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A quick introduction to probability theory
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Probability space (Ω,A,P)

• Goal: Model a random experiment.

Example 1: toss a coin.

Example 2: pick a number between 0 and 1 (matlab function rand).

• Ω: fundamental set (set of all possible realisations).

→֒ A realization ω is an element of Ω.

Example 1: Ω = {H,T}.
Example 2: Ω = [0, 1].

• A: σ-algebra on Ω (set of events).

Example 1: A = P(Ω);

an event: the result is head, A = {H}.
Example 2: A = B([0, 1]);

an event: the number is larger than 1/2, A = [1/2, 1].

• P: probability (gives the probability of events): function from A to [0, 1] such that:

- P(Ω) = 1,

- if (Aj)j≥1 is a numerable family of disjoint sets of A then P(∪jAj) =
∑

j P(Aj).

Example 1: P({H}) = P({T}) = 1
2
.

Example 2: P([a, b]) = b− a for all 0 ≤ a ≤ b ≤ 1.

ESNT December 6, 2011



Random variable

• Random variable X = random number.

Application X : Ω → R.

A realization X(ω) of a random variable is a real number.

• The distribution of a random variable is characterized by moments of the form

E[φ(X)] for φ ∈ Cb(R,R):

E[φ(X)] =

∫

Ω

φ(X(ω))P(dω)

• The distribution of a (continuous) random variable is characterized by the

probability density function (pdf) pX :

E[φ(X)] =

∫ ∞

−∞

φ(x)pX(x)dx

• Usual pdfs:
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• The mean (expectation) of a random variable X with pdf pX(x) is

E[X] =

∫ ∞

−∞

xpX(x)dx

The variance of a random variable X with pdf p(x) is

Var(X) = E
[
(X − E[X])2

]
= E[X2]− E[X]2 =

∫ ∞

−∞

x2pX(x)dx−
(∫ ∞

−∞

xpX(x)dx
)2

The variance measures the dispersion of the random variable (around its mean).

• A standard Gaussian random variable X has the pdf

pX(x) =
1√
2π

exp
(

− x2

2

)

Its mean is E[X] = 0 and its variance is Var(X) = 1.

We write X ∼ N (0, 1).

• A Gaussian random variable X with mean µ and variance σ2 has the pdf

pX(x) =
1√
2πσ

exp
(

− (x− µ)2

2σ2

)

We write X ∼ N (µ, σ2).
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Random vector

• n-dimensional random vector X = collection of n random variables (X1, . . . ,Xn).

Application X : Ω → R
n.

A realization X(ω) of a random vector is a vector in R
n.

The distribution of a (continuous) random vector is characterized by the pdf pX :

E[φ(X)] =

∫

Rn

φ(x)pX(x)dx, ∀φ ∈ Cb(R
n,R)

The vector X = (X1, . . . , Xn) is independent if

pX(x) =

n∏

j=1

pXj
(xj)

or equivalently

E
[
φ1(X1) · · ·φn(Xn)

]
= E

[
φ1(X1)

]
· · ·E

[
φn(Xn)

]
, ∀φ1, . . . , φn ∈ Cb(R,R)

Example: a normalized Gaussian random vector X has the Gaussian pdf

pX(x) =
1

√
(2π)n

exp
(

− |x|2
2

)

It is a vector of independent random normalized Gaussian variables.
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Limit theorems

• Law of Large Numbers.

Let (Xn)n≥0 be independent and identically distributed (i.i.d.) random variables. If

E[|X1|] < ∞, then

X̄n =
1

n
(X1 +X2 + ...+Xn)

n→∞−→ m almost surely, with m = E[X1]

”The empirical mean converges to the statistical mean”.

• Central Limit Theorem. Fluctuations theory.

Let (Xn)n≥0 be i.i.d. random variables. If E[X2
1 ] < ∞, then

√
n
(
X̄n −m

)
=

√
n

(
1

n
(X1 +X2 + ...+Xn)−m

)
n→∞−→ N (0, σ2) in law

where







m = E[X1]

σ2 = E[X2
1 ]− E[X1]

2 = E[(X1 − E[X1])
2]

”For large n, the error X̄n −m obeys the Gaussian distribution N (0, σ2/n).”
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Stochastic processes
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Toy model

Let F (z) ∈ R be the stepwise constant random process

F (z) =

∞∑

i=1

Fi1[i−1,i)(z)

where Fi independent random variables E[Fi] = F̄ and E[(Fi − F̄ )2] = σ2.
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Here Fi are independent with uniform distribution over (0, 1).
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Random process

• Random variable X = random number.

A realization of the random variable = a real number.

Distribution of X characterized by moments of the form E[φ(X)] where φ ∈ Cb(R,R).

• Stochastic process (µ(x))x∈Rd = random function.

A realization of the process = a function from R
d to R.

Distribution of (µ(x))x∈Rd characterized by moments of the form

E[φ(µ(x1), . . . , µ(xn))], for any n ∈ N
∗, x1, . . . ,xn ∈ R

d, φ ∈ Cb(R
n,R).

Example: Gaussian process.
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Gaussian process

• Gaussian process (µ(x))x∈Rd characterized by its first two moments

m(x1) = E[µ(x1)] and R(x1,x2) = E[µ(x1)µ(x2)].

Any linear combination µλ =
∑n

i=1 λiµ(xi) has Gaussian distribution N (mλ, σ
2
λ) with

mλ =

n∑

i=1

λiE[µ(xi)] and σ2
λ =

n∑

i,j=1

λiλjE[µ(xi)µ(xj)]−m2
λ

• Simulation: in order to simulate (µ(x1), . . . , µ(xn)):

- evaluate the mean vector Mi = E[µ(xi)] and the covariance matrix

Cij = E[µ(xi)µ(xj)]− E[µ(xi)]E[µ(xj)].

- generate a random vector X = (X1, . . . , Xn) of n independent Gaussian random

variables with mean 0 and variance 1.

- compute Y = M +C1/2
X. The vector Y has the distribution of (µ(x1), . . . , µ(xn)).

Note: the computation of the square root is expensive (use Cholesky method).
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Brownian motion

• Brownian motion (Wz)z≥0 (starting from 0)= real Gaussian process with mean 0

and covariance function

E[WzWz′ ] = z ∧ z′

The realizations of the Brownian motion are continuous but not differentiable.

The increments of the Brownian motion are independent:

if zn ≥ zn−1 ≥ · · · ≥ z1 ≥ z0 = 0, then (Wzn −Wzn−1
, . . . ,Wz2 −Wz1 ,Wz1) are

independent Gaussian random variables with mean 0 and variance

E
[
(Wzj −Wzj−1

)2
]
= zj − zj−1

• Simulation: in order to simulate (Wh,W2h, ...,Wnh):

- evaluate the covaraince matrix C = (Cjl)j=,l=1,...,n with Cjl = (j ∧ l)h.

- generate a random vector X = (X1, ..., Xn) of n independent Gaussian random

variables with mean 0 and variance 1.

- compute Y = C1/2
X.

The vector Y has the distribution of (Wh,W2h, ...,Wnh).
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• Simulation: in order to simulate (Wh,W2h, . . . ,Wnh) :

- generate a random vector X = (X1, . . . , Xn)
T of n independent Gaussian random

variables with mean 0 and variance 1.

- compute Yj =
√
h
∑j

i=1 Xi.

The vector Y has the distribution of (Wh,W2h, . . . ,Wnh)
T .
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Stationary random process

• (µ(x))x∈Rd is stationary if (µ(x+ x0))x∈Rd has the same distribution as (µ(x))x∈Rd

for any x0 ∈ R
d.

Sufficient and necessary condition:

E
[
φ(µ(x1), . . . , µ(xn))

]
= E

[
φ(µ(x0 + x1), . . . , µ(x0 + xn))]

for any n, x0, . . . ,xn ∈ R
d, φ ∈ Cb(R

n,R).

• Example: Gaussian process µ(x) with mean zero E[µ(x)] = 0 ∀x and covariance

function E[µ(x′)µ(x′ + x)] = c(x).

• Bochner’s theorem: a function c(x) is a covariance function of a stationary process

if and only if its Fourier transform ĉ(k) is nonnegative.

ĉ(k) =

∫

Rd

eik·xc(x)dx
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• Spectral representation (of real-valued stationary Gaussian process):

µ(x) =
1

(2π)d

∫

Rd

e−ik·x
√

ĉ(k)n̂kdk

with n̂k complex white noise, i.e.:

n̂k complex-valued, Gaussian, n̂−k = n̂k, E [n̂k] = 0, and E
[
n̂kn̂k′

]
= (2π)dδ(k− k

′).

(the representation is formal, one should use stochastic integrals dŴk = n̂kdk).

We have n̂k =
∫
eik·xn(x)dx where n(x) is a real white noise, i.e.:

n(x) real-valued, Gaussian, E [n(x)] = 0, and E [n(x)n(x′)] = δ(x− x
′).

(in 1D, formally, n(x) = dWx/dx).
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• Spectral representation (of real-valued stationary Gaussian process):

µ(x) =
1

(2π)d

∫

Rd

e−ik·x
√

ĉ(k)n̂kdk

with n̂k complex white noise, i.e.:

n̂k complex-valued, Gaussian, n̂−k = n̂k, E [n̂k] = 0, and E
[
n̂kn̂k′

]
= (2π)dδ(k− k

′).

(the representation is formal, one should use stochastic integrals dŴk = n̂kdk).

We have n̂k =
∫
eik·xn(x)dx where n(x) is a real white noise, i.e.:

n(x) real-valued, Gaussian, E [n(x)] = 0, and E [n(x)n(x′)] = δ(x− x
′).

(in 1D, formally, n(x) = dWx/dx).

• Simulation (d = 1): in order to simulate (µ(x1), . . . , µ(xn)), xj = (j − 1)h:

- compute the covariance vector C = (c(x1), . . . , c(xn)).

- generate a random vector X = (X1, . . . , Xn) of n independent Gaussian random

variables with mean 0 and variance 1.

- filter with the square root of the Fourier transform of C:

Y = IDFT
(√

DFT(C)×DFT(X)
)

→֒ Y is a realization of (µ(x1), . . . , µ(xn)) (in practice, use FFT and IFFT).
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Random differential equations and ordinary differential equations
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Goal: determine the limit limε→0 X
ε(z) where

dXε

dz
= F

(z

ε

)

for a fairly general random process (F (z))z≥0.
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Method of averaging: Toy model

Let Xε(z) ∈ R be the solution of

dXε

dz
= F (

z

ε
)

with F (z) =
∑∞

i=1 Fi1[i−1,i)(z), Fi independent random variables E[Fi] = F̄ and

E[(Fi − F̄ )2] = σ2.

(z 7→ t, particle in a random velocity field)
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Xε(z) =

∫ z

0

F
(s

ε

)
ds = ε

∫ z
ε

0

F (s)ds = ε






[ zε ]∑

i=1

Fi




+ ε

∫ z
ε

[ zε ]
F (s)ds

= ε
[z

ε

]

ε → 0 ↓
z

× 1
[
z
ε

]






[ zε ]∑

i=1

Fi






a.s. ↓ (LLN)

E[F1] = F̄

+ ε
(z

ε
−

[z

ε

])

F[ zε ]

a.s. ↓
0

Thus:

Xε(z)
ε→0−→ X̄(z),

dX̄

dz
= F̄ .
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Goal: determine the limit limε→0 X
ε(z) where

dXε

dz
= F

(z

ε

)

for a stationary random process (F (z))z≥0.

The previous analysis can be extended provided

1

Z

∫ Z

0

F (z)dz
Z→∞−→ F̄

(i.e. F is ergodic)
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Next goal: determine the limit limε→0 X
ε(z) where

dXε

dz
= F

(z

ε
,Xε(z)

)
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Method of averaging: Khasminskii theorem

dXε

dz
= F (

z

ε
,Xε), X

ε(0) = x0

Assume:

x 7→ F (z,x) is Lipschitz,

z 7→ F (z,x) is stationary and ergodic.

Define:

F̄ (x) = E[F (z,x)]

Let X̄ be the solution of
dX̄

dz
= F̄ (X̄), X̄(0) = x0

Theorem: for any Z > 0,

sup
z∈[0,Z]

E
[
|Xε(z)− X̄(z)|

] ε→0−→ 0

[1] R. Z. Khasminskii, Theory Probab. Appl. 11 (1966), 211-228.



Random differential equations and Brownian motion
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Toy model

dXε

dz
= F (

z

ε
)

with F (z) =
∑∞

i=1 Fi1[i−1,i)(z), Fi independent random variables E[Fi] = F̄ = 0 and

E[(Fi − F̄ )2] = σ2.
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For any z ∈ [0, Z], we have

Xε(z)
ε→0−→ X̄(z),

dX̄

dz
= F̄ = 0.

No macroscopic evolution is noticeable.

→ it is necessary to look at larger z to get an effective behavior

z 7→ z

ε
, X̃ε(z) = Xε(

z

ε
)

dX̃ε

dz
=

1

ε
F (

z

ε2
)
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Diffusion-approximation: Toy model

dXε

dz
=

1

ε
F (

z

ε2
)

with F (z) =
∑∞

i=1 Fi1[i−1,i)(z), Fi independent random variables E[Fi] = 0 and

E[F 2
i ] = σ2.
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Xε(z) =

∫ z

0

1

ε
F (

s

ε2
)ds = ε

∫ z

ε2

0

F (s)ds = ε






[

z

ε2

]

∑

i=1

Fi




+ ε

∫ z

ε2

[

z

ε2

]

F (s)ds

= ε

√
[ z

ε2

]

ε → 0 ↓
√
z

× 1
√[

z
ε2

]






[

z

ε2

]

∑

i=1

Fi






law ↓ (CLT )

N (0, σ2)

+ ε
( z

ε2
−

[ z

ε2

])

F[

z

ε2

]

a.s. ↓
0

Thus: Xε(z) converges in distribution as ε → 0 to X̄(z) whose distribution is

N (0, σ2z).

With some more work: The process (Xε(z))z≥0 converges in distribution to a

Brownian motion (σWz)z≥0.
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Diffusion processes and stochastic differential equations
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Example: Brownian motion
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Wz (issued from 0): zero-mean Gaussian process

with covariance E[WzWz′ ] = z ∧ z′

Its increments are independent and:

E[(Wz+h −Wz)
2] = h

Let φ be a bounded real function:

u(z, x) := E[φ(x+Wz)] =

∫
1√
2πz

exp

(

−w2

2z

)

φ(x+ w)dw

=

∫
1√
2πz

exp

(

− (y − x)2

2z

)

︸ ︷︷ ︸
pz(x,y)

φ(y)dy

For x, z fixed, y 7→ pz(x, y) is the pdf of the random variable x+Wz .

pz(x, y) is the kernel of the heat operator.
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Example: Brownian motion

• The moment

u(z, x) := E[φ(x+Wz)] =

∫

pz(x, y)φ(y)dy, pz(x, y) =
1√
2πz

exp

(

− (y − x)2

2z

)

satisfies the (backward) Kolmogorov equation

∂u

∂z
=

1

2

∂2u

∂x2
, u(z = 0, x) = φ(x)

Reciprocal: The partial differential equation

∂u

∂z
=

1

2

∂2u

∂x2
, u(z = 0, x) = φ(x)

has the probabilistic representation: u(z, x) = E[φ(x+Wz)].

The reciprocal is useful for Monte Carlo simulation techniques for solving PDEs.

• The pdf y 7→ pz(x, y) of x+Wz satisfies the Fokker-Planck (Kolmogorov forward)

equation as a function of z and y:

∂pz
∂z

=
1

2

∂2pz
∂y2

, pz=0(x, y) = δ(y − x)
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Stochastic differential equations

Let X(z) be the solution of the one-dimensional stochastic differential equation

X(z) = x+

∫ z

0

σ(X(s))dWs +

∫ z

0

b(X(s))ds

Existence and uniqueness ensured provided b and σ are C1 with bounded derivatives.

X(z) is continuous a.s., is squared integrable, is adapted (depends on (Ws)0≤s≤z).

• Itô integral
∫ z

0

φ(X(s))dWs = lim
∆z→0

∑

k

φ(X(zk))(Wzk+1
−Wzk ), 0 = z0 < z1 < · · · < zn = z

Good properties: martingale (mean zero), Itô’s isometry:

E

[( ∫ z

0

φ(X(s))dWs

)2]

=

∫ z

0

E[φ(X(s))2]ds

• Stratonovich integral:
∫ z

0

φ(X(s)) ◦ dWs = lim
∆z→0

∑

k

φ(X(zk+1)) + φ(X(zk))

2
(Wzk+1

−Wzk )

• Relation:
∫ z

0

φ(X(s)) ◦ dWs =

∫ z

0

φ(X(s))dWs +
1

2

∫ z

0

σ(X(s))φ′(X(s))ds

ESNT December 6, 2011



X(z) = x+

∫ z

0

σ(X(s))dWs +

∫ z

0

b(X(s))ds

• Itô’s formula:

φ(X(z)) = φ(x) +

∫ z

0

σ(X(s))φ′(X(s))dWs +

∫ z

0

b(X(s))φ′(X(s))ds

+
1

2

∫ z

0

σ(X(s))2φ′′(X(s))ds

• X(z) is a diffusion process with the generator Q =
1

2
σ2(x)

∂2

∂x2
+ b(x)

∂

∂x

• The moment u(z, x) := E
[
φ(X(z))|X(0) = x

]
satisfies the Kolmogorov equation:

∂u

∂z
= Qu, u(z = 0, x) = φ(x)

• The pdf y 7→ pz(x, y) of X(z) (starting from X(0) = x) satisfies the Fokker-Planck

equation as a function of z and y:

∂pz
∂z

= Q∗pz , pz=0(x, y) = δ(x− y)

where Q∗ is the adjoint operator of Q:

Q∗p(y) =
1

2

∂2

∂y2

(
σ2(y)p(y)

)
− ∂

∂y

(
b(y)p(y)

)
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Diffusion processes

• Let σ and b be C1(R,R) functions with bounded derivatives.

Let Wz be a Brownian motion.

The solution X(z) of the 1D stochastic differential equation:

dX(z) = σ(X(z))dWz + b(X(z))dz

is a diffusion process with the generator

Q =
1

2
σ2(x)

∂2

∂x2
+ b(x)

∂

∂x

• Let σ ∈ C1(Rn,Rn×m) and b ∈ C1(Rn,Rn) with bounded derivatives.

Let Wz be a m-dimensional Brownian motion.

The solution X(z) of the stochastic differential equation:

dX(z) = σ(X(z))dWz + b(X(z))dz

is a diffusion process with the generator

Q =
1

2

n∑

i,j=1

aij(x)
∂2

∂xi∂xj
+

n∑

i=1

bi(x)
∂

∂xi

with a = σσ
T .
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Random differential equations and stochastic differential equations
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Next goal: determine the limit limε→0 X
ε(z) where

dXε

dz
=

1

ε
F
( z

ε2

)

for a fairly general process (F (z))z≥0 with E[F (z)] = 0.
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Write

Xε(z) =
1

ε

∫ z

0

F
( s

ε2

)

ds = ε

√
z

ε2
× 1

√
z
ε2

∫ z

ε2

0

F (s) ds

We know that

E

[ 1
√

z
ε2

∫ z

ε2

0

F (s) ds
]

= 0,

lim
ε→0

E

[( 1
√

z
ε2

∫ z

ε2

0

F (s) ds
)2]

= lim
Z→∞

ZE

[( 1

Z

∫ Z

0

F (s)ds
)2

]

= 2

∫ ∞

0

E[F (0)F (u)]du,

The Gaussian property of the limit of Xε(z) is ensured by an invariance principle.

Conclusion:
1

ε

∫ z

0

F
( s

ε2
)
ds

ε→0−→
√
2σWz

in distribution, where (Wz)z≥0 is a Brownian motion and

σ2 =

∫ ∞

0

E[F (0)F (u)]du
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Next goal: determine the limit limε→0 X
ε(z) where

dXε

dz
=

1

ε
F

( z

ε2
,Xε(z)

)

when

E[F (z,x)] = 0 ∀x
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Diffusion-approximation

dXε

dz
(z) =

1

ε
F

( z

ε2
,Xε(z)

)

, X
ε(0) = x0 ∈ R

d.

F stationary, centered, and ergodic (in z): E[F (z,x)] = 0.

Theorem: The processes (Xε(z))z≥0 converge in distribution in C0([0,∞),Rd) to the

diffusion process X with the generator L:

L =

d∑

i,j=1

aij(x)
∂2

∂xi∂xj
+

d∑

j=1

bj(x)
∂

∂xj

with

aij(x) =

∫ ∞

0

E [Fi(0,x)Fj(u,x)] du

bj(x) =

d∑

i=1

∫ ∞

0

E [Fi(0,x)∂xi
Fj(u,x)] du

It means that the pdf pz(x) of X(z) satisfies:

∂pz
∂z

=
d∑

i,j=1

∂2

∂xi∂xj

(
aij(x)pz

)
−

d∑

j=1

∂

∂xj

(
bj(x)pz

)
, pz=0(x) = δ(x− x0)
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Diffusion-approximation - the one-dimensional case

dXε

dz
(z) =

1

ε
f
( z

ε2

)

h (Xε(z)), Xε(0) = x0 ∈ R.

f stationary, centered, and ergodic: E[f(z)] = 0.

Theorem: The processes (Xε(z))z≥0 converge in distribution in C0([0,∞),R) to the

diffusion process X with the generator L:

L = a(x)
∂2

∂x2
+ b(x)

∂

∂x

with

a(x) =
1

2
σ2h2(x), b(x) =

1

2
σ2h(x)h′(x), σ2 = 2

∫ ∞

0

E [f(0)f(u)] du

It means that X(z) is the solution of the SDE

dX(z) = σh(X(z))dWz + b(X(z))dz

or

dX(z) = σh(X(z)) ◦ dWz

Remember that
∫ z

0
1
ε
f
(

s
ε2

)
ds converges in distribution to σWz .

→֒ the ”natural” integral is Stratonovich.
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