilon}\right)
$$

for a stationary random process $(F(z))_{z \geq 0}$.
The previous analysis can be extended provided

$$
\frac{1}{Z} \int_{0}^{Z} F(z) d z \xrightarrow{Z \rightarrow \infty} \bar{F}
$$

(i.e. F is ergodic)

Next goal: determine the limit $\lim _{\varepsilon \rightarrow 0} \boldsymbol{X}^{\varepsilon}(z)$ where

$$
\frac{d \boldsymbol{X}^{\varepsilon}}{d z}=\boldsymbol{F}\left(\frac{z}{\varepsilon}, \boldsymbol{X}^{\varepsilon}(z)\right)
$$

Method of averaging: Khasminskii theorem

$$
\frac{d \boldsymbol{X}^{\varepsilon}}{d z}=\boldsymbol{F}\left(\frac{z}{\varepsilon}, \boldsymbol{X}^{\varepsilon}\right), \quad \boldsymbol{X}^{\varepsilon}(0)=\boldsymbol{x}_{0}
$$

Assume:
$\boldsymbol{x} \mapsto \boldsymbol{F}(z, \boldsymbol{x})$ is Lipschitz,
$z \mapsto \boldsymbol{F}(z, \boldsymbol{x})$ is stationary and ergodic.
Define:

$$
\overline{\boldsymbol{F}}(\boldsymbol{x})=\mathbb{E}[\boldsymbol{F}(z, \boldsymbol{x})]
$$

Let $\overline{\boldsymbol{X}}$ be the solution of

$$
\frac{d \overline{\boldsymbol{X}}}{d z}=\overline{\boldsymbol{F}}(\overline{\boldsymbol{X}}), \quad \overline{\boldsymbol{X}}(0)=\boldsymbol{x}_{0}
$$

Theorem: for any $Z>0$,

$$
\sup _{z \in[0, Z]} \mathbb{E}\left[\left|\boldsymbol{X}^{\varepsilon}(z)-\overline{\boldsymbol{X}}(z)\right|\right] \xrightarrow{\varepsilon \rightarrow 0} 0
$$

Random differential equations and Brownian motion

Toy model

$$
\frac{d X^{\varepsilon}}{d z}=F\left(\frac{z}{\varepsilon}\right)
$$

with $F(z)=\sum_{i=1}^{\infty} F_{i} \mathbf{1}_{[i-1, i)}(z), F_{i}$ independent random variables $\mathbb{E}\left[F_{i}\right]=\bar{F}=0$ and $\mathbb{E}\left[\left(F_{i}-\bar{F}\right)^{2}\right]=\sigma^{2}$ 。

For any $z \in[0, Z]$, we have

$$
X^{\varepsilon}(z) \xrightarrow{\varepsilon \rightarrow 0} \bar{X}(z), \quad \frac{d \bar{X}}{d z}=\bar{F}=0 .
$$

No macroscopic evolution is noticeable.
\rightarrow it is necessary to look at larger z to get an effective behavior

$$
\begin{gathered}
z \mapsto \frac{z}{\varepsilon}, \quad \tilde{X}^{\varepsilon}(z)=X^{\varepsilon}\left(\frac{z}{\varepsilon}\right) \\
\frac{d \tilde{X}^{\varepsilon}}{d z}=\frac{1}{\varepsilon} F\left(\frac{z}{\varepsilon^{2}}\right)
\end{gathered}
$$

Diffusion-approximation: Toy model

$$
\frac{d X^{\varepsilon}}{d z}=\frac{1}{\varepsilon} F\left(\frac{z}{\varepsilon^{2}}\right)
$$

with $F(z)=\sum_{i=1}^{\infty} F_{i} \mathbf{1}_{[i-1, i)}(z), F_{i}$ independent random variables $\mathbb{E}\left[F_{i}\right]=0$ and $\mathbb{E}\left[F_{i}^{2}\right]=\sigma^{2}$.

$$
\begin{gathered}
X^{\varepsilon}(z)=\int_{0}^{z} \frac{1}{\varepsilon} F\left(\frac{s}{\varepsilon^{2}}\right) d s=\varepsilon \int_{0}^{\frac{z}{\varepsilon^{2}}} F(s) d s=\varepsilon\left(\sum_{i=1}^{\left[\frac{z}{\varepsilon^{2}}\right]} F_{i}\right)+\varepsilon \int_{\left[\frac{z}{\varepsilon^{2}}\right]}^{\frac{z}{\varepsilon^{2}}} F(s) d s \\
=\varepsilon \sqrt{\left[\frac{z}{\varepsilon^{2}}\right]} \times \frac{1}{\sqrt{\left[\frac{z}{\varepsilon^{2}}\right]}}\left(\sum_{i=1}^{\left[\frac{z}{\varepsilon^{2}}\right]} F_{i}\right)+\varepsilon\left(\frac{z}{\varepsilon^{2}}-\left[\frac{z}{\varepsilon^{2}}\right]\right) F_{\left[\frac{z}{\varepsilon^{2}}\right]} \\
\varepsilon \rightarrow 0 \downarrow \\
\sqrt{z} \\
\operatorname{law} \downarrow(C L T) \\
\mathcal{N}\left(0, \sigma^{2}\right)
\end{gathered}
$$

Thus: $X^{\varepsilon}(z)$ converges in distribution as $\varepsilon \rightarrow 0$ to $\bar{X}(z)$ whose distribution is $\mathcal{N}\left(0, \sigma^{2} z\right)$.
With some more work: The process $\left(X^{\varepsilon}(z)\right)_{z \geq 0}$ converges in distribution to a Brownian motion $\left(\sigma W_{z}\right)_{z \geq 0}$.

Diffusion processes and stochastic differential equations

Example: Brownian motion

W_{z} (issued from 0): zero-mean Gaussian process with covariance $\mathbb{E}\left[W_{z} W_{z^{\prime}}\right]=z \wedge z^{\prime}$

Its increments are independent and:

$$
\mathbb{E}\left[\left(W_{z+h}-W_{z}\right)^{2}\right]=h
$$

Let ϕ be a bounded real function:

$$
\begin{aligned}
u(z, x) & :=\mathbb{E}\left[\phi\left(x+W_{z}\right)\right]=\int \frac{1}{\sqrt{2 \pi z}} \exp \left(-\frac{w^{2}}{2 z}\right) \phi(x+w) d w \\
& =\int \underbrace{\frac{1}{\sqrt{2 \pi z}} \exp \left(-\frac{(y-x)^{2}}{2 z}\right)}_{p_{z}(x, y)} \phi(y) d y
\end{aligned}
$$

For x, z fixed, $y \mapsto p_{z}(x, y)$ is the pdf of the random variable $x+W_{z}$. $p_{z}(x, y)$ is the kernel of the heat operator.

Example: Brownian motion

- The moment

$$
u(z, x):=\mathbb{E}\left[\phi\left(x+W_{z}\right)\right]=\int p_{z}(x, y) \phi(y) d y, \quad p_{z}(x, y)=\frac{1}{\sqrt{2 \pi z}} \exp \left(-\frac{(y-x)^{2}}{2 z}\right)
$$

satisfies the (backward) Kolmogorov equation

$$
\frac{\partial u}{\partial z}=\frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad u(z=0, x)=\phi(x)
$$

Reciprocal: The partial differential equation

$$
\frac{\partial u}{\partial z}=\frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad u(z=0, x)=\phi(x)
$$

has the probabilistic representation: $u(z, x)=\mathbb{E}\left[\phi\left(x+W_{z}\right)\right]$.
The reciprocal is useful for Monte Carlo simulation techniques for solving PDEs.

- The pdf $y \mapsto p_{z}(x, y)$ of $x+W_{z}$ satisfies the Fokker-Planck (Kolmogorov forward) equation as a function of z and y :

$$
\frac{\partial p_{z}}{\partial z}=\frac{1}{2} \frac{\partial^{2} p_{z}}{\partial y^{2}}, \quad p_{z=0}(x, y)=\delta(y-x)
$$

Stochastic differential equations

Let $X(z)$ be the solution of the one-dimensional stochastic differential equation

$$
X(z)=x+\int_{0}^{z} \sigma(X(s)) d W_{s}+\int_{0}^{z} b(X(s)) d s
$$

Existence and uniqueness ensured provided b and σ are \mathcal{C}^{1} with bounded derivatives. $X(z)$ is continuous a.s., is squared integrable, is adapted (depends on $\left(W_{s}\right)_{0 \leq s \leq z}$).

- Itô integral

$$
\int_{0}^{z} \phi(X(s)) d W_{s}=\lim _{\Delta z \rightarrow 0} \sum_{k} \phi\left(X\left(z_{k}\right)\right)\left(W_{z_{k+1}}-W_{z_{k}}\right), \quad 0=z_{0}<z_{1}<\cdots<z_{n}=z
$$

Good properties: martingale (mean zero), Itô's isometry:

$$
\mathbb{E}\left[\left(\int_{0}^{z} \phi(X(s)) d W_{s}\right)^{2}\right]=\int_{0}^{z} \mathbb{E}\left[\phi(X(s))^{2}\right] d s
$$

- Stratonovich integral:

$$
\int_{0}^{z} \phi(X(s)) \circ d W_{s}=\lim _{\Delta z \rightarrow 0} \sum_{k} \frac{\phi\left(X\left(z_{k+1}\right)\right)+\phi\left(X\left(z_{k}\right)\right)}{2}\left(W_{z_{k+1}}-W_{z_{k}}\right)
$$

- Relation:

$$
\int_{0}^{z} \phi(X(s)) \circ d W_{s}=\int_{0}^{z} \phi(X(s)) d W_{s}+\frac{1}{2} \int_{0}^{z} \sigma(X(s)) \phi^{\prime}(X(s)) d s
$$

$$
X(z)=x+\int_{0}^{z} \sigma(X(s)) d W_{s}+\int_{0}^{z} b(X(s)) d s
$$

- Itô's formula:

$$
\begin{aligned}
\phi(X(z))= & \phi(x)+\int_{0}^{z} \sigma(X(s)) \phi^{\prime}(X(s)) d W_{s}+\int_{0}^{z} b(X(s)) \phi^{\prime}(X(s)) d s \\
& +\frac{1}{2} \int_{0}^{z} \sigma(X(s))^{2} \phi^{\prime \prime}(X(s)) d s
\end{aligned}
$$

- $X(z)$ is a diffusion process with the generator $Q=\frac{1}{2} \sigma^{2}(x) \frac{\partial^{2}}{\partial x^{2}}+b(x) \frac{\partial}{\partial x}$
- The moment $u(z, x):=\mathbb{E}[\phi(X(z)) \mid X(0)=x]$ satisfies the Kolmogorov equation:

$$
\frac{\partial u}{\partial z}=Q u, \quad u(z=0, x)=\phi(x)
$$

- The pdf $y \mapsto p_{z}(x, y)$ of $X(z)$ (starting from $X(0)=x$) satisfies the Fokker-Planck equation as a function of z and y :

$$
\frac{\partial p_{z}}{\partial z}=Q^{*} p_{z}, \quad p_{z=0}(x, y)=\delta(x-y)
$$

where Q^{*} is the adjoint operator of Q :

$$
Q^{*} p(y)=\frac{1}{2} \frac{\partial^{2}}{\partial y^{2}}\left(\sigma^{2}(y) p(y)\right)-\frac{\partial}{\partial y}(b(y) p(y))
$$

Diffusion processes

- Let σ and b be $\mathcal{C}^{1}(\mathbb{R}, \mathbb{R})$ functions with bounded derivatives.

Let W_{z} be a Brownian motion.
The solution $X(z)$ of the 1 D stochastic differential equation:

$$
d X(z)=\sigma(X(z)) d W_{z}+b(X(z)) d z
$$

is a diffusion process with the generator

$$
Q=\frac{1}{2} \sigma^{2}(x) \frac{\partial^{2}}{\partial x^{2}}+b(x) \frac{\partial}{\partial x}
$$

- Let $\boldsymbol{\sigma} \in \mathcal{C}^{1}\left(\mathbb{R}^{n}, \mathbb{R}^{n \times m}\right)$ and $\boldsymbol{b} \in \mathcal{C}^{1}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ with bounded derivatives.

Let \boldsymbol{W}_{z} be a m-dimensional Brownian motion.
The solution $\boldsymbol{X}(z)$ of the stochastic differential equation:

$$
d \boldsymbol{X}(z)=\boldsymbol{\sigma}(\boldsymbol{X}(z)) d \boldsymbol{W}_{z}+\boldsymbol{b}(\boldsymbol{X}(z)) d z
$$

is a diffusion process with the generator

$$
Q=\frac{1}{2} \sum_{i, j=1}^{n} a_{i j}(\boldsymbol{x}) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{n} b_{i}(\boldsymbol{x}) \frac{\partial}{\partial x_{i}}
$$

with $\mathbf{a}=\boldsymbol{\sigma} \boldsymbol{\sigma}^{T}$.

Random differential equations and stochastic differential equations

Next goal: determine the limit $\lim _{\varepsilon \rightarrow 0} X^{\varepsilon}(z)$ where

$$
\frac{d X^{\varepsilon}}{d z}=\frac{1}{\varepsilon} F\left(\frac{z}{\varepsilon^{2}}\right)
$$

for a fairly general process $(F(z))_{z \geq 0}$ with $\mathbb{E}[F(z)]=0$.

Write

$$
X^{\varepsilon}(z)=\frac{1}{\varepsilon} \int_{0}^{z} F\left(\frac{s}{\varepsilon^{2}}\right) d s=\varepsilon \sqrt{\frac{z}{\varepsilon^{2}}} \times \frac{1}{\sqrt{\frac{z}{\varepsilon^{2}}}} \int_{0}^{\frac{z}{\varepsilon^{2}}} F(s) d s
$$

We know that

$$
\begin{aligned}
\mathbb{E}\left[\frac{1}{\sqrt{\frac{z}{\varepsilon^{2}}}} \int_{0}^{\frac{z}{\varepsilon^{2}}} F(s) d s\right] & =0 \\
\lim _{\varepsilon \rightarrow 0} \mathbb{E}\left[\left(\frac{1}{\sqrt{\frac{z}{\varepsilon^{2}}}} \int_{0}^{\frac{z}{\varepsilon^{2}}} F(s) d s\right)^{2}\right] & =\lim _{Z \rightarrow \infty} Z \mathbb{E}\left[\left(\frac{1}{Z} \int_{0}^{Z} F(s) d s\right)^{2}\right] \\
& =2 \int_{0}^{\infty} \mathbb{E}[F(0) F(u)] d u,
\end{aligned}
$$

The Gaussian property of the limit of $X^{\varepsilon}(z)$ is ensured by an invariance principle. Conclusion:

$$
\frac{1}{\varepsilon} \int_{0}^{z} F\left(\frac{s}{\varepsilon^{2}}\right) d s \xrightarrow{\varepsilon \rightarrow 0} \sqrt{2} \sigma W_{z}
$$

in distribution, where $\left(W_{z}\right)_{z \geq 0}$ is a Brownian motion and

$$
\sigma^{2}=\int_{0}^{\infty} \mathbb{E}[F(0) F(u)] d u
$$

Next goal: determine the limit $\lim _{\varepsilon \rightarrow 0} \boldsymbol{X}^{\varepsilon}(z)$ where

$$
\frac{d \boldsymbol{X}^{\varepsilon}}{d z}=\frac{1}{\varepsilon} \boldsymbol{F}\left(\frac{z}{\varepsilon^{2}}, \boldsymbol{X}^{\varepsilon}(z)\right)
$$

when

$$
\mathbb{E}[\boldsymbol{F}(z, \boldsymbol{x})]=0 \quad \forall \boldsymbol{x}
$$

Diffusion-approximation

$$
\frac{d \boldsymbol{X}^{\varepsilon}}{d z}(z)=\frac{1}{\varepsilon} \boldsymbol{F}\left(\frac{z}{\varepsilon^{2}}, \boldsymbol{X}^{\varepsilon}(z)\right), \quad \boldsymbol{X}^{\varepsilon}(0)=\boldsymbol{x}_{0} \in \mathbb{R}^{d} .
$$

\boldsymbol{F} stationary, centered, and ergodic (in z): $\mathbb{E}[\boldsymbol{F}(z, \boldsymbol{x})]=\mathbf{0}$.
Theorem: The processes $\left(\boldsymbol{X}^{\varepsilon}(z)\right)_{z \geq 0}$ converge in distribution in $\mathcal{C}^{0}\left([0, \infty), \mathbb{R}^{d}\right)$ to the diffusion process \boldsymbol{X} with the generator \mathcal{L} :

$$
\mathcal{L}=\sum_{i, j=1}^{d} a_{i j}(\boldsymbol{x}) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+\sum_{j=1}^{d} b_{j}(\boldsymbol{x}) \frac{\partial}{\partial x_{j}}
$$

with

$$
\begin{aligned}
a_{i j}(\boldsymbol{x}) & =\int_{0}^{\infty} \mathbb{E}\left[F_{i}(0, \boldsymbol{x}) F_{j}(u, \boldsymbol{x})\right] d u \\
b_{j}(\boldsymbol{x}) & =\sum_{i=1}^{d} \int_{0}^{\infty} \mathbb{E}\left[F_{i}(0, \boldsymbol{x}) \partial_{x_{i}} F_{j}(u, \boldsymbol{x})\right] d u
\end{aligned}
$$

It means that the pdf $p_{z}(\boldsymbol{x})$ of $\boldsymbol{X}(z)$ satisfies:

$$
\frac{\partial p_{z}}{\partial z}=\sum_{i, j=1}^{d} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}\left(a_{i j}(\boldsymbol{x}) p_{z}\right)-\sum_{j=1}^{d} \frac{\partial}{\partial x_{j}}\left(b_{j}(\boldsymbol{x}) p_{z}\right), \quad p_{z=0}(\boldsymbol{x})=\delta\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)
$$

Diffusion-approximation - the one-dimensional case

$$
\frac{d X^{\varepsilon}}{d z}(z)=\frac{1}{\varepsilon} f\left(\frac{z}{\varepsilon^{2}}\right) h\left(X^{\varepsilon}(z)\right), \quad X^{\varepsilon}(0)=x_{0} \in \mathbb{R}
$$

f stationary, centered, and ergodic: $\mathbb{E}[f(z)]=0$.
Theorem: The processes $\left(X^{\varepsilon}(z)\right)_{z \geq 0}$ converge in distribution in $\mathcal{C}^{0}([0, \infty), \mathbb{R})$ to the diffusion process X with the generator \mathcal{L} :

$$
\mathcal{L}=a(x) \frac{\partial^{2}}{\partial x^{2}}+b(x) \frac{\partial}{\partial x}
$$

with

$$
a(x)=\frac{1}{2} \sigma^{2} h^{2}(x), \quad b(x)=\frac{1}{2} \sigma^{2} h(x) h^{\prime}(x), \quad \sigma^{2}=2 \int_{0}^{\infty} \mathbb{E}[f(0) f(u)] d u
$$

It means that $X(z)$ is the solution of the SDE

$$
d X(z)=\sigma h(X(z)) d W_{z}+b(X(z)) d z
$$

or

$$
d X(z)=\sigma h(X(z)) \circ d W_{z}
$$

Remember that $\int_{0}^{z} \frac{1}{\varepsilon} f\left(\frac{s}{\varepsilon^{2}}\right) d s$ converges in distribution to σW_{z}.
\hookrightarrow the "natural" integral is Stratonovich.

