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1. Physical context and mathematical model

Physical context : electromagnetical wave propagation in nonlinear
media, with various applications (optics, telecommunications).

Time evolution of physical quantities (density, electric field) are gov-
erned by complex mathematical models (coupling between Maxwell
system and law of state in the nonlinear media).

Assumptions are needed in order to obtain a reasonable model.

Even in this case, we use numerical tools to perform simulations.

Laurent Di Menza Numerical methods for the stochastic Schödinger equation



Physical context and mathematical model
Simulation of a stochastic model

Numerical results

A mathematical model

Nonlinear Schrödinger equation : ideal mathematical model involved
in many physical contexts : nonlinear optics, plasmas physics, fluids,
quantum physics, etc.

(NLS) i
∂ψ

∂t
+∆ψ + |ψ|2σψ = 0

with ψ = ψ(t, x) ∈ C, x ∈ R
d and σ > 0.

Cauchy problem in H1(Rd) : (Ginibre-Velo, Strauss, etc.)

If σ < 2/(d− 2), locally well-posed : if ψ0 ∈ H1(Rd), ∃T > 0
and ∃ !ψ ∈ C(0, T ;H1(Rd)) solves (NLS) with ψ(0) = ψ0.

If σ < 2/d, globally well-posed : if ψ0 ∈ H1(Rd), ∃ !ψ ∈
C(R+;H1(Rd)) solves (NLS) with ψ(0) = ψ0.
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Solutions properties

Conserved quantities :

M(ψ) =

∫

Rd

|ψ(x)|2 dx (mass),

H(ψ) =

∫

Rd

‖∇ψ(x)‖2 dx− 1

σ + 1

∫

Rd

|ψ(x)|2(σ+1) dx (energy).

Specific solutions :

Stationary states ψ(t, x) = eiωtu(x) (global in H1(Rd)), where
u solves the elliptic problem

−ωu+∆u+ |u|2σu = 0, x ∈ R
d.

Explosive solutions in H1(Rd) if σ ≥ 2/d :

∃T ∗<∞ such that lim
t→T ∗

‖ψ(t)‖H1(Rd) = ∞ (”self-focusing”).
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Richness of qualitative properties of solutions

Dispersion : the solution spreads out through
space accross time (as in the linear case) :
small initial data ψ0 or small values of nonlin-
ear exponent σ.

Standing wave solutions : nonlinearity is ex-
actly compensated by dispersion effect : solu-
tions propagate in the media with shape in-
variance.

Blow-up : nonlinearity enforces the solution
to focus at one spatial point, either for well-
chosen ψ0 and sufficiently large σ (σ ≥ 2/d) :
finite-time blow-up.
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Blow-up occurence ?

Predicting finite-time blow-up for solutions of (NLS) considered with
an arbitrary Cauchy data ψ0 in H1(Rd) is a delicate question !

However, conditions of blow-up can be derived if σ ≥ 2/d in terms
of the variance V (t) := ‖xψ‖2

L2(Rd)
if

ψ0 ∈ Σ =
{
f ∈ H1(Rd), xf ∈ L2(Rd)

}

with use of Virial identity (Glassey, Strauss, etc.)

1

8

d2V

dt2
(t) = H(ψ0) +

2− dσ

2(σ + 1)

∫

Rd

|ψ(t, x)|2(σ+1)dx.

This enables to give sufficient conditions in the critical σ = 2/d and
supercritical σ > 2/d for a Cauchy data ψ0 in H1(Rd).
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Example in the critical case σ = 2/d

V ′′(t) = 8H(ψ0) = constant =⇒ V (t) = 4H(ψ0)t
2 + βt+ γ.

Consequently, if H(ψ0) < 0, then ∃T <∞ is such that V (T ) = 0.

V concave

and V ′′ constant

T

Uncertainty principle : ‖ψ(t)‖2L2(Rd) ≤
2

d

√
V (t)‖∇ψ(t)‖L2(Rd)

=⇒ lim
t→T

‖∇ψ(t)‖L2(Rd) = ∞ and lim
t→T

‖ψ(t)‖H1(Rd) = ∞.
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Blow-up and scale transition

Finite-time blow-up manifests itself as a transition from large scales
to small scales at constant mass.

t1 t2

This focusing effect is not related to ordinary differential finite-
dimensional collapse :

i∂tψ + |ψ|2σψ = 0 =⇒ ψ(t) = ψ0 e
i|ψ0|2σt, t ≥ 0.

i∂tψ +∆ψ = 0 =⇒ ‖ψ(t)‖H1 = ‖ψ0‖H1 , t ≥ 0.
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Blow-up and scale transition

Finite-time blow-up manifests itself as a transition from large scales
to small scales at constant mass.

ψ(t, .) ψ̂(t, .)

This focusing effect is not related to ordinary differential finite-
dimensional collapse :

i∂tψ + |ψ|2σψ = 0 =⇒ ψ(t) = ψ0 e
i|ψ0|2σt, t ≥ 0.

i∂tψ +∆ψ = 0 =⇒ ‖ψ(t)‖H1 = ‖ψ0‖H1 , t ≥ 0.
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Aim of this study

Possible risks :

The simplified model may not include realistic dynamics of the
physical phenomena.

Numerical methods may not be adapted when dealing with in-
teractions between large scales and small scales.

Numerical study of a stochastic model :

Noisy nonlinear optics model involving non-deterministic term
that can model inhomogeneities in the media or neglected terms
in the initial physical model.

Influence of the noise term on time-dynamics of stationary and
blowing up solutions.
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2. Simulation of a stochastic model

i
∂u

∂t
+∆u+ |u|2σu = ε g(u) (ε≪ 1 amplitude).

The right-hand stochastic term g may involve either neglected terms
in the initial governing model (expansion of the index in terms of
the field intensity, susceptibility tensor of the nonlinear media) either
inhomogeneities of the media.

Possible choices of g :

g(u) = χ̇ (additive noise) : involves a real white noise both in
time and space as a source term.

g(u) = χ̇ u (multiplicative noise) : the white noise acts as a
potential term (this matches the L2 norm conservation for the
corresponding solutions).
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Noise definition

Let (Ω,F ,P) a probability space, that consists in Ω (random field
space), F (filtration) and P (probability on Ω).

If x ∈ D, let (W (t))t≥0 a real-valued cylindrical Wiener process on
L2(D) : for (ek)k∈N othonormal basis of L2(D), then the family
βk(t) := (W (t), ek)L2(D) defines a family of Brownian motions.

We then have W (t, x, ω) =
∞∑

k=0

βk(t, ω)ek(x), x ∈ D, ω ∈ Ω.

We also set

χ̇ :=
dW

dt
(t, x, ω) =

∞∑

k=0

dβk
dt

(t, ω)ek(x), x ∈ D, ω ∈ Ω.

This noise term is very irregular both in time and space : its corre-
lation length zero in t and x ! !
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What do we want ?

Understand the noise term influence on the dynamics of stationary
states and blowing-up solutions that are quite well-known in the
deterministic case (that is without noise).

Numerical difficulties :

Discretization of the (non-smooth) noise term.

ψ = ψ(t, x) (deterministic) 7−→ u = u(t, x, ω) (stochastic)

From the initial data u0, we have to compute an infinite number
of trajectories for a infinite number of noise realizations ω.

Mean over all the trajectories : expectation of the solution

Eu(t, x) =

∫

Ω
u(t, x, ω) dP.
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Numerical scheme (in one space dimension)

Strategy : computation of the solution unj = u(tn, xj) at the dis-
crete gridpoints tn = n δt and xj = jh on a time and space mesh,
using the following discretization :

Deterministic contribution :

i
un+1

j − unj
δt

+ (Lun+1/2)j + f
n+1/2
j u

n+1/2
j = 0

where L stands for the discretized operator ∂2x,

f
n+1/2
j =

1

σ + 1

|un+1
j |2(σ+1) − |unj |2(σ+1)

|un+1
j |2 − |unj |2

(Crank-Nicolson semi-implicit scheme that mimics at a discrete level
mass and energy conservation)
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Discretization of the random term :

Equation : i∂tu+∆u+ |u|2σu = g

The right-hand term g is dis-
cretized with finite volumes, in-
tegrating on the elementary cell
]xj−1/2, xj+1/2[× [tn, tn+1]

g
n+1/2
j ≃ 1

hδt

∫ xj+1/2

xj−1/2

∫ tn+1

tn

g ds dx.
xj−1/2 xj+1/2

tn

tn+1

Space domain is discretized in J intervals Ij = ]xj−1/2, xj+1/2[.
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Case of additive noise :

1

h δt

∫ xj+1/2

xj−1/2

∫ tn+1

tn

χ̇ dsdx =
1

hδt

∫ xj+1/2

xj−1/2

∫ tn+1

tn

( ∞∑

k=0

ek(x)dβk(s)
)
dx

=
1

h δt

∞∑

k=0

(∫ xj+1/2

xj−1/2

ek(x) dx
)
(βk(tn+1)− βk(tn)).

Choice of basis functions :

We choose the first J functions of the orthonormal basis as indicatrix
functions of the J intervals Ij .

=⇒
∫ xj+1/2

xj−1/2

ek(x) dx =
√
h(ej , ek)L2(D) =

√
hδj,k.

Hence, source term only involves βj :

g
n+1/2
j ≃ 1√

h

βj(tn+1)− βj(tn)

δt
.
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Case of additive noise :

Discretization of the Brownian term βk :

θ
n+1/2
j =

βj(tn+1)− βj(tn)√
δt

∼ N (0, 1).

Random number generator : θ
n+1/2
j 7−→ χ

n+1/2
j .

=⇒ g
n+1/2
j ≃ 1√

h δt
χ
n+1/2
j .

Strategy : this random term is computed on all the gridpoints at
each iteration.

Numerically, one has to solve a nonlinear system as in the determin-
istic case, involving a random contribution in the right-hand term.
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Case of multiplicative noise :

Same strategy as or the additive noise and Stratonovitch-like dis-
cretization of the stochastic integral

∫ tn+1

tn

u ◦ dβj(s) ≃ u
( tn + tn+1

2

)βj(tn+1)− βj(tn)

δt
.

This is compatible with the L2-norm conservation. This enables to
obtain the following discretization of the right-hand term

g
n+1/2
j =

1√
hδt

χ
n+1/2
j u

n+1/2
j .

Higher space dimensions :

The same arguments will lead us to a multiplicative factor
1/(

√
δt hd/2) if x ∈ R

d.
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3. Numerical results

Tasks :

Numerical investigation of propagation of standing waves solu-
tions in a inhomogeneous nonlinear media : how will the noise
affect order of magnitudes of propagation lengths ?

Study of blow-up occurence arising in the ideal Schrödinger
model : could small scales of the noise interfer with focusing
effect that is observed in the deterministic case ?
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A single example : propagation of a stationary state
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A single example : propagation of a stationary state

Propagation of stationary state (explicitly known in dimension 1) :
the localized state starts to propagate but is progressively lost due
to noise effect. This effect is strong for large noise amplitudes.

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

x

t

Contour of |u(t,x)|

|u| = |u(t, x, ω)| for a single tra-

jectory, ε = 0.2.
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Expectation or trajectory point of view ?

Propagation of stationary state (explicitly known in dimension 1) :
persistance of the spatial profile and amplitude attenuation of the
expectation (acts as a “soliton diffusion ” effect).
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Influence of the noise on blow-up
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Life-time of the trajectories

Computation of the quantity N(t) :=
n(t)

Ntot
,

n(t) : number of trajectories still existing at time t ;

Ntot : total number of trajectories.

Blowing-up solutions in the deterministic case :
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Life-time of the trajectories

Computation of the quantity N(t) :=
n(t)

Ntot
,

n(t) : number of trajectories still existing at time t ;

Ntot : total number of trajectories.

Global solutions in the deterministic case :
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How to take into account small scales ?

Tests on a uniform grid : irregular noise structure does not manifest
when the solution starts to exhibit a blowing-up process =⇒ use of a
mesh refinement routine (in order to respect small scales structures
of the noise).
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Coarse mesh
Local refinement
Thinner grid (dt/2,dx/2)

Refinement effect
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Numerical observations

Suppression of blow-up in all the cases, independently of the
computed trajectories (consistent with experimentations).

Soliton diffusion : expectation Eu decreases through times for
any σ.
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.Asymptotic law : ‖E(u(t))‖L∞(R) ∼ t−1.
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Two-dimensional tests

The same behaviour can be observed in the multiplicative case.
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multiplicative case (left) and additive case (right), (σ = 1

2
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Soliton diffusion

Propagation of stationary state (computed using the shooting
method in dimension 2) in the critical case σ = 1.
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Numerical observations

Noise diffusion effect can be compared with the one in the Complex
Ginzburg-Landau equation (CGL).

∂u

∂t
− (µ+ i)∆u+ (ν − i)|u|2σu = 0.
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Comparison between Eu and the solution of (CGL) at final time T , 2

space dimension, µ = ν = 0.055, σ = 1.
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What about the computations ?

For one single noise simulation : one has to solve successive non-
linear systems on a spatial grid with a mesh refinement routine
(linked to the numerical scheme).

Given a single Cauchy data, one needs to perform computations
with several thousands of different trajectories to get relevant
information on the solution dynamics (linked to the stochastic
aspect of the model).

For any nonlinearity, one has to solve the nonlinear PDE for
many initial data (linked to the nonlinear deterministic part of
the model).

=⇒ Costly computations (many billions of “elementary” resolutions
for many trajectories) that easily tolerate parallel computing (all the
resolutions are independent).
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Possible extensions

Equation involving a trapping potential :

i
∂ψ

∂t
+∆ψ − ‖x‖2ψ + |ψ|2σψ = 0

Well-known model to govern the time evolution of a Bose-
Einstein condensate at low temperature. Confining potential :
enhances space localization even in the linear case !
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i∂tψ = (−∆+‖x‖2)ψ.
Many other possible models that admit explosive and stationary
states (wave equations, KdV equations, etc.)
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